
Optimal Pre�x-Free Codes for UnequalLetter Costs:Dynamic Programming with the MongeProperty �Phil Bradford y Mordecai J. Golin zLawrence L. Larmore x Wojciech Rytter {
AbstractIn this paper we discuss a variation of the classicalHu�man coding prob-lem: �nding optimal pre�x-free codes for unequal letter costs. Our problemconsists of �nding a minimal cost pre�x-free code in which the encoding al-phabet consists of unequal cost (length) letters, with lengths � and �. Themost e�cient algorithm known previously required O(n2+max(�;�)) time toconstruct such a minimal-cost set of n codewords. In this paper we pro-vide an O(nmax(�;�)) time algorithm. Our improvement comes from theuse of a more sophisticated modeling of the problem combined with theobservation that the problem possesses a \Monge property" and that theSMAWK algorithm on monotone matrices can therefore be applied.�This work was partially done by the last two authors while visiting Department of ComputerScience, Bonn University, GermanyyMax-Planck-Institut f�ur Informatik, 66123 Saarbruecken, GermanyzHong Kong UST, Clear Water Bay, Kowloon, Hong Kong. email:golin@cs.ust.hk Thisresearch partially supported by HK RGC CERG grant 652/95ExDepartment of Computer Science, University of Nevada, Las Vegas, NV 89154-4019. Email:larmore@cs.unlv.edu. Research supported by NSF grant CCR-9503441.{Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02{097 Warszawa, Poland, andDepartment of Computer Science, University of Liverpool. of Computer Science, Bonn Univer-sity. 1

1 IntroductionThe problem of �nding optimal pre�x-free codes for unequal letter costs (andthe associated problem of constructing optimal lopsided trees) is an old and hardclassical one. The problem consists of �nding a minimal cost pre�x-free code inwhich the encoding alphabet consists of unequal cost (length) letters, of lengths� and �, � � �: The code is represented by a lopsided tree, in the same way asa Hu�man tree represents the solution of the Hu�man coding problem. Despitethe similarity, the case of unequal letter costs is much harder then the classicalHu�man problem; no polynomial time algorithm is known for general letter costs,despite a rich literature on the problem, e.g., [1, 7]. However there are knownpolynomial time algorithms when � and � are integer constants [7].The problem of �nding the minimum cost tree in this case was �rst studied byKarp [9] in 1961 who solved the problem by reduction to integer linear program-ming, yielding an algorithm exponential in both n and �: Since that time therehas been much work on various aspects of the problem such as; bounding the costof the optimal tree, Altenkamp and Mehlhorn [2], Kapoor and Reingold [8] andSavari [15]; the restriction to the special case when all of the weights are equal,Cot [5], Perl Gary and Even [14], and Choi and Golin [4]; and approximatingthe optimal solution, Gilbert [6]. Despite all of these e�orts it is still, surpris-ingly, not even known whether the basic problem is polynomial-time solvable orin NP -complete.The only technique other than Karp's for solving the problem is due to Golinand Rote [7] who describe an O(n�+2)-time dynamic programming algorithm thatconstructs the tree in a top-down fashion. This is the the most e�cient knownalgorithm for the case of small �; in this paper we apply a di�erent approach byconstructing the tree in a bottom-up way and describing more sophisticated at-tacks on the problem. The �rst attack permits reducing the search space in whichoptimal trees are searched for. The second shows how, surprisingly, monotone-matrix concepts, e.g., the Monge property [13] and the SMAWK algorithm [3] canbe utilized.Combining these two attacks improves the running time of of [7] by a factorof O(n2) down to O(n�): 2

