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1 PreliminariesWe recall basic de�nitions.A deterministic branching program P for computing a Boolean function hn :f0; 1gn ! f0; 1g is a directed acyclic multi-graph with a source node and twodistinguished sink nodes: accepting and rejecting. The other nodes are calledinternal nodes. The out-degree of each non-sink node is exactly 2 and the twooutgoing edges are labeled by xi = 0 and xi = 1 for variable xi associated withthe node. Call such a node an xi-node. The label \xi = �" indicates that onlyinputs satisfying xi = � may follow this edge in the computation. The branchingprogram P computes function hn in the obvious way: for each � 2 f0; 1gn we lethn(�) = 1 i� there is a directed path starting in the source and leading to theaccepting node such that all labels xi = �i along this path are consistent with� = �1�2 : : : �n.The branching program becomes non-deterministic if we allow "guessingnodes" that is nodes with two outgoing edges being unlabeled. A non-determini-stic branching program P computes a function hn in the obvious way; that is,hn(�) = 1 i� there exists (at least one) computation on � starting in the sourcenode and leading to the accepting node.A probabilistic branching program has in addition to its standard (determin-istic) nodes specially designated nodes called random nodes. Each such a nodecorresponds to a random input yi having values from f0; 1g with probabilitiesf1=2; 1=2g. The output of such a program is a random variable.We say that a probabilistic branching program b-((a; b)-)computes a function hif it outputs 1 with a probability at least b for an input x such that h(x) = 1 (andoutputs 1 with a probability at most a for an input x such that h(x) = 0). Wecall a probabilistic branching program randomized if it (1=2��; 1=2+�)-computesthe function h for � > 0.For a branching program P we de�ne size(P ) (the complexity of the branchingprogram P ) as the number of its internal nodes. The complexity of a probabilisticbranching program is the sum of random nodes and xi-nodes. The complexityof a non-deterministic branching program is the number of its internal nodes(without \guessing" nodes). 2



A read-k-times branching program has the restriction that along each pathfrom the source to the accepted sink, each variable may be tested at most ktimes. Read-once branching program is a branching program in which for eachpath every variable is tested no more than once.An ordered read-k-times branching program (k-OBDD, OBDD for k = 1) isa branching program respecting some ordering � of variables. Such a programcan be partitioned into k layers. For each layer, the variables have to be testedaccording to the ordering � .Since branching programs are non-uniform model of computation, asymptoticstatements about size refer to families of functions and of branching programscomputing these functions and containing one program for each input size. Thisfamily of functions we call just a function implying that the function depends ofthe number of variables.Following de�nitions of [S97a], we denote the class of Boolean functions whichare computable by polynomial size deterministic (non-deterministic) bra-nchingprograms by P�BP (NP�BP ). The class coNP�BP contains all Boolean func-tions the negations of which are computable by polynomial size non-deterministicbranching programs.We say that a function hn belongs to a set PPfpng�BP for some sequence ofnumbers fpng i� for any natural number n, there is a polynomial size probabilisticbranching program Bn of n deterministic inputs pn-computing the function hn ofn variables. Let PPfpng�BP = PPp�BP if pn = p for any n. It is shown in[AKM98] that PP1=2�BP = PPp�BP for any p; 0 < p < 1. Therefore we writejust PP � BP instead of PPp�BP .For the (a; b)-computation, a < b, we use other notation. Let BPP��BP bethe class of functions (1=2��; 1=2+�)-computable by polynomial size probabilisticbranching programs. We call such branching programs randomized. Furthermore,let BPP � BP := [0<��1=2BPP� �BP:We de�ne analogous classes for k � OBDDs using \ �k � OBDD00 and forread-k-times branching programs using 00 �BPk00 as a su�x to their notations.3



