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1 IntroductionApproximation algorithms, whenever they can be found, are a way to deal withthe NP-hardness of optimization problems. Ideally, they should run in polyno-mial time and have a small approximation ratio, which is the worst-case ratioof the value of the solution returned by the algorithm to the value of the opti-mum solution. (This de�nition is for minimization problems; for maximizationproblems the ratio is inverted so that it is always at least 1.)Optimization problems seem to be approximable to di�erent degrees(see [Shm94] for a survey). We know that unless P = NP, problems such asCLIQUE [FGL+91, AS92, ALM+92] and CHROMATIC NUMBER [LY93] can-not be approximated even to within a factor of n� in polynomial time, for some�xed � > 0. (More recently, H�astad [H96] showed that if SAT does not haverandomized polynomial-time algorithms, then CLIQUE cannot be approximatedto within a factor n1��, for every � > 0.) Others problems, such as those relatedto graph separators [LR88], have algorithms with approximation ratios close toO(log n). No inapproximability results are known for them. MAX-SNP prob-lems, such as MAX-CUT or MAX-3-SAT, can be approximated to within some�xed constant factor but no better [PY91, ALM+92]. Only a few problems, suchas KNAPSACK [S75] and BIN PACKING [FL81], are known to have polynomialtime approximation schemes (PTASs).A PTAS is an algorithm that, for every �xed � > 0, achieves an approximationratio of 1+� in time that is polynomial in the input size (but could grow very fastwith 1=�, such as O(n1=�)). A PTAS thus allows us to trade o� approximationaccuracy for running time. (In the previous de�nition, if the running time ispolynomial in 1=� as well, then we have a fully polynomial time approximationscheme. These are known to exist for a few problems [GJ79, DFK91, KLM89].)Unfortunately, recent results ([ALM+92]) show that if P 6= NP, then PTASsdo not exist for many NP-hard problems. In particular, this is is true forevery MAX-SNP-hard problem. (The class of MAX-SNP-hard problems in-cludes VERTEX COVER, MAX-3-SAT, MAX-CUT, METRIC TSP, MULTI-WAY CUTS, and many others [PY91].)Note that the inapproximability results mentioned above, like all NP-2



hardness results, rule out approximation only on worst case instances of theproblem. They do not rule out the existence of algorithms (heuristics) that dowell on most instances. This observation is the starting point of our research.This paper gives PTASs for a large class of NP-hard problems when theproblem instance is dense. The de�nition of denseness depends on the problem;for example, dense graphs are graphs with 
(n2) edges while dense 3-SAT for-mulas are those with 
(n3) clauses. Note that almost all graphs (asymptoticallyspeaking) are dense, as are almost all 3-SAT instances.The design of many (but not all) of our PTAS's relies on the observation thatmany optimization problems can be phrased as nonlinear integer programs inwhich the objective function is a low degree polynomial. For dense problems,the optimum value of the objective function is quite large. Thus, to achieve amultiplicative approximation for dense instances it su�ces to achieve an additiveapproximation for the nonlinear integer programming problem. We design suchan additive approximation algorithm (see Sections 1.2 and 1.3).In the remainder of this introduction, we describe the problems we solve andsketch our solution techniques.1.1 Applicable Optimization ProblemsWe now describe the problems to which we apply our techniques. The readerwill note that the problems span a broad spectrum. Some, like maximum cutand maximum k-satis�ability, are MAX-SNP-complete. Thus they do not havePTASs on general (that is, non-dense) instances [ALM+92], but they can all beapproximated within some constant factor in polynomial time [PY91]. Others,like graph bisection and separation, do not currently have any algorithms withapproximation ratios better than O(log n) on general instances. It is an openproblem whether they are hard to approximate.MAX-CUT: Partition the vertices of an undirected graph into two groups so asto maximize the number of edges with exactly one endpoint in each group.An algorithm in [GW94] achieves an approximation ratio of 1:13 for theproblem. 3



MAX-DICUT: The directed version of the MAX-CUT problem. An algorithmin [FG95] (improving [GW94]) achieves an approximation ratio of 1:15.MAX-HYPERCUT(d): A generalization of MAX-CUT to hypergraphs of dimen-sion d; an edge is considered cut if it has at least one endpoint on each side.SEPARATOR: Partition the vertices of a graph into two groups, each with atleast 1=3 of the vertices, so as to minimize the number of edges with exactlyone endpoint in each group. An algorithm in [LR88] achieves approximationratio O(log n) (though it may produce a 1=4 : 3=4 separator instead of a1=3 : 2=3 separator).BISECTION: Partition the vertices of an undirected graph into two equal halvesso as to minimize the number of edges with exactly one endpoint in eachhalf. Some algorithms, for example using eigenvalues [B87] or simulatedannealing [JS93] do well on certain random graphs (see also [BCLS84]).For worst-case inputs, no true approximation algorithms are known. Someknown \bisection approximators" (based upon techniques of [LR88]) yieldseparators whose capacity is within a factor O(log n) of the capacity of theoptimum bisection. Our algorithm gives an exact bisection.MAX-k-SAT: Given a conjunctive normal form formula with k variables perclause, �nd a true-false assignment to the variables making the maximumpossible number of clauses true. An algorithm in [Yan92] achieves an ap-proximation ratio of 1:33 for the problem. Improved algorithms have sincebeen given for MAX-3-SAT; an approximation ratio of 8=7 + � is achievedin [KZ97]. It also known that achieving an approximation ratio of 8=7 � �is N P-hard [H97].MIN-k-CUT: Given an n-vertex graph, remove a minimum set of edges that par-titions the graph into k connected components. Saran and Vazirani [SV91]gave a (2�2=k)-approximation algorithm. The variant k-terminal cut prob-lem speci�es k vertices that must all be disconnected from each other bythe removal of the edges. Dalhaus et al. [DJP+94] give an algorithm thatachieves an approximation ratio of (2� 2=k).DENSE-k-SUBGRAPH: Given a graph, �nd a subset of k vertices that inducesa graph with the most edges. This problem was studied in [KP93], where4



an approximation algorithm with ratio n7=18 was presented.3-COLORING: Color the vertices of a graph with 3 colors such that no twoadjacent vertices have the same color. Application of our techniques to thisproblem yields a result already shown in [Edw86].MAX-SNP: The class of \constant factor approximable" problems de�nedin [PY91].We now de�ne a natural notion of dense instance for each problem. (Thede�nition of dense instances for the class MAX-SNP appears in Section 4.4,where we also describe a PTAS for them.) Exact optimization on dense instancesis NP-hard for all problems except MIN-k-CUT and 3-COLORING (see Sec-tion 7).De�nition 1.1. A graph is �-dense if it has �n2=2 edges. It is everywhere-�-denseif the minimumdegree is �n. We abbreviate 
(1)-dense as dense and everywhere-
(1)-dense as everywhere-dense. Thus everywhere-dense implies dense, but notvice versa. Similarly, a k-SAT formula is dense if it has 
(nk) clauses, and adimension-d hypergraph if it has 
(nd) edges.Theorem 1.2. There are PTASs for everywhere-dense instances of BISECTIONand SEPARATOR.Theorem 1.3. There are PTASs for dense instances of the following prob-lems: MAX-CUT, MAX-DICUT, MAX-k-SAT for any constant k, DENSE-k-SUBGRAPH for k = 
(n), MAX-HYPERCUT(d) for constant d, and anyMAX-SNPproblem.Theorem 1.4. Exact algorithms exist on everywhere-dense graphs for MIN-k-CUT when k = o(n) and for 3-COLORING.Remark. The 3-COLORING result is not new|see [Edw86]|but does followfrom a direct application of our general technique1.2 Our MethodsOur heuristics are based upon two main ideas: exhaustive sampling and its usein approximation of polynomial integer programs. We discuss these ideas in the5