Our approach requires a better understanding of the combinatorics of lopsidedtrees; to achieve this we also introduce the new crucial concept of characteristicsequences.Let 0 � � � �: A tree T is a binary lopsided �; � tree (or just a lopsidedtree) if every non-leaf node u of the tree has two sons, the length of the edgeconnecting u to its left son is �, and the length of the edge connecting u to itsright son is �: Figure 1 shows a 2-5 lopsided tree. Let T be a lopsided tree andv 2 T some node. Thendepth(T; v) = sum of the lengths of the edges connecting root(T) to vdepth(T) = maxfdepth(T; v) : v 2 TgFor example, the tree in Figure 1 has depth 20. Now suppose we are given asequence of nonnegative weights P = fp1; p2; : : : ; png. Let T be a lopsided treewith n leaves labeled v1; v2; : : : ; vn: The weighted external path length of thetree is cost(T; P) = Pi pi � depth(T; vi):Given P; the problem that we wish to solve is to construct a labeled tree T thatminimizes cost(T; P):As was pointed out quite early [9] this problem is equivalent to �nding aminimal cost pre�x-free code in which the encoding alphabet consists of two (orgenerally, more) unequal cost (length) letters, of lengths � and �. Also note thatif � = � = 1 then the problem reduces directly to the standard Hu�man-encodingproblem.Notice that, given any particular tree T , the cost actually depends upon thelabeling of the leaves of T; the cost being minimized when p1 � p2 � � � � � pnand depth(T; v1) � depth(T; v2) � � � � � depth(T; vn): We therefore will alwaysassume that the leaves of T are labeled in nonincreasing order of their depth. Wewill also assume that p1 � p2 � � � � � pn.Note: In this extended abstract we omit many technical proofs.
3

10
12
13
14
15

2
4
6

9

10
9

7

15
16
16
17
17
17
17
17

level

0
1
2
3

snumbers of right childrenFigure 1: An example 2-5 tree T . The characteristic sequence B = sequence(T)is (2,4,6,7,9,9,10,10,12,13,14,15,16,16,17,17,17,17,17).2 Combinatorics of lopsided trees and mono-tonic sequencesThe �rst crucial concept in this paper is the characteristic sequence of a tree T .Denoted by sequence(T) this is the vector BT = (b0; b1; : : : ; bd�1) in which bi is thenumber of right children on or below level i for 0 � i < d, where d is the heightof the tree. and the levels are enumerated from bottom to top (See Figure 1).Let n and P be �xed. Now let B = b0; b1; : : : ; bd�1 be any sequence, notnecessarily one of the form B = BT de�ned by some tree T: B is said to be
4

monotonic if d � � and 0 � b0 � b1 � b2 � � � � � bd�1:Note that the number of right children on or below level i of tree T can notdecrease with i so for all trees T , BT is a monotonic sequence.A monotonic sequence B of length d terminates in a �-tuple (
�;
��1; : : : ;
1)if 8j; 0 � j < �; bd�j =
j: Note that if T is a lopsided tree with n leaves then Tmust have n � 1 internal nodes and thus n � 1 right children. Furthermore thetop � levels of T can not contain any right children. Thus if B = sequence(T)for some T then B terminates in a � tuple (n� 1; n� 1; : : : ; n� 1):
13

14
14
15

17

13
13
13
9
6
4
2

Numbers N

14
13
12
10
10

15

numbers b
i iFigure 2: The bottom forest F11 of the tree T from Figure 1.For a monotonic sequence B = b0; b1; : : : ; bd�1 de�neNk(B) = bk + bk�(���) � bk��; Si =Xj�i pj; cost(B;P) = X0�k<dSNk(B)(1)If i < 0 or i > n then Si = 1: For a tree T , denote by Fk = forestk(T) theforest resulting by taking all nodes at level k and below (See Figure 2). Denoteby Nk(T) the number of leaves in forestk(T). (Note that we have overloaded thenotation Nk() to apply to both trees and sequences.)The following lemma collects some basic facts:5

