Some Separation Problems on
Randomized OBDDs

Marek Karpinski* Rustam Mubarakzjanov |

Abstract

We investigate the relationships between complexity classes of Boolean
functions that are computable by polynomial size branching programs. In
the first part of this paper, we consider different general cases of branching
programs: deterministic, non-deterministic, randomized and probabilistic,
with and without restrictions on times or on order of reading inputs. We
are able to show the following. If), Q1, Q2 are some of these complexity
classes such that there are two functions fi, fo in () but not belonging to
Q1, Q2 respectively then there is a function f € Q\ (Q1 U Q2). This fact
gives a possibility to show non emptiness of different combinations of the
complexity classes.

In the second part of this paper, we show that the class PP (polynomial
time probabilistic) and all of the 11 classes obtained by some intersection
or union of BPP (polynomial time randomized), NP and coNP are different
for the ordered case of read-once branching programs.

We present also some complexity results on other classes of branching

programs.

*Dept. of Computer Science, University of Bonn, and International Computer Science In-
stitute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1, by
the ESPRIT BR Grants 7097, and EC-US 030, and by the Volkswagen-Stiftung. Email:

marek@cs.uni-bonn.de
"Dept. of Computer Science, University of Bonn. Visiting from Dept. of Theoretical

Cybernetics University of Kazan. Research supported by the Volkswagen-Stiftung and partially
by the Russia Fund for Basic Research 96-01-01692. Email: rustam@ksu.ru

1 Preliminaries

We recall basic definitions.

A deterministic branching program P for computing a Boolean function A, :
{0,1}™ — {0,1} is a directed acyclic multi-graph with a source node and two
distinguished sink nodes: accepting and rejecting. The other nodes are called
internal nodes. The out-degree of each non-sink node is exactly 2 and the two
outgoing edges are labeled by z; = 0 and x; = 1 for variable z; associated with
the node. Call such a node an x;-node. The label “x; = ¢” indicates that only
inputs satisfying x; = d may follow this edge in the computation. The branching
program P computes function h, in the obvious way: for each & € {0,1}" we let
hn(@) = 1 iff there is a directed path starting in the source and leading to the
accepting node such that all labels x; = o0; along this path are consistent with

0O =0102...0y.

The branching program becomes non-deterministic if we allow ”guessing
nodes” that is nodes with two outgoing edges being unlabeled. A non-determini-
stic branching program P computes a function h, in the obvious way; that is,
hyn (@) = 1 iff there exists (at least one) computation on & starting in the source

node and leading to the accepting node.

A probabilistic branching program has in addition to its standard (determin-
istic) nodes specially designated nodes called random nodes. Each such a node
corresponds to a random input y; having values from {0, 1} with probabilities

{1/2,1/2}. The output of such a program is a random variable.

We say that a probabilistic branching program b-((a, b)-) computes a function h
if it outputs 1 with a probability at least b for an input x such that h(x) = 1 (and
outputs 1 with a probability at most a for an input x such that h(x) = 0). We
call a probabilistic branching program randomized if it (1/2—¢, 1/2+¢)-computes
the function h for € > 0.

For a branching program P we define size(P) (the complezity of the branching
program P) as the number of its internal nodes. The complexity of a probabilistic
branching program is the sum of random nodes and x;-nodes. The complexity
of a non-deterministic branching program is the number of its internal nodes

(without “guessing” nodes).

A read-k-times branching program has the restriction that along each path
from the source to the accepted sink, each variable may be tested at most k
times. Read-once branching program is a branching program in which for each

path every variable is tested no more than once.

An ordered read-k-times branching program (k-OBDD, OBDD for k = 1) is
a branching program respecting some ordering 7 of variables. Such a program
can be partitioned into & layers. For each layer, the variables have to be tested

according to the ordering 7 .

Since branching programs are non-uniform model of computation, asymptotic
statements about size refer to families of functions and of branching programs
computing these functions and containing one program for each input size. This
family of functions we call just a function implying that the function depends of

the number of variables.