context of the maximum cut problem (MAX-CUT), one of the problems to whichour techniques apply.The goal in MAX-CUT is to partition the vertices of a given graph into twogroups|called the left and right sides|so as to maximize the number of edgeswith an endpoint on each side. Notice that in the optimum solution, every vertexhas the majority of its neighbors on the opposite side of the partition (else, itwould improve the cut to move the vertex to the other side). Thus, if we knewwhere the neighbors of each vertex lay, we would know where to put each vertex.This argument may seem circular, but the circularity can be broken (in densegraphs) by the following exhaustive sampling approach. Suppose we take a sampleof O(log n) vertices. By exhaustively trying all possible (i.e., 2O(logn)) placementsof the vertices in the sample, we will eventually guess where each vertex of thesample belongs in the optimum cut. Since there are 2O(logn) = nO(1) possibilities,we can a�ord to try every one of them in polynomial time. So assume we havepartitioned the sampled vertices correctly according to the optimal cut. Nowconsider some unsampled vertex. If a majority of its neighbors belong on theright side of the optimum cut, then we expect that a majority of its sampledneighbors will be from the right side of the optimum cut. This suggests thefollowing scheme: put each unsampled vertex on the side opposite the majorityof its sampled neighbors.This scheme works well for vertices whose opposite-side neighbors signi�cantlyoutnumber their same-side neighbors. More problematic are vertices for whichthe neighbors split evenly between the two sides; sampling will not typicallygive us con�dence about the majority side. This brings us to the second majoridea of our paper: approximately solving nonlinear integer programs. De�ne avariable xi for vertex i which is 1 if the vertex is on the right side of a cut and 0otherwise. Then �nding a maximum cut corresponds to �nding a 0-1 assignmentthat maximizes the following function (where E is the edge set of the graph):Xi xi0@ X(i;j)2E(1� xj)1A :To see this, note that the formula counts, for every vertex i on the right side ofthe cut, the number of edges leading from it to neighbors j on the left side of thecut. 6



Of course, solving even linear integer programs is N P-complete, and theabove program involves a quadratic objective function. However, we show thatexhaustive sampling can be used to approximately maximize such functions, andmore generally, to approximately solve integer programs in which the constraintsand objective involve low-degree polynomials instead of linear functions. We stateour main approximation result in the next section.Most of our approximation algorithms are more properly viewed as algorithmsthat compute an additive approximation (see Section 1.3). For example, ouralgorithm for MAX-CUT computes, for every graph, a cut of capacity at leastOPT � �n2, where � is any desired constant. Such an approximation is alsowithin a small multiplicative factor of the optimum in a dense graph (i.e., onewith 
(n2) edges) because OPT = 
(n2) for such graphs (this follows from ourearlier observation that in an optimum cut, every vertex is on the opposite sidefrom a majority of its neighbors). However, our algorithms for BISECTION andSEPARATOR are not additive approximation algorithms.1.3 Smooth Integer ProgramsMany existing approximation algorithms for N P-hard problems are based onrepresentation of the problem as a linear integer program (LIP). All problems inN P have such formulations since solving LIPs is N P-complete. Many problemshave natural formuations as LIPs that give insight into their structure and leadto approximation algorithms. But formulation as a LIP masks the true nature ofmany other problems|in particular, an approximately optimum solution to theLIP may correspond to a far from optimum solution to the original optimizationproblem. A more natural formulation involves nonlinear integer program in whichthe objective function is a low degree polynomial. Most of our PTAS's for denseproblems are derived from such a representation. We solve a general class ofoptimization problems in which the objective function and the constraints arepolynomials. 7



De�nition 1.5. A polynomial integer program (or PIP) is of the formmaximize p0(x1; : : : ; xn) (1)subject to li � pi(x) � ui (i = 1; : : : ;m) (2)xi 2 f0; 1g 8i � n (3)where p0; : : : ; pm are polynomials. (The PIP could involve minimization insteadof maximization.)When all pi have degree at most d, we call this program a degree d PIP.Since they subsume integer programs, it is clear that solving PIPs is N P-hard.One might hope to de�ne a more tractable class by eliminating the integralityrequirement, but this accomplishes nothing since the 0{1 integrality of xi can beenforced by the quadratic constraint xi(xi � 1) = 0.We now describe a class of PIPs that are easy to approximate.De�nition 1.6. An n-variate, degree-d polynomial has smoothness c if the abso-lute value of each coe�cient of each degree i monomial (term) is at most c � nd�i.Remark. The reader should think of c and d as being �xed constants, and n asbeing allowed to grow. We call the resulting family of polynomials a family ofc-smooth degree d polynomials.De�nition 1.7. A c-smooth degree-d PIP is a PIP in which the objective func-tion and constraints are c-smooth polynomials with degree at most d.Smooth integer programs can represent many combinatorial problems in anatural way. We illustrate this using MAX-CUT as an example.Example 1.8. A degree-2 polynomial with smoothness c has the formX aijxixj +X bixi + dwhere each jaijj � c; jbij � cn; jdj � cn2.We show how to formulate MAX-CUT on the graph G = (V;E) using a 2-smooth integer program. De�ne a variable xi for each vertex vi. Then, assign0; 1 values to the xi (in other words, �nd a cut) so as to maximizeXfi;jg2E(xi(1 � xj) + xj(1� xi)):8



(Notice that an edge fi; jg contributes 1 to the sum when xi 6= xj and 0 otherwise.Thus the sum is equal to the cut value.) Expanding the sum shows that thecoe�cients of the quadratic terms are 0 and �2 while the coe�cients of thelinear terms are at most n.Now we can state our general theorem about approximation of smooth integerprograms.De�nition 1.9. A solution a is said to satisfy a constraint li � pi(x) � ui towithin an additive error � if li � � � pi(a) � ui + �:Theorem 1.10. There is a randomized polynomial-time algorithm that approx-imately solves smooth PIPs, in the following sense. Given a feasible c-smoothdegree d PIP with n variables, objective function p0 and K constraints, the algo-rithm �nds a 0=1 solution z satisfyingp0(z1; : : : ; zn) � OPT � �nd;where OPT is the optimum of the PIP. This solution z also satis�es each degreed0 constraint to within an additive factor of �nd0 for d0 > 1, and satis�es eachlinear constraint to within an additive error of O(�pn log n).The running time of the algorithm is O((dKnd)t), where t = 4c2e2d2=�2 =O(1=�2).The algorithm can be derandomized (i.e., made deterministic), while increas-ing the running time by only a polynomial factor.Remark. The statement of the theorem can be stronger: the input PIP does notneed to be feasible, but only approximately feasible (that is, there must be apoint that satis�es each degree d0 constraint to within an additive error �0nd0 forsome �0 < �=2.)Theorem 1.10 underlies almost all of our PTASs. However, our PTASs forBISECTION and MIN-k-CUT require some additional ideas since an additiveapproximation is not good enough. 9



1.4 Related WorkThere are known examples of problems that are seemingly easier to approximatein dense graphs than in general graphs. For instance, in graphs with degree ex-ceeding n=2, one can �nd Hamiltonian cycles [P�76] and approximate the numberof perfect matchings [JS89]. In everywhere-dense graphs it is easy to approxi-mate the values of the Tutte polynomial and, as a special case, to estimate thereliability of a network [AFW94].Independent of our work, Fernandez de la Vega [FdlV94] developed a PTASfor everywhere-dense MAX-CUT using exhaustive sampling principles similar toours. After sampling and guessing, Fernandez de la Vega replaces our linear-programming solution with a greedy placement procedure. While this procedureis signi�cantly simpler than ours (at least conceptually; the running time is stilldominated by the exhaustive sampling procedure and is similar to ours), it isnot obvious (and is an interesting open question) whether the procedure cangeneralize to the other problems we have listed.Edwards [Edw86] shows how to 3-color a 3-colorable everywhere-dense graphin polynomial time. Our sampling approach gives an alternative algorithm.A random-sampling based approach related to ours also appears in [KP92].In the last section of the paper (Section 8) we describe some results relatedto our work that have been discovered since the conference presentation of thecurrent paper.1.5 Paper OrganizationIn Section 2 we give details of the main ideas of our approach, exhaustive samplingand transforming polynomial constraints into linear constraints, already sketchedin Sections 1.2 and 1.3. We continue to use MAX-CUT as a motivating example.In Section 3 we generalize these techniques to derive our (additive error)approximation algorithm for any smooth polynomial integer program (PIP). InSection 4, we use these PIPs to approximate most of the problems listed inSection 1.1. Solving BISECTION and SEPARATOR requires some additionalexhaustive sampling ideas that are explained in Section 5. In Section 6, we10