Lemma 1 Let T be a lopsided tree and B = sequence(T): Then(P1) cost(T; P) = P0�k<depth(T) SNk(T),(P2) 8 0 � i < d = depth(T); Ni(T) = bi + bi�(���) � bi��(where 8 j < 0; we set bj = 0).(P3) cost(T; P) = cost(B;P),Proof.We omit the proof of (P1) which is straightforward but tedious. To prove (P2),note that Fi is a forest, henceNi(T) = fu 2 Fi : u is a leaf in Fig (2)= Number of internal nodes in Fi + Number of trees in Fi (3)The �rst summand in the last line is easily calculated. A node at height k isinternal in Fi if and only if it is the father of some right son at level k� �: ThusNumber of internal nodes in Fi = bi��: (4)The second summand is only slightly more complicated to calculate. The numberof trees in Fi is exactly the same as the number of tree-roots in Fi: Now notethat a node in Fi is a tree-root in Fi if and only if its father is not in Fi: Thusa right son at height k in Fi is a tree-root if and only if i� � < k � i and thereare exactly bi � bi�� such nodes.Similarly a left son at height k is a tree-root if and only if i � � < k � i:This may occur if and only if the left son's right brother is at height k, wherei� � < k � i� (� � �): The number of such nodes is therefore bi�(���) � bi��:We have therefore just seen thatNumber of trees in Fi = (bi � bi��) + (bi�(���) � bi��): (5)Combining (4) and (5) completes the proof of (P2). (P3) follows from (P1) and(P2). 2Now de�ne a sequence B to be legal if B is monotonic and B = sequence(T)for some lopsided tree T: The lemma implies that minimizing cost over all legalsequences is exactly the same as minimizing cost over all lopsided trees.6

However, not all sequences are legal so this knowledge does not at �rst seemto help us. In the next section we sketch a proof of the following fact. Givenany minimum-costmonotonic sequence that terminates in the �-tuple (n�1; n�1; : : : ; n� 1) it is possible to build a legal sequence with the same cost. Since alllegal sequences are monotonic this legal sequence must be a minimal-cost legalsequence and thus correspond to a minimum-cost tree. In other words, to �nda minimal-cost tree it will su�ce to �nd a minimum-cost monotonic sequenceterminating in (n� 1; n� 1; : : : ; n� 1):3 Relation between minimum sequences andoptimal treesWe start by assuming that B = sequence(T) for some T: In T the weight p1is associated with some lowest leaf at level 0. The left sibling of this leaf isassociated with some other weight pk: How can such a k be identi�ed?Observe that this sibling can be the lowest leaf in the tree which is a left-son,i.e., the lowest left node in T: Such a node appears on level ��� (see the left treein Figure 3). The number of leaves below this level is b����1, so assuming thatwe list items consecutively with respect to increasing levels, the lowest left-sonleaf has index k = FirstLeft(B), whereFirstLeft(B) = b����1 + 1We state without proof the intuitive fact that if T is an optimal tree in whichp1; pk label sibling leaves, then the tree T 0 that results by (i) removing thoseleaves and (ii) labeling their parent (now a leaf) with p1 + pk will also be anoptimal tree for the leaf set P 0 = P [fp1 + pkg � fp1; pkg (see the right tree inFigure 3), Also, calculation shows thatcost(T; P) = cost(T 0; P 0) + � � p1 + � � pk: (6)The rest of this section will be devoted to translating this intuition into factsabout trees and sequences. 7

If p1; pk are siblings in a tree T then denote by T 0 = merge(T; 1; k) the treein which leaves p1; pk are removed and their parent is replaced by a leaf withweight p1 + pk (see Figure 3). We also write unmerge(T 0; 1; k) = T . Thuscost(unmerge(T 0; 1; k); P) = cost(T 0; P 0) + � � p1 + � � pk: (7)For the sequence B = (b0; b1; : : : bd) denotedec(B) = B0 = (b0 � 1; b1 � 1; b2 � 1; : : : bd � 1):Note that (after any leading zeros are deleted) this sequence is the characteristicsequence of T 0 = merge(T; 1; k):Assume � is a sorted sequence of positive integers, x is a positive integer, andinsert(�; x) is the sequence � with x inserted and sorted (as in insertion sort).Now denote by delete(P; p1; pk) the sequence P with elements p1 and pk deleted,and de�neP 0 = package merge(P; 1; k) = insert(delete(P; p1; pk); p1 + pk):For example if P = f2; 3; 4; 5; 10g thenP 0 = delete(P; 2; 4) = f3; 5; 10ginsert(P 0; 6) = f3; 5; 6; 10gpackage merge(P; 1; 3) = f3; 5; 6; 10gLemma 3.1 (insertion-sort lemma)If t � length(�) and � is a sorted sequence then(1) Preft(insert(�; x)) � Preft(�), (2) Preft(insert(�; x)) �Preft�1(�) + x:Lemma 3.2 If j � k then(1) Prefj�2(P 0) � Prefj(P)�p1�pk, (2) Prefj�1(P 0) � Prefj(P).8