Following definitions of [S97a], we denote the class of Boolean functions which
are computable by polynomial size deterministic (non-deterministic) bra-nching
programs by P—BP (NP—BP). The class coN P—BP contains all Boolean func-
tions the negations of which are computable by polynomial size non-deterministic

branching programs.

We say that a function h,, belongs to a set PPy, y—BP for some sequence of
numbers {p, } iff for any natural number n, there is a polynomial size probabilistic
branching program B,, of n deterministic inputs p,-computing the function A, of
n variables. Let PPy, —BP = PP,—BP if p, = p for any n. It is shown in
[AKM98] that PP, /,—BP = PP,—BP for any p,0 < p < 1. Therefore we write
just PP — BP instead of PP,—BP .

For the (a,b)-computation, a < b, we use other notation. Let BPP.— BP be
the class of functions (1/2—e¢, 1/2+€)-computable by polynomial size probabilistic
branching programs. We call such branching programs randomized. Furthermore,
let

BPP — BP = U BPP, — BP.
0<e<1/2
We define analogous classes for k — OBDDs using “ —k — OBDD" and for

read-k-times branching programs using " — BPE" as a suffix to their notations.

Because BPP = coBPP and PP = coPP, there are for every type of branch-
ing programs, 4 complexity classes of our interest: NP, coNP, BPP, PP . What

is the relationship between these classes 7

In 1996 Ablayev and Karpinski found a function f,, which belonged to BPP—
OBDD (and the same time to coNP —OBDD) but did not belong to NP —
OBDD [AK96]. In 1997 Ablayev found a function from the class NP—OBDD \
BPP—-OBDD [A97]. These results are valid for the complexity classes of ordered
branching programs. In 1997 Sauerhoff [S97a] shown that a function PERM
corresponding to a permutation matrix is in (BPP—OBDD NcoNP—OBDD)\
NBP—-BP1.

2 Operations closed for complexity classes

Lemma 1 Let a Boolean function h(x) be presented as follows
h(x) = h(x1,x2) = hi(x1)&ho(X2).
If fori1=1,2, h; € Q, where
QQ=NP—-BP orQ € {NP-BPk,NP—k—OBDD}
for some k, then

h(Xl, X2) € Q

Proof. A branching program B(h) computing h consists of two parts. The first
part of B(h) is a non-deterministic branching program B(h;) that computes the
function hy. Then the accepting sink node of B(hq) is identified with the source
node of non-deterministic branching program B(hy) that computes hy. If B(hy)
and B(h) correspond to the complexity class @ then h(x;,x3) € Q. I

Corollary 1 Let a Boolean function h(x) be presented as follows
h(x) = h(x1,x2) = hi(x1) V ha(x2).
If for i = 1,2, h; € QQ, where
Q € {coNP—BP,coNP—BPk,coNP—k—OBDD}

4

for some k, then

h(x1,%x2) € Q.

Lemma 2 Let a Boolean function h(x) be presented as follows
h(x) = hx1,X2) = hi(x1) + ha(x2).
If fori1=1,2, h; € Q, where
Q € {PP—-BP,BPP—BP}
or
Q € {PP—-BPk,PP—k—OBDD,BPP—BPk,BPP—-k—OBDD}

for some k, then

h(xy1,x2) € Q.

Proof. Because of a result of [AKM98], one can assume that the function hq, hy
are 1/2- ((1/2—e¢,1/24¢€)-) computable by probabilistic (randomized) branching

programs By, Bs. Firstly, we consider the case of randomized branching programs.

A branching program B(h) computing h consists of two parts. The first part
of B(h) is a randomized branching program B(h;) that computes the function h;.
Then the rejecting sink node of B(hy) is identified with source node of branching
program B(hs) that computes hy. The accepting sink node of B(h;) is identified
with source node of branching program B'(hs) that is a copy of B(hs) with one

exception: the places of the sink nodes are changed.