describe some problems that can be solved purely by exhaustive sampling, withno recourse to PIPs. Finally, in Section 7, we con�rm that all of the problemswe are approximating are still N P-complete when restricted to dense instances,demonstrating that an exact solution is unlikely.2 Our Techniques: An overviewIn this section we introduce our two major techniques, exhaustive sampling andreducing degree d constraints to linear constraints (in an approximate sense) togive a PTAS for dense MAX-CUT.First we express MAX-CUT as a quadratic integer program as follows. Letthe 0=1 vector x be the characteristic vector of a cut, i.e., xi = 1 i� i is on theright side. Let N(i) be the set of neighbors of vertex i, and letri(x) = Xj2N(i)(1 � xj)be the linear function denoting the number of number of neighbors of i that areon the left side of cut x. ThenMAX-CUT = max Pi xi � ri(x)s.t. xi 2 f0; 1g 8iThe above formulation looks a lot like an integer linear program, for whichnumerous approximation techniques are known. Unfortunately, the \coe�cients"ri(x) in the objective function are not constants|the program is actually aquadratic program. However, exhaustive sampling lets us estimate the valuethese coe�cients have in the optimum solution. We arrive at our approximationin three steps:1. Using exhaustive sampling, we estimate the values of ri(a) at the optimumsolution a = (a1; : : : ; an). See Section 2.1.2. We replace each function ri by the corresponding estimate of ri(a). Thisturns the quadratic program into a linear (integer) program. We show thatoptimum of this linear integer program is near-optimum for the quadraticprogram. See Section 2.2. 11



3. We solve the fractional relaxation of the linear integer program, and userandomized rounding to convert the solution into an integer one. We showthat this does not dramatically change the solution value. See Section 2.3.A comment on notation: Throughout the paper, we will use a� b where aand b are real numbers, as a shorthand for the interval [a� b; a+ b].2.1 Estimating Coe�cientsWe begin by using exhaustive sampling to estimate the values ri(a) at the op-timum solution a. Let a be the optimum cut and let �i = ri(a). Then a is thesolution to the following integer linear program:MAX-CUT = max Pi xi � �is.t. xi 2 f0; 1g 8iri(x) = �i 8iOf course, the usefulness of this observation is unclear, since we don't knowthe values �i. We show, however, that it is possible to compute an additive errorestimate of the �i in polynomial time, in other words, a set of numbers ei suchthat �i � �n � ei � �i + �n 8i: (4)This can be done using our exhaustive sampling approach. We take arandom sample of O(log n) vertices. By exhaustively trying all possible (i.e.,2O(logn) = nO(1)) placements of the vertices in the sample, we will eventuallyguess a placement wherein each vertex is placed as it would be in the optimumcut. So we can assume that we have \guessed" the values aj in the optimum cutfor all the sampled vertices j. Now consider any unsampled vertex i. If it hasjN(i)j = 
(n) neighbors, then with high probability, �(log n) of its neighbors arepart of the random sample (high probability means probability 1�n�
(1)). A mo-ment's thought shows that these neighbors form a uniform random sample fromN(i). Hence by examining the fraction of sampled neighbors on the left hand12



side of the cut (namely, neighbors for which aj = 0) we can obtain an estimate ofri(a)= jN(i)j that is correct to within a small additive factor. This follows fromthe following sampling lemma.Lemma 2.1 (Sampling Lemma). Let (ai) be a sequence of n numbers, eachwith absolute value at most M . Let f > 0 be any number. If we choose a multisetof s = g log n of the ai at random (with replacement), then their sum q satis�esqns 2Xi ai � nMsfgwith probability at least 1� n�f .Proof. Let s = g log n. For j = 1; : : : ; s let Xj be the random variable denotingthe number picked in the jth draw. Since the numbers are drawn with replace-ment, the values Xj are identically distributed, andE[Xj ] = 1n nXj=1 aj:Since jXj j �M by hypothesis, the lemma now follows from the standard H�o�dingbound [H64].For MAX-CUT, our goal is to estimate the values �i of the formPj2N(i)(1�aj). First, if any jN(i)j � �n=10, we use the estimate 0 for �i. To estimate �ifor the remaining i, we randomly choose (with replacement) g log n indices withg = O(1=�3), and \guess" their values by exhaustively trying all possibilities.Since each aj = 0 or 1, we can take M = 1 in the Sampling Lemma. TheSampling Lemma shows that for each i, the probability is at least 1 � 1=n2 thatthe following happen (i) 
(log n=�2) of the sampled vertices lie in N(i) (note thatthe conditional distribution of these vertices is uniform) and (ii) the estimate for�i produced using this sample is accurate to within �n.2.2 Linearizing the Quadratic Integer ProgramNow we use the coe�cient estimates to de�ne an integer linear program whosesolutions are near-optima for MAX-CUT. Given the estimates ei just derived13



for the values �i, we write the following linear integer program. Note that it isfeasible, since a satis�es it (assuming our sampling step in the previous sectionworked). NEW-OPT = max Pi xi � eis.t. xi 2 f0; 1g 8iei � �n � ri(x) � ei � �n 8i (5)(Recall that each ri(x) is a linear function of x, so the given constraints are linearconstraints.)We claim that the optimum solution z to this integer linear program is near-optimum for MAX-CUT. This can be seen as follows:X ziri(z) �X zi(ei � �n) By the constraints (5)�X ziei � �n2�X aiei � �n2 Since z is integer optimum�X ai(�i � �n)� �n2 from (4)�X ai�i � 2�n2= MAX-CUT� 2�n2In other words, the optimum of the integer program is a near-optimum solu-tion to MAX-CUT.2.3 Approximating the Linear Integer ProgramOf course, we cannot exactly solve the integer linear program just derived. But wecan compute an approximate solution to it as follows. We relax the integralityconstraints, allowing 0 � xi � 1. We use linear programming to obtain thefractional optimum, say y 2 [0; 1]n, and then use randomized rounding to convertthe fractional solution to an integral one of roughly the same value. The keylemma is the following: 14



Lemma 2.2 (Randomized Rounding). If c and f are positive integers and0 < � < 1, then the following is true for any integers n � 0. Let y = (yi) be avector of n variables, 0 � yi � 1, that satis�es a certain linear constraint aTy = b,where each jaij � c. Construct a vector z = (zi) randomly by setting zi = 1 withprobability yi and 0 with probability 1�yi. Then with probability at least 1�n�f ,we have aTz 2 b� cpfn ln nWe can apply this lemma to our problem as follows. Give our fractionalsolution y, let us apply randomized rounding as in the lemma to yield an integralsolution z. We claim that with high probability,ri(z) 2 ri(y)�O(pn lnn) (6)X ziri(y) 2 X yiri(y)�O(n3=2 lnn) (7)Speci�cally, to derive Equations (6) and (7) from Lemma 2.2, note that eachri(x) is a linear function with 0{1 coe�cients and that each ri(y) is at most n.We use these equations as follows. The analysis of the previous section showedthat the integral optimum of our derived linear program was near the maximumcut value, so the fractional optimum y can only be better. That is,X yiri(y) � MAX-CUT� 2�n2:We now use our randomized rounding lemma. We have thatX ziri(z) �X zi(ri(y)�O(pn lnn)) From (6)�X ziri(y)�O(n3=2 lnn)�X yiri(y)�O(n3=2 lnn) From (7)� MAX-CUT� (2�+ o(1))n2This �nishes the overview of our algorithm for MAX-CUT.3 Approximating Smooth Integer ProgramsWe now generalize the results of the previous section to handle arbitrary poly-nomial integer programs (PIPs). We describe an algorithm that computes ap-15



proximate solutions to smooth PIPs of low degree, thus proving Theorem 1.10.We use the fact that smooth PIPs can be recursively decomposed into smoothlower-degree PIPs. This lets us apply ideas similar to those described in Section 2for MAX-CUT. In a PIP the objective function and constraints are low degreepolynomials (degree 2 in the case of MAX-CUT). We use exhaustive sampling toconvert such polynomial integer programs into linear integer programs. Then weuse the Raghavan-Thompson technique to approximately solve the linear integerprogram.We will see shortly that we can assume without loss of generality that we aredealing with the feasibility version of a PIP|that is, we are given a feasible PIPand out goal is to �nd an approximately feasible integer solution. Our generalalgorithm has the same three elements as the one for MAX-CUT:1. We show in Section 3.2 that we can relax the integrality conditions, since wecan use randomized rounding to convert every feasible fractional solutionof a PIP into a feasible integral solution.2. In Section 3.3, we generalize the sampling theorem, which applies only tosums, to let us estimate the values of polynomials.3. We show in Section 3.4 that we can use our estimates to convert degree dconstraints into linear constraints without a�ecting feasibility.We begin in Section 3.1 with some basic observations.3.1 Basic ObservationsWe begin with a few basic observations that we will use at various times in theproof.3.1.1 A Polynomial DecompositionOur PIP algorithms are basically recursive generalizations of the approach forMAX-CUT. They rely on the following key observation that lets us decomposeany polynomial into simpler polynomials:16