p tree T’tree T 1

p2

p p
p
5

p
1
 + p

34

3

β−α−1

β−α

b
β−α−1 leaves

on these levelsFigure 3: The correspondence between trees T , T 0 and their sequences: T 0 =merge(T; 1; 3) and sequence(T) = B = (1; 2; 2; 3; 3; 4; 4; 4; 4; 4) sequence(T 0) =dec(B) = B0 = (0; 1; 1; 2; 2; 3; 3; 3; 3; 3); FirstLeft(B) = b����1+1 = b5�2�1+1 =3 and cost(T) = cost(T 0) + 2p4 + 5p1.Proof: Let delete(P; p1; pk) = �, observe that for j � k we havePrefj�2(�) = Prefj(P)� p1 � p2 (8)(1) Apply point (1) of Lemma 3.1 and Equation 8 to the sequence �, whereP 0 = insert(�; x) with x = p1 + pk and t = j � 2.(2) Apply point (2) of Lemma 3.1 with x = p1 + p2. We havePrefj�1(P 0) = Prefj�1(insert(�; x)) � Prefj�2(�) + x = Prefj(P),due to Equation 8. This completes the proof. 2Lemma 3.3 (key-lemma)Let k = FirstLeft(B), P 0 = merge package(P; 1; k) and B0 = dec(P), thencost(B0; P 0) � cost(B;P)� � � p1 � � � pk.Proof: Observe thatNi(B0) = 8>>><>>>: Ni(B)� 1 if i < � � �Ni(B)� 2 if � � � � i < �Ni(B)� 1 if � � i < dThe ith part (denoted term(i; B)) of the cost of B is PrefNi(B)(P), and ithpart (denoted term(i; B0)) of the cost of B0 is PrefNi(B0)(P 0). We now proceedto the case by case analysis 9

CASE 1: i < � � �: Then term(i; B) � term(i; B0) = p1. Summing over i'syields X0�i<��� term(i; B0) = X0�i<��� term(i; B)� (� � �)p1: (9)CASE 2: � � � � i < � Now term(i; B) = Prefj(P) and term(i; B0) =Prefj�2(P 0) for some j � k, and, due to Lemma 3.2, the di�erence betweenthese values is at least p1 + pk. HenceX����i<� term(i; B0) � X����i<� term(i; B)� �(p1 + pk): (10)CASE 3: � � i In this case term(i; B) = Prefj(P) and term(i; B0) =Prefj�1(P 0) for some j � k, and due to Lemma 3.2 term(i; B0) �term(i; B). Hence X��i term(i; B0) �X��i term(i; B): (11)Combining (9), (10) and (11) yields the thesis. 2This lemma permits us to prove that minimum-cost monotonic sequences havethe same cost as minimum cost trees and permit the construction of such trees:Theorem 3.4 ((correctness))Assume B is a minimum cost monotonic sequence terminating in (n � 1; n �1; : : : ; n� 1) for the sequence P: Then there is a tree T such that:(1) cost(T; P) = cost(B;P).Furthermore if n > 2 then(2) FirstLeft(B) is the index of the left brother of p1 in T ,(3) B0 = dec(B) is a minimum cost sequence for P 0 = package merge(P; 1; k).Proof:The proof is by induction with respect to the number n of items in P: If n = 2then all legal sequences have the formb0 = b1 = � � � = bd�1 = 1where d � �: The sequence with d = � has minimum cost and this sequence isalso the minimum-cost monotonic sequence.10