Because BPP = coBPP and PP = coPP , there are for every type of branch-ing programs, 4 complexity classes of our interest: NP , coNP , BPP , PP . Whatis the relationship between these classes ?In 1996 Ablayev and Karpinski found a function fn which belonged to BPP�OBDD (and the same time to coNP �OBDD) but did not belong to NP �OBDD [AK96]. In 1997 Ablayev found a function from the class NP�OBDD nBPP�OBDD [A97]. These results are valid for the complexity classes of orderedbranching programs. In 1997 Sauerho� [S97a] shown that a function PERMcorresponding to a permutation matrix is in (BPP�OBDD\ coNP�OBDD) nNBP�BP1.2 Operations closed for complexity classesLemma 1 Let a Boolean function h(x) be presented as followsh(x) = h(x1;x2) = h1(x1)&h2(x2):If for i = 1; 2, hi 2 Q, whereQ = NP�BP or Q 2 fNP�BPk;NP�k�OBDDgfor some k, then h(x1;x2) 2 Q:Proof. A branching program B(h) computing h consists of two parts. The �rstpart of B(h) is a non-deterministic branching program B(h1) that computes thefunction h1. Then the accepting sink node of B(h1) is identi�ed with the sourcenode of non-deterministic branching program B(h2) that computes h2. If B(h1)and B(h1) correspond to the complexity class Q then h(x1;x2) 2 Q:Corollary 1 Let a Boolean function h(x) be presented as followsh(x) = h(x1;x2) = h1(x1) _ h2(x2):If for i = 1; 2, hi 2 Q, whereQ 2 fcoNP�BP; coNP�BPk; coNP�k�OBDDg4



for some k, then h(x1;x2) 2 Q:Lemma 2 Let a Boolean function h(x) be presented as followsh(x) = hx1;x2) = h1(x1) + h2(x2):If for i = 1; 2, hi 2 Q, whereQ 2 fPP�BP;BPP�BPgor Q 2 fPP�BPk; PP�k�OBDD;BPP�BPk;BPP�k�OBDDgfor some k, then h(x1;x2) 2 Q:Proof. Because of a result of [AKM98], one can assume that the function h1; h2are 1=2- ( (1=2��; 1=2+�)- ) computable by probabilistic (randomized) branchingprogramsB1; B2. Firstly, we consider the case of randomized branching programs.A branching program B(h) computing h consists of two parts. The �rst partof B(h) is a randomized branching program B(h1) that computes the function h1.Then the rejecting sink node of B(h1) is identi�ed with source node of branchingprogram B(h2) that computes h2. The accepting sink node of B(h1) is identi�edwith source node of branching program B0(h2) that is a copy of B(h2) with oneexception: the places of the sink nodes are changed.Let x = (x1;x2). If the probability of computing 1 on xi by B(hi) is pi fori = 1; 2 then B(h) computes 1 with the probabilityp = p1 + p2 � 2p1p2 = p1(1� 2p2) + p2:Let h(x) = 1. Then h1(x1) = 1; h2(x2) = 0 or h1(x1) = 0; h2(x2) = 1. Forthe �rst case p1 � 1=2 + �; p2 � 1=2� �:Therefore 1� 2p2 � 0 andp = p1(1� 2p2) + p2 � (1=2 + �)(1� 2p2) + p25



= 1=2 + �� 2p2� � 1=2 + �� 2(1=2� �)� = 1=2 + 2�2:If h1(x1) = 0; h2(x2) = 1 then p � 1=2 + 2�2 too.Let h(x) = 0. Then h1(x1) = h2(x2) = 0 or h1(x1) = h2(x2) = 1. For the�rst case p1 � 1=2� �; p2 � 1=2� �:Therefore p = p1(1� 2p2) + p2 � (1=2� �)(1� 2p2) + p2= 1=2� �+ 2p2� � 1=2� �+ 2(1=2� �)� = 1=2� 2�2:If h1(x1) = h2(x2) = 1 thenp1 � 1=2 + �; p2 � 1=2 + �:Therefore 1� 2p2 � 0 andp = p1(1� 2p2) + p2 � (1=2 + �)(1� 2p2) + p2= 1=2 + �� 2p2� � 1=2 + �� 2(1=2 + �)� = 1=2� 2�2:Therefore B(h) is a randomized branching program that (1=2� 2�2; 1=2 + 2�2)-computes the function h.For the case of probabilistic programs, we can prove the Lemma in the sameway.Lemma 1 and Lemma 2 give the following Theorem.Theorem 1 Suppose that a family of functions fh1; : : : ; htg satis�eshi 2 Q nQi; i 2 f1; : : : ; tgfor the complexity classes Q;Q1; : : : ; Qt that are NP , coNP , BPP , PP for sometype of branching programs. Then the classQ n [ti=1Qiis not empty. 6