Lemma 3.1. A c-smooth polynomial p of degree d can be written asp(x) = t+Xxipi(x)where t is a constant and each pi is a c-smooth polynomial of degree d � 1.Proof. From each monomial term in the expansion of p, pull out one variable xi.Group all monomials from which xi was extracted into pi. Every degree d0 termin pi corresponds to a degree d0 + 1 term in p, and thus has coe�cient at mostcnd�(d0+1) = cn(d�1)�d0 . Thus, since pi has degree (at most) d�1, it is a c-smoothdegree d� 1 polynomial.Remark. The above analysis also shows that we can express p uniquely as a sump(x) = t+X xipi(xi; : : : ; xn);that is, where each pi depends only on variables with index i or greater.The decomposition of a degree d polynomial into degree d � 1 polynomialsgives us a natural recursion through which we can generalize our quadratic pro-gramming techniques. By computing an estimate �i of the value of pi(x) at theoptimum solution, we replace the degree-d constraint p with a single constraint onPxi�i together with a family of constraints on the values pi(x). We then recur-sively expand these degree d�1 constraints, continuing until all of our constraintsare linear.To estimate the values pi(x), we again rely on the expansion above: we expandpi in terms of degree d � 2 polynomials, writing pi(x) = Pxjpij(x), recursivelyestimate the pij values, and then use exhaustive sampling to estimate p based onthe values of the pij .After constructing the required linear integer program, we solve its fractionalrelaxation and use randomized rounding as before to transform the solution intoan integral solution. To prove that randomized rounding works, we again use thedecomposition|we show that each pi(x) is roughly preserved by rounding, anddeduce that Pxipi(x) is also preserved.17



3.1.2 Reducing Optimization to FeasibilityWe can reduce PIP optimization to the corresponding feasibility problem (\Isthere a feasible solution such that the objective exceeds a given value?") usingbinary search in the usual way. This uses the fact that the optimum value of aPIP is not too large, as shown in the following lemma (which will also be usefullater).Lemma 3.2. If n > d, then the absolute value of a c-smooth polynomial at anypoint in [0; 1]n is at most 2cend (where ln e = 1).Proof. For 0 � i � d the polynomial has at most �n+ii � terms of degree i, andeach has a coe�cient in [�cnd�i; cnd�i]. Thus an upper bound on the absolutevalue at any point in [0; 1]n isdXi=0 cnd�i ��n+ ii � � dXi=0 cnd�i ��n+ di �� cnd dXi=0 (n+ dn )i 1i !� cnde1+d=nwhich is at most cend(1 + 2d=n) < 2cend for n > 5d.3.2 Rounding Fractional PIPsWe begin with the �nal step of our algorithm, rounding a fractional solution to anintegral one. We present this section �rst since it is more straightforward than thefollowing ones but conveys the same ideas. As we saw in Section 2.3, Raghavanand Thompson [RT87] show that given a fractional solution to a linear program,we can round it into an integer solution that is \almost as good." We rephrasedtheir result in Lemma 2.2. We now modify the Raghavan-Thompson techniqueto show in Lemma 3.3 that a similar result is true for low degree polynomials.In other words, we show that the value of a c-smooth polynomial at a point in[0; 1]n is not too di�erent from its value at a nearby integral point obtained byrandomized rounding. 18



Lemma 3.3 (Randomized Rounding for degree d polynomials). Let p bea c-smooth degree-d polynomial. Given fractional values (yi) such thatp(y1; : : : ; yn) = b, suppose randomized rounding is performed on the yi as inLemma 2.2 to yield a 0; 1 vector (zi). Then with probability at least 1� nd�f , wehave p(z1; : : : ; zn) 2 hb� gdnd� 12plnni ;where g = 2cepf .Proof. We use induction on the degree. The case d = 1 follows from Lemma 2.2.Now assume we have proved the Lemma for all integers less than d, and p is adegree d polynomial. As argued in Section 3.1, we can express p asp(x1; : : : ; xn) = nXi=1 xi � pi(x1; : : : ; xn) + t; (8)where t is a constant and pi is a c-smooth polynomial of degree at most d� 1.Let �i denote the value pi(y1; : : : ; yn). Thenb = p(y1; : : : ; yn)= t+ nXi=1 �i � yi:Let (z1; : : : ; zn) 2 f0; 1gn be obtained by randomized rounding on(y1; : : : ; yn). Our proof consists of noticing that with high probability, (zi) sat-is�es both b � Pi �izi (by Lemma 2.2) and 8i � n : �i � pi(z1; : : : ; zn) (byinduction for degree d � 1). Then we realize that any such (zi) also satis�esb � p(z1; : : : ; zn).Let us formalize this idea. Note that j�ij � 2cend�1 by Lemma 3.2. So wecan apply Lemma 2.2 (replacing c by 2cend�1). We �nd that with probabilityat least 1 � n�f (recalling that the notation a � b is shorthand for the interval[a� b; a+ b]), nXi=1 �i � zi 2 b� gnd�1pn ln n: (9)19



Furthermore, the inductive hypothesis implies that for each i � n, the prob-ability is at least 1 � nd�f�1 thatpi(zi; : : : ; zn) 2 �i � g(d� 1)nd�1� 12plnn (10)Hence we conclude that with probability at least 1� nd�f � n�f � 1� nd�f , theevent mentioned in Condition (10) happens for each i � n, and so does the eventmentioned in Condition (9). Of course, when all these events happen, we have:p(z1; : : : ; zn) = t+ nXi=1 zi � pi(z1; : : : ; zn)2 t+X zi(�i � g(d� 1)nd�1�1=2plnn) by (10)� t+X zi�i � g(d � 1)nd�1=2plnn= b� gnd�1pn ln n� g(d� 1)nd�1=2plnn by (9)= [b� gdnd� 12plnn]Hence we have shown that p(z1; : : : ; zn) 2 [b� gdnd� 12plnn] with probability atleast 1 � nd�f .3.3 Estimating the Value of a PolynomialHaving shown how to round a fractional solution to an integral one, we nowshow how to �nd an approximately optimal fractional solution by solving a linearprogram. As discussed above, our procedure for replacing the constraint on p(x)by linear constraints requires estimating the values at the optimum a of thecoe�cients pi(a) in the expansion p(a) = Paipi(a). In this section, we showhow this estimation can be accomplished by exhaustive sampling. We describea procedure Eval in Figure 3.3 that can approximate the value of a c-smoothdegree d polynomial p(x1; : : : ; xn) on any unknown 0=1 vector (a1; : : : ; an), givenonly partial information about (a1; : : : ; an). The algorithm is given the values aifor O(log n) randomly-chosen indices i, and outputs an estimate that, with highprobability, lies in p(a1; : : : ; an)� �nd.To simplify our exposition later we describe the procedure more generally asusing a (multi)set of indices S � f1; : : : ; ng.20



Algorithm Eval(p; S; fai : i 2 Sg)Input: polynomial p of degree at most d,set of variables indices S,ai for i 2 S.Output: estimate for p(a1; : : : ; an).if deg(p) = 0 (i.e., p is a constant) thenreturn pelsewrite p(x1; : : : ; xn) = t+Pxipi(x1; : : : ; xn)where t is a constant and each pi has degree at most d � 1for each i 2 Sei  Eval(pi; S; fai : i 2 Sg)returnt+ njSjXi2S aieiFigure 1: The approximate evaluation algorithm
21