So now suppose that n > 2: Let B0 = dec(B) and T 0 be a minimum cost treefor P 0. P 0 has n� 1 items, so by the induction hypothesis cost(T 0; P 0) equals theminimum cost of a monotonic sequence for P 0. In particular, by Lemma 3.3, wehave cost(T 0; P 0) � cost(B0; P 0) � cost(B;P)� � � pk � � � p1: (12)Take T = unmerge(T 0; 1; k). Then by Equality (6) and Inequality (12) we have:cost(sequence(T); P) = cost(T; P) = cost(T 0; P 0) + � � pk + � � p1 � cost(B;P):B was chosen to be a minimal cost sequence so all of the inequalities must beequalities and, in particular, we �nd that cost(T; P) = cost(B;P). Hence T isthe required tree, and this completes the proof of (1).We also �nd thatcost(T 0; P 0) + � � pk + � � p1 = cost(B;P)so plugging back into (12) we �nd that cost(T 0; P 0) = cost(B0; P 0): Since T 0 is aminimal cost tree for P 0 the induction hypothesis implies B0 is a minimum costsequence for P 0 proving (3). The proof of (2) follows from the details of theconstruction. 2Note that this theorem immediately implies that, given a minimum-cost se-quence B for P; we can construct a minimum-cost tree for P: If n = 2 thetree is simply one root with two children. If n > 2 calculate B0 = dec(B) andP 0 = package merge(P; 1; k) in O(n) time. Recursively build the optimal tree T 0for P 0 and then replace its leaf labelled by p1 + pk by an internal node whoseleft child is labelled by pk and whose right child is labelled by p1: This will bethe optimal tree. Unwinding the recursion we �nd that the algorithm uses O(n2)time (but this can easily be improved down to O(n logn) with a careful use ofdata structures).4 The Monge property and the algorithmWe now introduce the weighted directed graph G whose vertices are monotonic �-tuples of nonnegative integers in the range [0 : : : n�1]. There is an edge betweentwo vertices if and only they \overlap" in a (��1)-tuple, precisely de�ned below.11

Suppose i0 � i1 � i2 � : : : i��1 � i�. Let u = (i0; i1; i2; : : : ; i��1) and v =(i1; i2; : : : ; i��1; i�). Then there is an edge from u to v if u 6= v, and furthermore,the weight of that edge isWeight(u; v) = EdgeCost(i0; i1; : : : ; i�) = Si�+i��i0Observe that if (u; v) is an edge in G then the monotonicity of(i0; i1; i2; : : : ; i��1; i�) guarantees that u is lexicographically smaller as a tuplethan v: In other words the lexicographic ordering on the nodes is a topologicalordering of the nodes of G; the existence of such a topological ordering impliesthat G is acyclic. Note that the �-tuple of zeros, (0; : : : 0), is a source. Werefer to this node as the initial node of the graph. Note also that the �-tuple(n� 1; : : : ; n� 1) is a sink; we refer to it as the �nal node of the graph.For any vertex u in the graph, de�ne cost(u) to be the weight of a shortest(that is, least weight) path from the initial node to u.Suppose we follow a path from the source to the sink and, after traversingan edge (u; v), output i�, the �nal element of v: The sequence thus outputted isobviously a monotonic sequence terminating in the �-tuple (n�1; n�1; : : : ; n�1)and from the de�nition of Weight(u; v) the cost of the path is exactly the costof the sequence. Similarly any monotonic sequence terminating in the �-tuple(n� 1; n� 1; : : : ; n� 1) corresponds to a unique path from source to sink in G:In particular, given a tree T and B = sequence(T) Lemma 1 implies that thecost of the path corresponding to B is exactly the same as cost(T):Example.The tree T from Figure 3 has B = sequence(T) = (1; 2; 2; 3; 3; 4; 4; 44) and itscorresponding path in the graph G(0; 0; 0; 0; 0) S1�! (0; 0; 0; 0; 1) S2�! (0; 0; 0; 1; 2)S2�! (0; 0; 1; 2; 2) S4�! (0; 1; 2; 2; 3) S5�! (1; 2; 2; 3; 3) S5�! (2; 2; 3; 3; 4)S5�! (2; 3; 3; 4; 4) S5�! (3; 3; 4; 4; 4) S5�! (3; 4; 4; 4; 4) S5�! (4; 4; 4; 4; 4)The cost of this path and also of the tree T isS1 + 2 � S2 + S4 + 6 � S5The above observations can be restated as12