Let x = (x1,x2). If the probability of computing 1 on x; by B(h;) is p; for
i = 1,2 then B(h) computes 1 with the probability

p=p1+p2—2pip2 = p1(1 — 2p2) + po.

Let h(x) = 1. Then hy(x1) = 1,ha(x2) = 0 or hy(x1) = 0, he(xz) = 1. For
the first case
p>1/246py <1/2—e

Therefore 1 — 2p, > 0 and
p=p1(1—=2ps) +p2> (1/24€)(1 = 2p3) + p2

5

=1/2+€—2pe>1/2+€—2(1/2 —€)e = 1/2 + 2%
If hl(Xl) = 0, hQ(Xz) =1 then P 2]./2 + 262 too.

Let h(X) = 0. Then hl(Xl) = hQ(X2) =0 or hl(Xl) = hQ(X2) = 1. For the
first case
pL<1/2—¢ep<1/2—¢

Therefore
p=p1(1—=2ps) +p2 < (1/2 —€)(1 — 2p2) + po
=1/2— €+ 2pe <1/2—e+2(1/2 —€)e = 1/2 — 26
If hl(xl) = hQ(Xz) =1 then

pL>1/24€6p>1/2+€

Therefore 1 — 2p, < 0 and

p=p1(1=2ps) +pa < (1/2 4+ €)(1 — 2p3) + po

=1/2+€—2pe <1/2+€—2(1/2+€)e = 1/2 — 262

Therefore B(h) is a randomized branching program that (1/2 — 2¢2,1/2 + 2¢?)-

computes the function A.

For the case of probabilistic programs, we can prove the Lemma in the same

way. I

Lemma 1 and Lemma 2 give the following Theorem.

Theorem 1 Suppose that a family of functions {hy, ..., h} satisfies

hieQ\Qiaie{la---at}

for the complexity classes Q, Q1,...,Q; that are NP, coNP, BPP, PP for some
type of branching programs. Then the class

Q\Ui_,Q;

18 not empty.

Indeed, using above Lemmas and manipulating the functions h; we obtain a func-
tion h belonging to @.For each i € {1,...,t} there are assignments for variables

of h being not arguments of h; such that the function A is equal to h;. Therefore

h & Qi.

Many complexity classes can be obtained by consideration different kinds of
branching programs. It is interesting to know the relationship between these
classes. If in some complexity class, such a function exists that does not belong
to the other class, it means that some kind of a branching program could be
more powerful than other one for some functions. Unions and intersections of
complexity classes are interesting too: if a function is “difficult” for some kinds
of branching programs, it does not belong to the union of corresponding classes
and if some function is in the intersection of some complexity classes it means
that this function is “simple” for corresponding branching programs. Different
complexity classes, their unions and intersections determine a partially ordered
set, with respect to C. For some classes ()1 and s, it is easy to show that, for
example, ()1 C Q2 but it is not easy to show that the inclusion is proper. We
call the inclusion (; C @5 evident if Q1 = Q2 N Q3 for some complexity class ()s.

The following very simple Remark will be useful for us.

Remark 1 Let QQ1, QQ2, @3, Q4 be some sets such that Q1 C Qs , Q3 C Q4. If
there is an element f € Q1 \ Qu, then f € Q2 \ Q3. Therefore it is convenient to
find such function f € Q1 \ Q4 that the class Q1 would be possible “small” and
the class Q4 would be possible “big”.

3 Unions and intersections of NP, coNP, BPP
for OBDD

We study the complexity classes for OBDD only, in this section. Therefore we use
here an abbreviated notation, for example, just BPP instead of BPP—OBDD.
There are 12 complexity classes which relationship is interesting for us: PP,
NP, coNP, BPP and 4 possible unions and 4 possible intersections of three

latter classes. We show that all these classes are different, evident inclusions are

7

proper and there is no non-evident inclusion. The following functions will be used
. gpn defined in [A97] (used also in [SZ96a]), f, defined in [AK96] and ¢,, defined
in [AKMO8|.