Note that if S = f1; : : : ; ng then the procedure returns p(a1; : : : ; an). We willshow that in order to get an additive approximation of the type we are interestedin, it su�ces to choose S randomly and of size O(log n). We use the SamplingLemma (2.1) as the base case in our inductive proof of the correctness of Eval.Lemma 3.4. Let p be a c-smooth polynomial of degree d in n variables xi, andlet a1; : : : ; an 2 f0; 1g. Let S be a set of O(g log n) indices chosen randomly(with replacement). Then with probability at least 1 � nd�f , set S is such thatEval(p; S; fai : i 2 Sg) returns a value in p(a1; : : : ; an)� �nd, where� = 4cesfg :Proof. The proof is by induction on d. The case d = 0 is clear. For the inductivestep let �i = pi(ai; : : : ; an), so we havep(a1; : : : ; an) = t+ nXi=1 ai � �i (11)The intuition for why Eval's output should approximate p(a1; : : : ; an) is asfollows. Each pi has degree at most d � 1, so the inductive hypothesis impliesthat ei � �i. Thus the output of eval ist+ njSj �Xi2S ai � ei � t+ njSj �Xi2S ai � �i (by the inductive hypothesis)� t+Xi ai � �i (by the Sampling Lemma)It remains to �ll in the details, and to deal with the complication that the er-rors in our recursive estimates of the �i accumulate into the error for our estimateof p(a1; : : : ; an).Our sample has size g log n. By Lemma 3.2, each j�ij � 2cend�1. Hence theSampling Lemma implies that with probability 1� n�f the set S is such thatnjSjXi2S ai�i 2Xi ai�i � 2cesfg! nd (12)Of course, we do not have the values �i. However, we do have the valuesei =Eval(pi; S; fai : i 2 Sg). To see the impact of using them instead, let �d22



denote the smallest number such that for every c-smooth degree d polynomial pand point a 2 f0; 1gnPr[Eval computes an estimate within p(a)� �dnd] � 1� nd�fWe get an recurrence for �d as follows. By de�nition, Eval estimates any particu-lar �i to within �d�1nd�1 with probability 1�n(d�1)�f . Thus all n values �i are esti-mated to within this bound with probability 1�n�n(d�1)�f = 1�nd�f . Combiningwith (12), we conclude that with probability at least 1� nd�f � n�f � 1� nd�f ,set S is such that the returned valuet+ njSjXi2S ai � ei 2 t+ njSjXi2S ai � ��i � �d�1nd�1�� t+ njSjXi2S ai � �i!� �d�1nd�1 njSj� t+ Xi ai � �i � 2cesfg nd! � �d�1jSj nd by (12)� t+Xi ai � �i � 2cesfg + �d�1jSj ! nd= p(a1; : : : ; an)� 2cesfg + �d�1jSj ! nd:It follows that �d � 2cesfg + �d�1jSj� 2cesfg (1 + jSj�1 + � � �+ jSj�d)� 4cesfgfor jSj > 1.Corollary 3.5. With probability 1�nd�f over the choice of S, the Eval procedureaccurately estimates the values of all the polynomials arising from the decompo-sition of polynomial p (that is, estimates every degree-d0 polynomial to within�d0nd0). 23



Proof. This is implicit in the previous proof. Note that the decomposition of p isdetermined solely by p, independent of the value of the optimum solution a thatwe are estimating.3.4 Transforming Degree d Constraints to Linear Con-straintsUsing the estimates produced by Procedure Eval of Section 3.3 we can transformany polynomial constraint into a family of linear constraints, so that any feasiblesolution to the linear constraints will approximately satisfy the polynomial con-straint as well. We use algorithm Linearize in Figure 3.4. Just like Eval, theinputs to this procedure contain partial information about some feasible solutionvector (a1; : : : ; an) 2 f0; 1gn to the input constraint.A simple induction shows that the Procedure in Figure 3.4, when given adegree d constraint, outputs a set of at most 1 + n+ � � �+ nd�1 = O(nd�1) linearconstraints. The next two lemmas prove the correctness of this (probabilistic)reduction. The �rst shows that with high probability, the replacement equationsare jointly feasible. The second shows any feasible solution will be almost feasiblefor the original constraint.Lemma 3.6. Let f; g; c > 0 be any constants. Let Linearize be given an errorparameter � = 4cepf=g and a constraint involving a c-smooth polynomial of de-gree d. Let (a1; : : : ; an) 2 f0; 1gn be a feasible solution to the constraint. If S isa random sample of g log n variables (picked with replacement), then with proba-bility at least 1 � dnd�f Procedure Linearize outputs a set of linear constraintsthat are satis�ed by (a1; : : : ; an).Proof. Calling linearize with polynomial p results in numerous recursive call,each of which (besides making other recursive calls) outputs a constraint onsome degree d0 polynomial p0. The boundaries li and ui for this constraint aredetermined by a call to Eval involving polynomial p0. Vector a satis�es thisconstraint so long as li and ui satisfy li � p(a) � u, and this happens so long asei 2 p0(a)��nd0. So Linearize does the right thing so long as every polynomial p0arising in the recursions is estimated accurately. But these polynomials are just24



Algorithm Linearize(\L� p(x1; : : : ; xn) � U", S, fai : i 2 Sg, �)Input: constraint involving polynomial p of degree d,lower bound L and upper bound Umultiset of variable indices Sai 2 f0; 1g for each i 2 S.Error parameter � > 0.Output: A set of linear constraintsif p is linear thenoutput the input constraint \L � p(x) � U"elsewrite p(x1; : : : ; xn) = t+Pxipi(x1; : : : ; xn)where t is a constant and each pi has degree at most d � 1for i = 1 to nei  Eval(pi; S; fai : i 2 Sg)li ei � �nd�1ui  ei + �nd�1Linearize(\li � pi(x1; : : : ; xn) � ui", S, fai : i 2 Sg, �)output the constraint\L � �nd � t+Pxiei � U + �nd"Figure 2: Linearizing a Polynomial Constraint
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the polynomials arising in the recursive decomposition of the original polynomialp, and are all encountered during a call to Eval(p). Corollary 3.5 says that allof these polynomials are estimated to within the desired bounds with probability1� nd�f .Now we show that in the linear system output by Linearize, every feasi-ble solution is an approximate solution to the input constraint (note that thisstatement involves no probabilities).The next lemma uses [x; y]� a, where x < y and a � 0, as a shorthand forthe interval [x� a; y + a].Lemma 3.7. Every feasible solution (yi) 2 [0; 1]n to the set of linear constraintsoutput by Linearize satis�es the following (irrespective of what the set S is)p(y) 2 [L;U ]� 2d�ndProof. By induction on d. The case d = 1 is clear, so consider the inductive step.Since by assumption y is feasible for the entire set of output constraints, it isfeasible for the constraints output by each recursive call involving a polynomialpi. It follows by the inductive hypothesis that for each i,pi(yi; : : : ; yn) 2 [li; ui]� 2(d � 1)�nd�1:Substituting the values of li and ui we getpi(y) 2 ei � (2d � 1)�nd�1Therefore, p(y) = t+X yipi(yi; : : : ; yn)2 t+X yi(ei � (2d � 1)�nd�1)� t+ �X yiei�� (2d� 1)�nd� [L;U ]� �nd � (2d � 1)�nd (13)� [L;U ]� 2d�ndwhere Equation (13) follows from the fact that y is feasible for the constraintthat was output before recursion, namelyt+Xxiei 2 [L;U ]� �nd:Thus the inductive step is complete. 26