Indeed, using above Lemmas and manipulating the functions hi we obtain a func-tion h belonging to Q.For each i 2 f1; : : : ; tg there are assignments for variablesof h being not arguments of hi such that the function h is equal to hi. Thereforeh 62 Qi.Many complexity classes can be obtained by consideration di�erent kinds ofbranching programs. It is interesting to know the relationship between theseclasses. If in some complexity class, such a function exists that does not belongto the other class, it means that some kind of a branching program could bemore powerful than other one for some functions. Unions and intersections ofcomplexity classes are interesting too: if a function is \di�cult" for some kindsof branching programs, it does not belong to the union of corresponding classesand if some function is in the intersection of some complexity classes it meansthat this function is \simple" for corresponding branching programs. Di�erentcomplexity classes, their unions and intersections determine a partially orderedset with respect to �. For some classes Q1 and Q2, it is easy to show that, forexample, Q1 � Q2 but it is not easy to show that the inclusion is proper. Wecall the inclusion Q1 � Q2 evident if Q1 = Q2 \Q3 for some complexity class Q3.The following very simple Remark will be useful for us.Remark 1 Let Q1, Q2, Q3, Q4 be some sets such that Q1 � Q2 , Q3 � Q4. Ifthere is an element f 2 Q1 nQ4, then f 2 Q2 nQ3. Therefore it is convenient to�nd such function f 2 Q1 n Q4 that the class Q1 would be possible \small" andthe class Q4 would be possible \big".3 Unions and intersections of NP , coNP , BPPfor OBDDWe study the complexity classes for OBDD only, in this section. Therefore we usehere an abbreviated notation, for example, just BPP instead of BPP�OBDD.There are 12 complexity classes which relationship is interesting for us: PP ,NP , coNP , BPP and 4 possible unions and 4 possible intersections of threelatter classes. We show that all these classes are di�erent, evident inclusions are7



proper and there is no non-evident inclusion. The following functions will be used: gn de�ned in [A97] (used also in [SZ96a]), fn de�ned in [AK96] and qn de�nedin [AKM98].Remark 2 gn 2 (NP \ coNP ) n BPP; fn 2 (BPP \ coNP ) n NP; :fn 2(BPP \NP ) n coNP , qn 2 BPP n (NP [ coNP ).Because of the Remark 1, the functions in Remark 2 are in certain sense thebest possible for the considered complexity classes. Remarks 1 and 2 give thefollowing Lemma.Lemma 3 1. The function gn belongs to the following classes(NP [ BPP ) nBPP; (coNP [BPP ) nBPP;NP n (NP \ BPP ); coNP n (coNP \ BPP );(NP \ coNP ) n (NP \ coNP \BPP ):2. The function fn belongs to the following classes(NP [BPP ) nNP; (NP [ coNP ) nNP;BPP n (NP \ BPP ); coNP n (NP \ coNP );(BPP \ coNP ) n (NP \ coNP \ BPP ):3. The function :fn belongs to the following classes(coNP [ BPP ) n coNP; (NP [ coNP ) n coNP;BPP n (coNP \ BPP ); NP n (NP \ coNP );(BPP \NP ) n (coNP \NP \BPP ):4. The function qn belongs to the following class(NP [ coNP [ BPP ) n (NP [ coNP ):
8



Lemma 4 There are functions rn, r0n and r00n such thatrn 2 PP n (NP [ coNP [BPP );r0n 2 NP n (coNP [ BPP ); r00n 2 coNP n (NP [BPP ):Theorem 1 implies this Lemma by combining the functions gn; fn;:fn. For ex-ample, r02n is obtained from gn;:fn that are in NP .Corollary 2 r0n 2 (NP [ coNP [BPP ) n (coNP [BPP ); r00n 2 (NP [ coNP [BPP ) n (NP [ BPP ):Theorem 2 For the complexity classes PP , NP , coNP , BPP and 4 possibleunions and 4 possible intersections of three latter classes, the following is true.All these classes are di�erent and there is no non-evident inclusion in the set ofthese complexity classes.The Theorem follows from Lemma 3, Lemma 4 and the following evident fact: ifQ1 [Q2 6= Q1 for some sets Q1, Q2 than Q2 6� Q1.4 Complexity Classes for read-once BranchingProgramsWe use some functions and notations de�ned in other papers. For details of theirde�nitions we refer to corresponding papers.One can consider relationship between complexity classes determined not onlyfor OBDD but for k�OBDD and read-k-times branching programs. The inclu-sion Q0 � Q00 will be also evident for these classes if this inclusion is a transitiveclosure of evident inclusions (de�ned in the previous section) and the inclusions ofthe following form: Q1 � Q2 where Q1 = Q�k�OBDD andQ2 = Q�k+1�OBDDor Q2 = Q�BPk for an integer number k � 1 and a complexity class Q. For thisconsideration, the functions from the Remark 2 are not the best ones. It wouldbe better if one could show that these functions do not belong to complexity9