Observation 2 Assume T is a tree and B = sequence(T). Then cost(T) =cost(B) equals the cost of the path in G corresponding to B.The correctness theorem and the algorithm following it can can now be refor-mulated as follows:Theorem 4.1 The cost of a shortest path from the initial node to the �nal nodeis the same as the cost of a minimum cost tree. Furthermore given a minimumcost path a minimum-cost tree can be reconstructed from it in O(n2) time.Observe that G is acyclic and has O(n�+1) edges. The standard dynamic-programming shortest path algorithm would therefore �nd a shortest path fromthe source to the sink, and hence a min-cost tree, in O(n�+1) time. We nowdiscuss how to �nd such a path in O(n�) time. Our algorithm obviously cannotconstruct the entire graph since it is too large. Instead we use the fact that,looked at in the right way, our problem possesses a Monge property.A 2-dimensional matrix A is de�ned to be a Monge matrix [13] if for all i; jin range A(i; j) + A(i+ 1; j + 1) � A(i; j + 1) + A(i + 1; j) (13)Now let � = (i1; i2; : : : ; i��1) be any monotonic (� � 1)-tuple of integers. For0 � i � i1 and i��1 � j � n� 1, de�neEdgeCost�(i; j) = EdgeCost(i; i1; : : : ; i��1; j) = Sj+i��iA�(i; j) = cost(i; i1; : : : ; i��1) + EdgeCost�(i; j):The important observation is thatTheorem 4.2 ((Monge-property theorem))For �xed �, the matrix A� is a two-dimensional Monge matrix.Proof:Let � = (i1; i2; : : : ; i��1). We prove Equation (13), where A = A�. If the righthand side of Equation (13) is in�nite, we are done. Otherwise, by the de�nitionsof the Sk, and of A�, cancelling terms when possible, we haveA�(i; j + 1) + A�(i+ 1; j)� A�(i; j)� A�(i+ 1; j + 1) = pj+i��i+1 � pj+i��i � 013

which completes the proof. 2A 2� 2 matrix A is de�ned to be monotone if either A11 � A12 or A21 � A22.An n � m matrix A is de�ned to be totally monotone if every 2 � 2 submatrixof A is monotone. The smawk algorithm [3] takes as its input a function whichcomputes the entries of an n�m totally monotone matrix A and gives as outputa non-decreasing function f , where 1 � f(i) � m for 1 � i � n, such thatAi;f(i) is the minimum value of row i of A. The time complexity of the smawkalgorithm is O(n+m), provided that each computation of an Aij takes constanttime. Note that every Monge matrix is totally monotone so our matrices A� aretotally monotone. This fact permits us to prove:Theorem 4.3 ((Shortest-path theorem))A shortest path from a source node to the sink node in G can be constructed inO(n�) time.Proof:The case where � = 1 requires an exceptional proof, because the proof below failsif the sequence � is a 0-tuple. However, that case is already proved in [11]. Thus,we assume � � 2.In this extended abstract we actually only show how to calculate the costof the shortest path. Transforming this calculation into the construction of theactual path uses standard dynamic programming backtracking techniques thatwe will leave to the reader.Our approach is actually to calculate the values of cost(u) for all monotonic �-tuples u = (i0; i1; : : : ; i��1): In particular, this will calculate the value of cost(n�1; n� 1; : : : ; n� 1) which is what is really required.For �xed � = (i1; i2; : : : ; i��1) note that8j � i��1; cost(�; j) = minfA�(i; j) : i � i1gAlso note that A�(i; j) can be calculated in constant time provided the values ofcost(i; �) is known. This means that, given a �xed �; if the values of cost(i; �) arealready known for all i then the values of cost(�; j) for all j can be calculated in14