3.5 Proof of the main theoremThe proof of Theorem 1.10 now follows easily. We have a feasible degree d PIPwith K constraints, where K = poly(n). Suppose (a1; : : : ; an) is some (unknown)feasible 0=1 solution and � > 0 is some tolerance parameter. We describe aprobabilistic procedure that produces a 0=1 solution z that is approximatelyfeasible. That is, if L � p(x) � U was a degree d0 constraint in the input, thenwith high probability z satis�es it within an additive error �nd0, that is, L��nd0 �p(z) � U + �nd0. (We indicate below how to derandomize the procedure.)Let f > 0 be such that nf � 2dKnd. We let �0 = �=2d, and g = 16c2e2fd2=�2 =O(=�2). We pick a random multiset S of O(g log n) variables and guess (by ex-haustive enumeration in 2g logn time) the values of ai for each i 2 S. Then we useProcedure Linearizewith error parameter �0 to replace each degree d0 constraintwith O(nd0�1) linear constraints, thus obtaining a linear system with O(Knd�1)constraints. Since (a1; : : : ; an) is a feasible solution to the PIP, Lemma 3.6 impliesthat the probability that the new system is feasible is at least 1� dnd�fK > 1=2. We solve the linear system using a polynomial-time algorithm for linear pro-gramming in O((Knd�1)3) time [K84]. Lemma 3.7 implies that the (fractional)solution thus obtained is also a feasible solution for the original PIP, except foran additive error 2d�0nd. Then we randomly round this fractional solution to a0=1 solution; Lemma 3.3 implies that this increases the additive error by at mostO(nd�1=2 lnn) = o(nd).Hence we have described a probabilistic procedure that, with probability atleast 1=2, produces a 0=1 solution that is feasible for the PIP except for anadditive error of 2�0dnd = �nd.The procedure explores 2g logn exhaustive sampling possibilities and for eachspends at most O((Knd)3) time in generating the linear constraints and solvingthem for each guess. The randomized rounding can be done in nearly linear time.Noting that 2g logn = ng = (nf )4c2e2d2=�2 � (2Knd)4c2e2d2=�2;we conclude that this term dominates the running time.27



3.6 DerandomizationDerandomizing the algorithm in Theorem 1.10 involves derandomizing its com-ponents, Procedures Eval and Linearize. Those depend upon two random-ized procedures: Randomized Rounding (used in Lemma 3.3) and the Sam-pling Lemma. Raghavan [Rag88] derandomized the former through the methodof conditional probabilities. Derandomizations of the Sampling Lemma appearin [BR94] and [BGG93]. For example, instead of picking s = O(log n=�2) variablesindependently, it su�ces to pick the variables whose indices are encountered ona random walk of length O(log n=�2) on a constant degree expander [Gil93]. Forany �xed sampling experiment, the probably that such a walk works is 1=nO(1).Hence our algorithm can deterministically go through all such walks (the numberof such walks is nO(1=�2) since the expander has O(1) degree). One of the walksis guaranteed to work correctly for all of the poly(n) sampling experiments thatour algorithms is interested in.4 ApplicationsIn this section we use our theorem on approximating constant-degree smooth inte-ger programs to construct PTASs for (dense instances of) many problems. Mostapplications require approximating quadratic programs. Approximating denseMAX-k-SAT requires approximating degree-k integer programs. In later sectionswe will obtain PTASs for graph bisection and minimum k-way cut. These willrequire some additional ideas, speci�cally, a di�erent application of exhaustivesampling.4.1 MAX-CUT, MAX-DICUT, MAX-HYPERCUTNote that a �-dense graph has at least �n2 edges. Thus the capacity k of themaximum cut exceeds �n2=2, since this is the expected size of a cut obtained byrandomly assigning each vertex to one side of the graph or the other with equalprobability. We already saw in Example 1.8 how to represent MAX-CUT usingc-smooth quadratic integer programs with c = O(1). Using the approximation28



scheme for quadratic programs in Theorem 1.10, we can in time nO(1=�2�2) �nd acut of value at least c� ��n2=2 � (1� �)k, in other words a (1� �) approximationto the maximum cut.MAX-DICUT has a similar PTAS. Again, an expectation argument showsthat the maximum cut in a �-dense graph exceeds �n2=4. The representation bya quadratic program is also similar; in the quadratic program for MAX-CUT inExample 1.8 just replace (xi(1 � xj) + xj(1 � xi)) in the objective function by(1� xi)xj.The PTAS for dense MAX-HYPERCUT(d) is similarly obtained by modelingthe problems as a smooth degree-d PIP. For a given edge (set of vertices) S, weuse the term 1 �Qi2S xi �Qi2S(1 � xi). This term is 1 if S is cut and zerootherwise.4.2 DENSE-k-SUBGRAPHLet k � �n. If a graph is �-dense, then a graph induced by a random subset of kvertices contains �2�n2=2 edges on average. Hence the densest subgraph containsat least �2�n2=2 edges.We can express the DENSEST-k-SUBGRAPH as the optimum of the follow-ing quadratic program. maximize Pfi;jg2E xixjsubject to xi 2 f0; 1gPni=1 xi = kClearly this PIP is 1-smooth. From Theorem 1.10 we know how to �nd anapproximately optimal 0; 1 vector x satisfying Pni=1 xi 2 [k� gpn lnn]. Now wemove at most gpn lnn vertices in or out to get a subset of size k; this a�ects thenumber of edges included in the subgraph by at most gnpn lnn = o(n2).The reader may wonder if our algorithm for DENSEST-SUBGRAPH hasany application to the CLIQUE problem. We do not see any connection. Infact, approximating CLIQUE in dense graphs is N P-hard (this follows from29



the fact that approximating INDEPENDENT SET in degree-5 graphs is N P-hard [ALM+92]).4.3 MAX-k-SATA standard \arithmetization" method can be used to represent MAX-k-SAT asa degree-k smooth IP. Let y1; : : : ; yn be the variables and m be the number ofclauses. Introduce 0{1 valued variables x1; : : : ; xn. For each i, 1 � i � n, replaceeach unnegated occurrence of variable yi by 1�xi, each negated occurrence by xi,eachlogical _ by multiplication (over integers), and for each clause subtract theresulting term from 1. This changes each clause into a degree-k polynomial. Togive an example, the clause y1_:y2_y3 is replaced by the term 1�(1�x1)x2(1�x3). Now associate, in the obvious way, 0; 1 assignments to the variables xi withtruth assignments to the boolean variables yi. Clearly, an assignment of valuesto the xi makes the term 1 if the corresponding assignment to the yi makes theclause true, and 0 otherwise.Let tj be the term obtained in this way from the jth clause. The followingdegree-k program represents the MAX-k-SAT instance, and is smooth.maximize Pj�m tj(x1; : : : ; xn)subject to xi 2 f0; 1g 8iNow suppose the number of clauses is m � �nk. Let OPT be the maximumnumber of clauses that any assignment can satisfy. Since the number of clausesof size k is m � O(nk�1), and a random assignment satis�es each of them withprobability 1 � 2�k, we haveOPT � (1� 2�k)(m�O(nk�1)):By approximating our PIP we can in time O(n24k=�2) �nd an assignment thatsatis�es OPT� �2knk � (1 � �)OPT clauses.4.4 Dense MAX-SNPAs pointed out in [PY91], problems such as MAX-CUT, MAX-k-SAT and MAX-HYPERCUT(d) lie in a class called MAX-SNP, and actually in a subclass called30



MAX-SNP0 in [Pap94]. MAX-SNP0 was de�ned using model theory, and it isunclear how to de�ne denseness for MAX-SNP0 problems. In fact, problems suchas vertex cover are in MAX-SNP only if the degree of the graph is bounded. Inthis section we give a plausible de�nition of denseness and show that under thisde�nition, all dense MAX-SNP0 problems have a PTAS.Let MAX-k-FUNCTION-SAT be the problem in which the input consistsof m boolean functions f1; f2; : : : ; fm in n variables, and each fi depends onlyupon k variables. The objective is to assign values to the variables so as tosatisfy as many fi as possible. As is well-known (see [Pap94], Theorem 13.8),a MAX-SNP0 problem can be viewed as a MAX-k-FUNCTION-SAT problemfor some �xed integer k. (An alternative name for MAX-k-FUNCTION-SAT is\constraint satisfaction problems" [KSW97].)We call an instance of a MAX-SNP0 problem dense if the instance of MAX-k-FUNCTION-SAT produced using it has 
(nk) functions. It is easily checkedthat our earlier de�nitions of denseness were sub-cases of this de�nition. Also, notall MAX-SNP problems have a dense version under this de�nition; for examplevertex cover is excluded.A slight modi�cation of the k-SAT technique of Section 4.3 shows that MAX-k-FUNCTION-SAT can be represented by a smooth degree-k integer program,so it follows that dense MAX-k-FUNCTION-SAT has a PTAS.5 BISECTION and SEPARATORIn this section we describe a PTAS for BISECTION. Small modi�cations de-scribed at the end give a PTAS for SEPARATOR. Consider a graph with min-imum degree �n for some � > 0 and let k denote the capacity of the minimumbisection. The PTAS consists of two di�erent algorithms, one of which is a PTASwhen k � �n2, and the other when k < �n2, where � is a certain small constant.For k � �n2, we use our PIP approximation algorithm to achieve an additiveerror at most ��n2, so that the capacity of the �nal bisection is at most (1+ �)k.When k � �n2, such additive approximations do not su�ce, and we give a di�er-ent algorithm. The algorithm uses exhaustive sampling to identify vertices thathave \many" neighbors on one side of the bisection, and places them on that31