Remark 2 g, € (NP N coNP)\ BPP, f, € (BPP N coNP)\ NP, -f, €
(BPPNNP)\ coNP , q, € BPP\ (NP UcoNP).

Because of the Remark 1, the functions in Remark 2 are in certain sense the
best possible for the considered complexity classes. Remarks 1 and 2 give the

following Lemma.

Lemma 3 1. The function g, belongs to the following classes
(NPUBPP)\ BPP,(coNP UBPP)\ BPP,

NP\ (NP BPP),coNP\ (coNP N BPP),

(NPNcoNP)\ (NPNecoNPN BPP).
2. The function f, belongs to the following classes
(NPUBPP)\ NP,(NPUcoNP)\ NP,

BPP\ (NP N BPP),coNP\ (NP N coNP),

(BPPNcoNP)\ (NPNcoNP N BPP).
3. The function —f, belongs to the following classes
(coNP U BPP)\ coNP,(NPUcoNP)\ coNP,

BPP\ (coNP N BPP),NP\ (NP coNP),

(BPPNNP)\ (coNPNNPNBPP).
4. The function g, belongs to the following class

(NPUcoNP U BPP)\ (NP UcoNP).

Lemma 4 There are functions ry, rl, and rl. such that
ro € PP\ (NP UcoNP UBPP),

ri. € NP\ (coNPUBPP),r! € coNP\ (NP UBPP).

Theorem 1 implies this Lemma by combining the functions g, f,, - f,. For ex-

ample, ri, is obtained from g,,—f, that are in NP.

Corollary 2 7, € (NPUcoNPUBPP)\ (coNPUBPP),r! € (NPUcoNPU
BPP)\ (NP U BPP).

Theorem 2 For the complexity classes PP, NP, coNP, BPP and 4 possible
unions and 4 possible intersections of three latter classes, the following is true.
All these classes are different and there is no non-evident inclusion in the set of

these complezity classes.

The Theorem follows from Lemma 3, Lemma 4 and the following evident fact: if

Q1 U Q2 # Qy for some sets (1, Q2 than Qs Z Q.

4 Complexity Classes for read-once Branching

Programs

We use some functions and notations defined in other papers. For details of their

definitions we refer to corresponding papers.

One can consider relationship between complexity classes determined not only
for OBDD but for k—OBDD and read-k-times branching programs. The inclu-
sion @' C Q" will be also evident for these classes if this inclusion is a transitive
closure of evident inclusions (defined in the previous section) and the inclusions of
the following form: @)1 C Q)5 where Q1 = Q—k—OBDD and Q; = Q—k+1-OBDD
or Q2 = Q—BPE for an integer number £ > 1 and a complexity class (). For this
consideration, the functions from the Remark 2 are not the best ones. It would

be better if one could show that these functions do not belong to complexity

classes corresponding to k — OBDD,k > 1 and BPk,k > 1. From this point of
view, there are no results for the function from Remark 2 except that it has been
proved that f, ¢ NP—k—OBDD [AK98|.

It is worth to note that as it was mentioned in [P95b] the Boolean function
ACH (“Achilles-Heel”) is in P—BP1\ UyenP—k—OBDD. We shall show in
this section that AC'H is difficult for non-deterministic and randomized OBDD.

Thathachar [T98] gave functions in P—BP(k + 1) \ NP—BP. Other results
of the paper [T98] and a result [S97b] about randomized branching programs
presented functions not belonging to BPP, with small e. There is no known
function that does not belong to BPP — BP1.

If one considers the complexity class AC? and looks for smallest complexity

class containing some function it is important to know if the function belongs to
ACP. Tt is proved in [AKM98] that f,, ¢, ¢ AC°. We believe that g, ¢ AC® but

we were not able to prove it.

We summarize known results.