classes corresponding to k � OBDD; k > 1 and BPk; k � 1. From this point ofview, there are no results for the function from Remark 2 except that it has beenproved that fn 62 NP�k�OBDD [AK98].It is worth to note that as it was mentioned in [P95b] the Boolean functionACH (\Achilles-Heel") is in P�BP1 n [k2NP�k�OBDD. We shall show inthis section that ACH is di�cult for non-deterministic and randomized OBDD.Thathachar [T98] gave functions in P�BP (k + 1) nNP�BP . Other resultsof the paper [T98] and a result [S97b] about randomized branching programspresented functions not belonging to BPP� with small �. There is no knownfunction that does not belong to BPP �BP1.If one considers the complexity class AC0 and looks for smallest complexityclass containing some function it is important to know if the function belongs toAC0. It is proved in [AKM98] that fn; qn 62 AC0. We believe that gn 62 AC0 butwe were not able to prove it.We summarize known results.Remark 3 1. [S97a] The function PERM (\permutation matrix") belongsto AC0 \BPP�OBDD \ coNP�OBDD nNP�BP1;2. [JRSW97](Theorem 3.3) there is an explicit Boolean function in AC0 \NP�BP1 \ coNP�BP1 n P�BP1;3. [S98b] there is an explicit Boolean function ADDR(�) in BPP \ NP �BP1 \ coNP�BP1 n P�BP1;4. [P95b] there is an explicit function ISA in AC0 \ P �BP1 n P �OBDD;5. [P95b] there is an explicit function HWB in P �BP1nAC0\P �OBDD.We show that all these results except the �rst one can be improved in thesense of the Remark 1 by proving that these function are inNP�OBDD \ coNP�OBDD nBPP�OBDD:We use some de�nitions based on those from [S98a].10



Let hn be a Boolean function with n variables X, d(k) be an integer function,k0; k 2 f1; : : : ; n � 1g, k0 � k. We call hn as (k; k0; d(k0))-stable if the followingholds. For an arbitrary set X1 � X, jX1j = k, there are a set X2 � X1; jX2j = k0,a set of assignments S, jSj � d(k), to the variables X2 such that for each variablex 2 X2 there is an assignment � to the variables X nX1 that hn(�+ �) is equalto the assignment of x for all � 2 S or hn(� + �) is not equal to the assignmentof x for all � 2 S.Note that if a function is k-mixed (following the de�nitions of [JRSW97]) ork-stable (following the de�nitions of [S98a]) then it is (k; k; 2k)-stable.We list some examples of (k; k0; d(k0))-stable functions of n variables.Examples.1. All 3 functions considered in [JRSW97] a (k; k; 2k)-stable, for the followingk (see also [S98a]):(a) if n = q2 + q + 1 then k = (q + 1)=2 if q is prime, k = dpqe otherwisefor \characteristic function of blocking set";(b) k = d(n=(2dlog2ne)(1=2)e� 1 for the function based on AND of ORs ofvariables in some blocks ([JRSW97], theorem 3.2);(c) k = dd(n=(dlog2ne)(1=2)e2=4� 1e for the function ADDR(�) based onMAJORITY of MAJORITYs of variables in some blocks ([JRSW97],theorem 3.3)2. The function ADDR(�) on n variables from [S98a] is (k; k; 2k)-stable, where� : f0; 1gm ! f0; 1g, m = d(n=(dlog2ne)e, is a function with the propertythat any assignment of constant values to at most k � m�1 variables doesnot make � a constant function;3. HWB from [B91], [P95b] is (0:6n; 0:1n; �o:2n0:1n�)-stable;4. ISA from [BHR95], Theorem 3, [P95b] is (k; k; 2k)-stable, where k =dn=dlog2nee � 3;5. gn from [A97] is (n� 3pn; n� 3pn; 2n�3pn=n)-stable;6. ACH from [P95b] is (m=2; m=4; 2m=4)-stable n = 2m + log2m.11