side. We show that this leaves only a small number of unplaced neighbors, whoseplacement can be done greedily without signi�cantly disturbing the value of oursolution.5.1 Large BisectionsThe algorithm for k � �n2 is essentially our algorithm for approximatingsmooth quadratic integer programs. We formulate graph bisection using thesame quadratic program as for MAX-CUT (see Example 1.8), except we change\maximize" to \minimize," and add the constraint Pxi = n=2. Applying ourmain theorem gives us an assignment to the xi that makes the objective functionless than k + �n2 � k(1 + �=�).There is one small problem: this 0; 1 assignment might not induce a bisec-tion, since it only approximately satis�es the constraint Pxi = n=2. However,randomized rounding does guarantee there will be n=2 � (pn log n) vertices oneach side of the solution. Hence we need to move only O(pn log n) vertices fromone side to another in order to balance the cut. This a�ects the bisection valueby at most O(n1:5 log n) = o(n2).5.2 Small BisectionsThe case k � �n2 is more di�cult. We need the following lemma.Lemma 5.1. In a minimum bisection, there is one side whose every degree-dvertex has at most d=2 + 1 of its neighbors on the other side.Proof. If not, then we can reduce the bisection value by picking from each side avertex that has more than the allowed neighbors on the other side, and switchingthem.Let Lopt and Ropt denote the sets of vertices on the two sides of a particularminimum bisection. Without loss of generality, we will assume that Lopt is theside referred to in Lemma 5.1. 32



We now give a bisection algorithm in Figure 5.2. For simplicity, we describeit as a randomized algorithm, although we can easily derandomize it using thetechniques mentioned earlier. Recall that � is the denseness of the problem.1. Pick a set S of O((log n)=�) vertices at random.2. For each possible partition of S into two sets (SL; SR), construct a partition(L;R) as follows.(a) Let T be the set of vertices that have more than 5=8 of their sampledneighbors in SR.(b) Put T in R.(c) For each vertex v 62 T , de�ne bias(v) as#(neighbors of v not in T ) � #(neighbors of v in T ):(d) Put the n=2 � jT j vertices with the smallest bias into R.3. Of all bisections found in the previous step, output the one with the small-est value. Figure 3: The Bisection AlgorithmNow we prove the correctness of the algorithm. Since it exhaustively triesall possible partitions of the vertices in the sample S, it also tries the \correct"partition, which labels each of the vertices of S according to a minimumbisection(Lopt; Ropt) of the entire graph. From now on we call this partition (SL; SR) of Sspecial. We will show that with high probability (over the choice of S) the specialpartition leads the algorithm to a near-optimum graph bisection.Let T be the set constructed by the �rst step of the algorithm using the specialpartition. The next lemma describes some useful properties of T . Call a vertexradical-right if at least 3=4 of its neighbors are in Ropt. Note (from Lemma 5.1)that every radical-right vertex must be in Ropt:Lemma 5.2. With high probability (over the choice of S), T is a subset of Roptand contains every radical right vertex.33



Proof. Let v be any vertex. Since its degree exceeds �n, the Sampling Lemmaimplies that with high probability a random sample of size O((log n)=�) contains�(log n) neighbors of v. Conditioning on the number of neighbors in the sample,these neighbors form an unbiased sample of that many neighbors of v.Suppose v 2 Lopt, and so has fewer than 1=2 of its neighbors in Ropt. Then anapplication of the Sampling Lemma shows that in a random sample of �(log n)neighbors of v, the probability that more than 5=8 of them are in Ropt is n�
(1).Hence the probability that v 2 T is n�
(1).Now suppose v 2 Ropt has more than 3=4 of its neighbors in Ropt. An ap-plication of the Sampling Lemma shows that in a random sample of O(log n)neighbors of v, the probability that less than 5=8 of them are in Ropt is n�
(1).Hence the probability that v 2 T is 1� n�
(1).The next lemma says that with high probability, T has size close to n=2 andthus contains almost all of Ropt.Lemma 5.3. If T satis�es the two conditions in Lemma 5.2 then jT j � n2 � 4k�n .Proof. Every vertex in Ropt � T must have 1=4 of its neighbors in Lopt. Lets = jRopt � T j = n=2 � jT j. Then the value of the minimum bisection is at leasts�n=4, which by assumption is at most k. Hence s � 4k=(�n).We can now show that with high probability the algorithm produces a bisec-tion close to optimum.Theorem 5.4. Assuming k < �n2, with high probability (over the choice of S)the bisection produced by the special partition has value at most k(1 + �), where� = 16�2=�2.Proof. We measure the cost of extending T to a particular set of half the vertices.For any set U � T , let din(U) be twice the number of edges with both endpointsin U , and let dout(T ) be the number of edges with exactly one endpoint in T .Further, let bias(U) be the sum of the biases of vertices in U . We claim that thecapacity of the bisection whose one side is T [ U isdout(T ) + bias(U)� din(U): (14)34



To see this, note that the expression starts by counting all edges leaving T . Thebias term then subtracts the edges crossing from U to T while adding the edgescrossing from U to the other side of the cut. The bias term also incorrectly adds(twice, once for each endpoint) the number of edges with both endpoints in U ,which do not cross the cut; however, this quantity is subtracted by the din(U)term, resulting in the correct quantity.With high probability, the set T produced in the �rst phase satis�es theconditions in Lemma 5.2. Hence T � Ropt, and s = n=2 � jT j � 4k=(�n). LetUopt = Ropt � T be the optimum set of s vertices extending T to Ropt and letUactual be the set of s vertices that the algorithm actually picks to extend R.Since Uopt minimizes Equation (14), we know k = dout(T ) + bias(Uopt) �din(Uopt). On the other hand, Uactual (since it includes the s vertices with thesmallest bias) minimizes bias(U), and thus also the expression dout(T )+bias(U).Thus the capacity of the bisection whose one side is T [ Uactual is at most k +din(Uopt)� din(Uactual), which is at most k + s2 � k + (4k=(�n))2. Since k < �n2the capacity is at most k(1 + 16�2=�2).Corollary 5.5. If a dense graph has bisection value O(n), the optimum bisectioncan be found in polynomial time.Proof. From Lemma 5.3, there are O(1) vertices in Ropt�T . These can be foundby exhaustive search.Corollary 5.6. There is a PTAS for the optimum separator of a dense graph.Proof. Guess the number k of vertices on the left side of the separator (by tryingall n=3 possibilities) and replace n=2 by k in the previous discussion of bisection.If the minimum degree is not constrained, but the average degree is 
(n),our PIP approach still works for large bisection values, but our other algorithmfor small bisection values fails. In fact, as shown in Section 7, approximatingthe minimum bisection for �-dense graphs is no easier than approximating it ongeneral graphs. 35



6 Algorithms without PIPsOccasionally, exhaustive sampling is su�cient to solve or approximately solvea dense problem without recourse to PIPs. This was shown for MAX-CUT byFernandez de la Vega [FdlV94]. We have also seen this for the case of (small)bisections. Here we describe two other problems, multiway cuts and 3-coloring.(The latter was already solved by Edwards [Edw86].)6.1 MIN-k-CUTFirst we consider the k-terminal cut problem. Let �n denote the minimumdegree.Let OPT be the capacity of the optimum cut. Note that OPT � kn, sincekn is an upperbound on the capacity of a cut in which k � 1 of the terminalsform singleton groups, while all other vertices form the remaining group. Thealgorithm relies on the following lemma.Lemma 6.1. When k = o(n), there is a k-cut of capacity (1 + o(1))OPT thathas a special form: at most 2=� groups of size 
(n), and all other groups of size1 (containing only the terminals).Proof. Suppose S1; S2; : : : ; Sk (sorted in decreasing order by size) are the k groupsin the optimum cut. Let an ordinary vertex be one that in the optimum cut hasat most 1=4 of its � �n neighbors in groups di�erent from its own. Note thatthere are at most 4k=� vertices that are not ordinary.Let t be the number of groups with at least �n=2 vertices; note that t � 2=�.Consider the modi�ed cut in which all nonterminals from St+1; : : : ; Sk are movedto one of S1; S2; : : : ; St. We show that the capacity of this cut is at most (1+o(1))times the original capacity; this will prove the lemma.Since each of St+1; : : : ; Sk has size less than �n=2, they can only containvertices that are not ordinary. Thus they together contain at most 4k=� vertices.Furthermore, the capacity of the cut is at leastkXi=t+1(jSij �n2 ��jSij2 �):36