Remark 3 1. [S97a] The function PERM (“permutation matriz”) belongs
to AC°NBPP—-OBDDNcoNP—-OBDD\ NP—BP1;

2. [JRSW97](Theorem 3.3) there is an explicit Boolean function in AC® N
NP—-BP1ncoNP—-BP1\ P-BP1;

3. [S98b] there is an explicit Boolean function ADDR(A) in BPP N NP —
BP1NncoNP—BP1\ P-BP1;

4. [P95b] there is an explicit function ISA in AC°NP — BP1\ P—-OBDD;

5. [P95b] there is an explicit function HW B in P— BP1\ AC°NP —-OBDD.

We show that all these results except the first one can be improved in the

sense of the Remark 1 by proving that these function are in

NP—-OBDDNecoNP—-OBDD\ BPP—OBDD.

We use some definitions based on those from [S98a].

10

Let h, be a Boolean function with n variables X, d(k) be an integer function,
Kke{l,...,n—1}, k' < k. We call h, as (k,k’,d(k'))-stable if the following
holds. For an arbitrary set X; C X, |X;| = k, there are a set Xy C X1, |X5| = &/,
a set of assignments S, |S| > d(k), to the variables X3 such that for each variable
x € X, there is an assignment (3 to the variables X \ X, that h, (@ +) is equal
to the assignment of x for all @ € S or h,(@ + B) is not equal to the assignment

of z foralla € S.

Note that if a function is A-mixed (following the definitions of [JRSW97]) or
k-stable (following the definitions of [S98a]) then it is (k, k, 2¥)-stable.

We list some examples of (k, k', d(k'))-stable functions of n variables.

Examples.

1. All 3 functions considered in [JRSW97] a (k, k, 2¥)-stable, for the following
k (see also [S98a]):

(a) if n =¢* 4 q+ 1 then k = (¢+1)/2 if ¢ is prime, k = [,/q] otherwise
for “characteristic function of blocking set”;

(b) k= [(n/(2[logyn])?/?] —1 for the function based on AND of ORs of
variables in some blocks ([JRSW97], theorem 3.2);

(¢) k= [[(n/([logan])/?]?/4 — 1] for the function ADDR()) based on
MAJORITY of MAJORITYS of variables in some blocks ([JRSW97],
theorem 3.3)

2. The function ADDR()\) on n variables from [S98a] is (k, k, 2¥)-stable, where
A:{0,1}™ — {0,1}, m = [(n/([logan])], is a function with the property
that any assignment of constant values to at most k& < m — 1 variables does

not make A a constant function;
3. HW B from [B91], [P95b] is (0.6n,0.1n, (77))-stable;

0.1n

4. ISA from [BHR95|, Theorem 3, [P95b] is (k,k,2F)-stable, where k =
[n/[logn] = 3;

5. gn from [A97] is (n — 3v/n,n — 3/n, 2" 3V™ /n)-stable;
6. ACH from [P95b] is (m/2,m/4,2™/*)-stable n = 2m + logym.

11

Theorem 3 Let h, be a (k, k', 2**))-stable function of n variables. Let k' is an
unbounded increasing function of n and d'(k') > (1 — §)k' for k" large enough for
any 6 > 0. Then for everyn large enough, it holds that any randomized branching

program (1/2 — €,1/2 + €)- computing h,, € < 1/2 has the size not less than

1 U ! ! 1 Y
_2d (k")—k'H(p) > _2k5
4 4 ’
for some §' > 0 where p = 1/2+ ¢ and H(p) = —plogsp — (1 — p)logz(1 — p) is
the Shannon entropy.

Proof. We use ideas of [A97] in this proof. For any X, |X;| = k, the function
h,, can be described by communication matrix C'M for a partition (X, X \ X}).
Because h,, is a (k, k', 2% ¥))-stable function this matrix has a property that it
contains |S| different rows corresponding to the set of assignments S, |S| > 2¢ ()
to the variables X, such that for each variable x € X, the following holds. There
is a column of C'M corresponding to this variable x that has different components

in two rows iff assignments of x are different.