Theorem 3 Let hn be a (k; k0; 2d0(k0))-stable function of n variables. Let k0 is anunbounded increasing function of n and d0(k0) � (1� �)k0 for k0 large enough forany � > 0. Then for every n large enough, it holds that any randomized branchingprogram (1=2� �; 1=2 + �)- computing hn, � < 1=2 has the size not less than142d0(k0)�k0H(p) � 142k0�0 ;for some �0 > 0 where p = 1=2 + � and H(p) = �plog2p � (1 � p)log2(1 � p) isthe Shannon entropy.Proof. We use ideas of [A97] in this proof. For any X1, jX1j = k, the functionhn can be described by communication matrix CM for a partition (X1; X nX1).Because hn is a (k; k0; 2d0(k0))-stable function this matrix has a property that itcontains jSj di�erent rows corresponding to the set of assignments S, jSj � 2d0(k0)to the variables X2 such that for each variable x 2 X2 the following holds. Thereis a column of CM corresponding to this variable x that has di�erent componentsin two rows i� assignments of x are di�erent.That means that CM has jSj � k0 Boolean sub-matrix with di�erent rows.Following notations of [A97] we obtain thatts(CM) = k0and for the complexity of randomized branching program (1 � p; p)-computingthe function hn, the following holdssize(P ) � 2PCUp;�(f)�1wherePCUp;�(f) � dlogjSje(1� k0H(p)=logjSj)� 1 � d0(k0; n)� k0H(p)� 1:Corollary 3 All of the functions presented in Examples are not in BPP �OBDD.Lemma 5 All of the functions presented in Examples except ACH are in NP�OBDD \ coNP�OBDD. The function ACH is in coNP � OBDD n BPP�OBDD [NP�OBDD. 12



Proof. The way to compute the functions and their negations by non-determini-stic read-once program presented in the corresponding papers uses OBDD-s withnatural order of variables.It is only necessary to consider the function ACH. Let P be a non-deterministic OBDD computing ACH. One can �x the order of reading vari-ables. Following the proof of Ponzio ([P95b]) for ACH, there is an assignmentto Z and w.l.o.g. some set X1 of the cardinality m=4 of variables of X which areread before corresponding variables Y1 � Y . Let W be the set of nodes when Pread all variables of X1. For any two assignments to the variables of X1 there issome assignment to nodes of (X [ Y [Z n (X1 [ Y1)) and such assignment to Y1exists that the function ACH has di�erent values. Therefore the cardinality ofW is at least the number of di�erent assignments to X1: 2m=4.To compute the negations of ACH one can read �rstly z and read the variablesin the following order x1; y1; x2; y2; : : : ; xm; ym. If z = 0 OBDD tests all the pairsof variables to compute AND of ORs of their negations. If z 6= 0 non-deterministicprogram guesses a 'good' pair where the conjunction of the negations of variablesis equal 0.Theorem 4 There is an explicit Boolean function inPP�OBDD \ P�BP1 n (BPP�OBDD [NP�OBDD [ coNP�OBDD):Corollary 4 All the complexity classes being an intersection or an union ofNP; coNP;BPP for OBDD are proper subsets of the corresponding classes forread-once branching programs.5 Las Vegas Complexity Class versus P forOBDD and BP1The interesting complexity class is determined by \Las Vegas" (error-free) al-gorithms. For these randomized algorithms, it is possible an answer \I do notknow" with probability less than � < 1=2 for each input. Otherwise it is notallowed to make mistakes: the algorithms give allways correct outputs.13



It is shown in [S98b] that the Las�V egas�BP1 and P�BP1 complexity classesare di�erent (see Remark 3). For OBDDs, we have a surprisingly di�erent result.It is shown in [DHRS97] that the one-way communication complexity of Las �V egas computation is at most 2 times smaller than the one-way deterministiccommunication complexity. A proof of this result can be directly transformed tothe proof that P = Las�V egas for \weak-ordered" (see [AK98] for a de�nition)branching programs and thereforeP�OBDD = Las�V egas�OBDD(the authors proved this fact �rst for the Las-Vegas public coin OBDDs with allrandom variables read before the deterministic variables [KM98]).The following theorem presents some relationships between the complexityclasses determined as a combinations of those for OBDD and BP1.Theorem 5 The function Addr(�) ([S98b]) is in(NP�OBDD\ coNP�OBDD)\Las�V egas�BP1nBPP�OBDD[P�BP1and the functions ISA, HWB ([P95b]) are in(NP�OBDD \ coNP�OBDD) \ P�BP1 nBPP�OBDD:References[AK96] F. Ablayev and M. Karpinski, On the power of randomized branchingprograms, Proc. ICALP'96, LNCS 1099, Springer, 1996, pp. 348-356.[A97] F. Ablayev, Randomization and nondeterminism are incomparable forordered read-once branching programs, Proc. ICALP'97, LNCS 1256,Springer, 1997, pp. 195-202; also available as ECCC TR97-021 (1997) athttp://www.ecc.uni-trier.de/eccc[AK98] F. Ablayev and M. Karpinski, On the power of randomizedordered branching programs, ECCC TR98-004, 1998, available athttp://www.ecc.uni-trier.de/eccc14
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