Since jSij = O(k) = o(n), the second term is o(�) of the �rst term. Now con-sider moving all nonterminals from St+1; : : : ; Sk to S1; : : : ; St; this increases thecapacity of the cut by at most kXi=t+1�jSij2 �;which |as already noted| is o(�) of Pki=t+1(jSij �n=2).Now we describe the algorithm. Imagine �xing a k-cut of the type describedin Lemma 6.1 Let an ordinary vertex be one that has at most 1=4 of its � �nneighbors in groups di�erent from its own. Let s be the number of nodes thatare not ordinary. Clearly, OPT (1 + o(1)) � s�n=4, thus implyings � 4k(1 + o(1))=� = o(n):First we exhaustively try all k2=� ways of picking terminals that will go intonon-singleton groups. One of these ways will be \correct." For each of theplacements, we try placing the nonterminals using exhaustive sampling. We picka random sample of O(log n) vertices and by exhaustively trying all partitions ofit (just as in the other algorithms), we can identify for each vertex the group (ifone exists) that contains more than 2=3 of its sampled neighbors, and assign itto that group. The Sampling Lemma shows that this fails to place or misplacesonly vertices that are not ordinary, i.e., at most s vertices. Now place each of theremaining vertices in the group that contains a plurality of its neighbors. Thisgives almost the desired cut, except it may misplace s vertices. Furthermore, ifa misplaced vertex contributed x to the correct cut (i.e., x of its neighbors werein another group) then it contributes at most x+ s� 1 to our cut. Thus the costof our cut is at most OPT (1 + o(1)) +�s2�:Since OPT (1+o(1)) � s�n=4; and s = o(n), the cut has capacity OPT (1+o(1)).A similar PTAS can be designed for the problem without terminals, wherethe goal is simply to �nd the best partition into k nonempty groups of vertices.37



6.2 3-COLORINGRandom sampling also gives a scheme for 3-coloring dense 3-colorable graphs.Since this result replicates that of Edwards [Edw86], details are omitted. Let thecolors be 0; 1; 2. Initially, make all vertices \uncolored." As before, we pick arandom sample of O((log n))=�2) vertices and guess their colors. Let us focus onthe correct guess. With high probability, at least one neighbor of every vertex issampled and colored. Now observe that if a vertex has colored neighbors of twodi�erent colors, its color is determined. So long as such a vertex exists, color it.When we �nish, each remaining uncolored vertex vi has a neighbor with color ciand no neighbors of other colors. Now set up an instance of 2-SAT as follows.Assign a variable xi to vertex vi that is true if vi has color ci + 1 (mod 3) in theoptimal coloring, and false otherwise (i.e., vi has color ci � 1 (mod 3)). For eachedge (vi; vj), add constraints on the variables xi and xj that prevent vi and vjfrom having the same color. Solve the 2-SAT instance in polynomial time, andextract an assignment of colors from the assignment to the variable xi.Note that the algorithm can be derandomized easily.7 NP-completeness resultsThus far, we have described PTASs for dense instances of many NP-hard prob-lems. Now we show that computing optimal solutions in all these cases remainsNP-hard, justifying the search for approximation schemes.For MAX-SNP type problems, it is usually easy to reduce non-dense in-stances to �-dense instances. MAX-CUT provides a good example. SupposeOPT is the optimum value of the MAX-CUT problem on a graph G = (V;E).We add a (disjoint) complete graph on n vertices to G. The new graph hasE + �n2� edges, and is 1=2-dense. Furthermore, the new optimum of MAX-CUTis OPT + �n2�=2. Thus exact optimization on the new instance is no easier thanexact optimization on the old instance. A similar idea works for MAX-k-SAT,MAX-DICUT, etc.Everywhere{dense BISECTION is alsoNP-hard. In fact, the standard reduc-tion that shows the NP-completeness of BISECTION produces such instances.38



It starts from instances of MAX-50-50-CUT that have constant degree | this isa known N P-hard restriction of MAX-50-50-CUT | and complements the graphto turn it into an instance of BISECTION. The resulting instance is everywhere-�-dense.Now we indicate two problems for which denseness does not seem to helpin designing PTASs: dense instances of BISECTION and everywhere-dense in-stances of MIN-VERTEX-COVER.We show that if the �rst problem has a PTASthat then there is a PTAS for general instances of BISECTION (designing sucha PTAS is a famous open problem). This follows from the following reduction:Given any instance of BISECTION with n vertices, add to it two disjoint cliquesof size 2n each. The resulting instance is 2=5-dense, but the capacity of theminimum bisection is unchanged.Now we show that if there is a PTAS on everywhere-1=2-dense instancesof MIN-VERTEX-COVER, then P = NP. We rely on the result of [PY91,ALM+92] that P = NP if there is a PTAS for MIN-VERTEX-COVER on thefollowing simple family of graphs: each of the n vertices has degree at most 5,and the smallest vertex cover has size at least n=2. Notice that given such asimple graph we can add a clique on n vertices to the graph and put a completebipartite graph between the original vertices and the new vertices. This raisesthe degree of every vertex to n (so the graph becomes everywhere-1=2-dense) andraises the size of the minimum vertex cover by exactly n. Thus a PTAS on theresulting instance is a PTAS on the original instance.8 ConclusionWe suspect that our technique of approximately reducing quadratic programs tolinear programs might be useful in non-dense instances of problems. Of course,the exhaustive random sampling that underlies our work no longer su�ces, sincean additive approximation is not good enough in that case. But some other ap-proximation method could plausibly replace it. If such an approximation methodcan be found, it would probably also improve performance on dense instances, byremoving the error due to the sampling lemma. Note that the error introducedby the Raghavan-Thompson technique in our approximation algorithm is much39



smaller than that introduced by the sampling step (the former error is an additiveterm of O(n1:5 log n) in the case of quadratic programs; the latter error is 
(n2)).Does a good approximation algorithm exist for general BISECTION? Whatabout an inapproximability result? Our results suggest how not to try to proveinapproximability results. Recall that the standard way to prove the NP-completeness of BISECTION uses the fact that 50-50 MAX-CUT is just BI-SECTION on the complementary graph. Since 50-50 MAX-CUT on degree 5graphs is MAX-SNP hard (and therefore has no PTAS), one is tempted to tryto use this connection to prove the MAX-SNP-hardness of BISECTION. Thisnaive idea does not work, since the complementary graph of a degree 5 graph is adense graph in which the minimum bisection has capacity 
(n2). This capacityswamps the gap (in the capacity of the optimum cut) of �(n) present in theinstance of 50-50 MAX-CUT, so the the MAX-SNP-hardness of BISECTIONdoes not follow. Of course, now we know an inherent reason why such approachesare unlikely to succeed: BISECTION has a PTAS on dense graphs.To conclude, we mention some recent research that extends or improves ourwork. Arora, Frieze, and Kaplan [AFK96] extend our exhaustive sampling ideato design additive approximation schemes for problems in which feasible solu-tions are permutations (such as the 0-1 Quadratic Assignment problem). Friezeand Kannan [FK96] and independently, Goldreich, Goldwasser, and Ron [GGR96]showed that our techniques apply because of certain regularity properties in densegraphs, and used this observation to design linear time additive approximationschemes for most of the problems we have considered here. Frieze and Kan-nan also point out connections to constructive versions of Szemeredi's RegularityLemma.AcknowledgedmentsWe thank the anonymous referee for detailed comments that signi�cantly im-proved the presentation. 40
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