That means that C'M has |S| x k' Boolean sub-matrix with different rows.
Following notations of [A97] we obtain that

ts(CM) = k'

and for the complexity of randomized branching program (1 — p, p)-computing

the function h,,, the following holds
size(P) > 2PChx(/)-1
where

PCy(f) = [log|S[|(1 = k'H(p)/log|S|) = 1 > d'(k',n) — k"H (p) — 1. I

Corollary 3 All of the functions presented in Ezamples are not in BPP —
OBDD.

Lemma 5 All of the functions presented in Examples except ACH are in NP—
OBDD NcoNP—OBDD. The function ACH is in coNP — OBDD \ BPP—
OBDDUNP—-OBDD.

12

Proof. The way to compute the functions and their negations by non-determini-
stic read-once program presented in the corresponding papers uses OB D D-s with

natural order of variables.

It is only necessary to consider the function AC'H. Let P be a non-
deterministic OBDD computing ACH. One can fix the order of reading vari-
ables. Following the proof of Ponzio ([P95b]) for ACH, there is an assignment
to Z and w.l.o.g. some set X of the cardinality m/4 of variables of X which are
read before corresponding variables Y; C Y. Let W be the set of nodes when P
read all variables of X;. For any two assignments to the variables of X there is
some assignment to nodes of (X UY U Z \ (X; UY})) and such assignment to Y;
exists that the function ACH has different values. Therefore the cardinality of

W is at least the number of different assignments to X;: 2™/4,

To compute the negations of AC'H one can read firstly z and read the variables
in the following order x1, Y1, T2, Y2y - - -, Tin, Ym- If 2 =0 OBDD tests all the pairs
of variables to compute AND of ORs of their negations. If z # 0 non-deterministic
program guesses a 'good’ pair where the conjunction of the negations of variables

is equal 0. |

Theorem 4 There is an explicit Boolean function in

PP-OBDDNP—-BP1\ (BPP-OBDDUNP—-OBDDUcoNP—OBDD).

Corollary 4 All the complexity classes being an intersection or an union of
NP,coNP, BPP for OBDD are proper subsets of the corresponding classes for

read-once branching programs.

5 Las Vegas Complexity Class versus P for
OBDD and BP1

The interesting complexity class is determined by “Las Vegas” (error-free) al-
gorithms. For these randomized algorithms, it is possible an answer “I do not
know” with probability less than ¢ < 1/2 for each input. Otherwise it is not

allowed to make mistakes: the algorithms give allways correct outputs.

13

It is shown in [S98b] that the Las—V egas—BP1 and P-BP1 complexity classes
are different (see Remark 3). For OBDDs, we have a surprisingly different result.
It is shown in [DHRS97] that the one-way communication complexity of Las —
Vegas computation is at most 2 times smaller than the one-way deterministic
communication complexity. A proof of this result can be directly transformed to
the proof that P = Las—Vegas for “weak-ordered” (see [AK98] for a definition)

branching programs and therefore
P—OBDD = Las—Vegas—OBDD

(the authors proved this fact first for the Las-Vegas public coin OBDDs with all

random variables read before the deterministic variables [KM98]).

The following theorem presents some relationships between the complexity

classes determined as a combinations of those for OBDD and BP1.

Theorem 5 The function Addr(\) ([S98b]) is in
(NP-OBDDNeoNP—-OBDD)N Las—Vegas—BP1\ BPP-OBDDUP—-BP1
and the functions ISA, HW B ([P95b]) are in

(NP-OBDDNcoNP—-OBDD)NP—BP1\ BPP—OBDD.

References

: ayev an . Karpinski, On the power of randomized branching
AK96] F. Abl d M. Karpinski, On th domized b hi
programs, Proc. ICALP’96, LNCS 1099, Springer, 1996, pp. 348-356.