total time O(n) using the SMAWK algorithm. We call this O(n) step processing�. Our algorithm to calculate cost(i0; i1; : : : ; i��1) for all �-tuples is simply toprocess all of the (� � 1) tuples in lexicographic order. Processing in this orderensures that at the time we process � the values of cost(i; �) are already knownfor all i.Using the SMAWK algorithm it thus takes O(n) time to process each of theO(n��1) (� � 1)-tuples so the entire algorithm uses O(n�) time as stated. 2Algorithm Optimal Tree Constructionsequence construction phase:compute a shortest path � from source to sink in G;let B be the sequence corresponding to �;tree reconstruction phase:construct optimal tree T from B usingrecursive algorithm described following theCorrectness Theoremend of algorithm.Theorem 4.4 ((main result))We can construct a minimum cost lopsided tree in O(n�) time.Proof:If � = 1 use the basic Hu�man encoding algorithm which runs in O(n) time.Otherwise apply the algorithm Optimal Tree Construction. Theorem 4.3 tells usthat B can be computed in O(n�) time.The algorithm described following the Correctness Theorem for constructingan optimal tree from B runs in O(n2) = O(n�) time completing the proof of thetheorem.2We conclude by pointing out, without proof, that the algorithm15

Optimal Tree Construction can be straightforwardly extended in two di�erentdirections:Theorem 4.5We can construct a minimum cost lopsided tree in O(n � log2 n) time with O(n��1)processors of a PRAM.Theorem 4.6 ((height limited trees))We can construct a minimum cost lopsided tree with height limited by L in O(n� �L) time.(A tree with height limited by L is one in which no node has depth greaterthan L.)References[1] Julia Abrahams, \Code and Parse Trees for Lossless Source Encoding," Se-quences'97, (1997).[2] Doris Altenkamp and Kurt Mehlhorn, \Codes: Unequal Probabilities, UnequalLetter Costs," J. Assoc. Comput. Mach. 27 (3) (July 1980), 412{427.[3] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applicationsof a matrix-searching algorithm, Algorithmica 2 (1987), pp. 195{208.[4] Siu-Ngan Choi and M. Golin, \Lopsided trees: Algorithms, Analyses and Appli-cations," Automata, Languages and Programming, Proceedings of the 23rd Inter-national Colloquium on Automata, Languages, and Programming (ICALP 96):[5] N. Cot, \A linear-time ordering procedure with applications to variable lengthencoding," Proc. 8th Annual Princeton Conference on Information Sciences andSystems, (1974), pp. 460{463.[6] E. N. Gilbert, \Coding with Digits of Unequal Costs," IEEE Trans. Inform. The-ory, 41 (1995).
16

[7] M. Golin and G. Rote, \A Dynamic Programming Algorithm for ConstructingOptimal Pre�x-Free Codes for Unequal Letter Costs," Proceedings of the 22ndInternational Colloquium on Automata Languages and Programming (ICALP '95),(July 1995) 256-267. Expanded version to appear in IEEE Trans. Inform. Theory.[8] Sanjiv Kapoor and Edward Reingold, \Optimum Lopsided Binary Trees," Journalof the Association for Computing Machinery 36 (3) (July 1989), 573{590.[9] R. M. Karp, \Minimum-Redundancy Coding for the Discrete Noiseless Channel,"IRE Transactions on Information Theory, 7 (1961) 27-39.[10] Abraham Lempel, Shimon Even, and Martin Cohen, \An Algorithm for OptimalPre�x Parsing of a Noiseless and Memoryless Channel," IEEE Transactions onInformation Theory, IT-19(2) (March 1973), 208{214.[11] L. L. Larmore, T. Przytycka, W. Rytter, Parallel computation of optimal alpha-betic trees, SPAA93.[12] K. Mehlhorn, \An E�cient Algorithm for Constructing Optimal Pre�x Codes,"IEEE Trans. Inform. Theory , IT-26 (1980) 513-517.[13] G. Monge, D�eblai et remblai, M�emoires de l' Acad�emie des Sciences, Paris, (1781)pp. 666-704.[14] Y. Perl, M. R. Garey, and S. Even, \E�cient generation of optimal pre�x code:Equiprobable words using unequal cost letters," Journal of the Association forComputing Machinery 22 (2) (April 1975), 202{214,[15] Serap A. Savari, \Some Notes on Varn Coding," IEEE Transactions on Informa-tion Theory, 40 (1) (Jan. 1994), 181{186.[16] Robert Sedgewick, Algorithms, Addison-Wesley, Reading, Mass.. (1984).

17