[A97] F. Ablayev, Randomization and nondeterminism are incomparable for
ordered read-once branching programs, Proc. ICALP’97, LNCS 1256,
Springer, 1997, pp. 195-202; also available as ECCC TR97-021 (1997) at
http://www.ecc.uni-trier.de/eccc

[AK98] F. Ablayev and M. Karpinski, On the power of randomized
ordered branching programs, ECCC TR98-004, 1998, available at

http://www.ecc.uni-trier.de/eccc

14

Ablayev, M.Karpinski and R.Mubarakzjanov, On versus

AKMO98] F.Abl M.Karpinski and R.Mubarakzj On BPP NP
UcoN P for Ordered Read-Once Branching Programs, Proc. Randomized Al-
gorithms, Brno, 1998.

[BDG88| J.L.Balcazar, J.Diaz and J.Gabarro, Structural Complezity I, Springer,
Berlin, 191 P.;1988.

[BRS93] A. Borodin, A. Razborov and R. Smolensky, On lower bounds for read-
k-times branching programs, Computational Complexity, 3, (1993), 1-18.

[BHR95] Y.Breitbard, H.B.Hunt IIT and D.Rosenkratz, On the size of binary de-
cision diagrams representing Boolean functions, Theoretical Computer Sci-
ence, 145 (1995), pp.45-69.

[B91] R.E. Bryant, On the complezity of VLSI implementations and graph rep-
resentations of Boolean functions with application to integer multiplication,
IEEE Trans. Computers, C-40(2): 205-213, Feb.1991.

[DHRS97] P.Duris, J.Hromokovic, J.D.P.Rolim and G.Schnitger,On the Power
of Las Vegas for One-Way Communication Complexity, Finite Automata,
and Polynomial-time Computations, ECCC TR97-029, 1997, available at

http://www.ecc.uni-trier.de/eccc/

[JRSW97] S.Jukna, A.Razborov, P.Savicky and I.Wegener,On P wversus NP N
co— NP for decision trees and read-once branching programs, ECCC TR97-
023, 1997, available at http://www.ecc.uni-trier.de/eccc/

[KM98] M.Karpinski and R.Mubarakzjanov, Some Separation Problems on Ran-
domized OBDDs, Manuscript, 1998.

[P95a] S.Ponzio,A lower bound for integer multiplication with read-once branch-
ing programs, Proc. 27-th STOC, (1995), 130-139.

[P95b] S.Ponzio,Restricted Branching Programs and Hardware Veryfication, PhD
thesis, Massachusetts Institute of Technology, 1995.

[SZ96a] P. Savicky and S. Zak,A large lower bound for 1-branching
programs, ECCC, Revision 01 of TR96-036, (1996), available at

http://wuw.eccc.uni-trier.de/eccc/ .

15

[SZ96b] P. Savicky and S. Zak,A hierarchy for (1,+k)-branching pro-
grams with respect to k, ECCC, TR96-050, (1996), available at

http://wuw.eccc.uni-trier.de/eccc/ .

[S97a] M.Sauerhoff, A Lower Bound for Randomized Read-k-Times
Branching Programs, ECCC, TR97-019, 1997, available at

http://www.eccc.uni-trier.de/eccc/

[S97b] M.Sauerhoff,On Nondeterminism wversus Randomness for Read-
Once Branching Programs, ECCC, TR97-030, 1997, available at

http://www.eccc.uni-trier.de/eccc/

[S98a] M.Sauerhoff, Randomness and Nondeterminism are Incomparable for
Read-Once Branching Programs, ECCC, TR98-018, 1998, available at

http://www.eccc.uni-trier.de/eccc/

[S98b] M.Sauerhoff, Comment 1 on the paper: Randomness and Nondeter-minism
are Incomparable for Read-Once Branching Programs, ECCC, TR98-018,

1998, available at http://www.eccc.uni-trier.de/eccc/

[T98] J.Thathachar, On Separating The Read-k-Times Branch-
ingProgram Hierarchy, = ECCC, TR98-02, 1998, available at

http://www.eccc.uni-trier.de/eccc/

16

