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1 IntroductionThe model of restricted branching programs has recently been found very use-ful in a number of applications. Its special variant, ordered read-once branchingprograms become an important computational model and a technical tool inthe �elds of circuit design and hardware veri�cation. They are also known as\OBDDs" (ordered binary decision diagrams). The approach used depends onconverting independently the circuit description, and the function speci�cationto a common intermediate representation (being the OBDD), and then testingwhether the two representations are equivalent (c.f., e.g. [W94]). This approachhas an apparent shortcoming, in that we cannont hope in general for a polyno-mial size intermediate representation in the form of an OBDD. It turns out infact that many important elementary functions do not have polynomial size read-once branching progams. Examples are: multiplication, squaring, and inversion[P95a]. During the last decade there were several attempts to �nd generalizationof OBDDs model more powerful computationally and still algorithmically ma-nipulable. In this paper we are concerned with the randomized extension of theread-once branching programs and analize their computational power comparedwith deterministic and nondeterministic models.2 Randomized Branching ProgramsA deterministic branching program P for computing a boolean functionf : f0; 1gn ! f0; 1g is a directed acyclic multi-graph with a distinguished sourcenode s and a distinguished (accepting) sink node t. The outdegree of each non-sink node is exactly 2, and the two outgoing edges are labeled by \xi = 0" and\xi = 1" for a variable associated with this node. Call such a node an xi-node.The label \xi = �" indicates that only inputs satisfying xi = � may follow thisedge in the computation. The branching program P computes a function f inthe obvious way: for each � 2 f0; 1gn we let g(�) = 1 i� there is a directed s-tpath starting in the source s and leading to the accepting node t such that alllabels xi = �i along this path are consistent with � = �1�2 : : : �n. The size of Pis its number of internal nodes. 2



A branching program becomes nondeterministic if we allow \guessing nodes"that is nodes with two outgoing edges being unlabeled. Unlabeled edges allowall inputs to proceed to the next node. A nondeterministic branching programP computes a function f , in the obvious way; that is, f(�) = 1 i� there exists(at least one) computation over � starting in the source node s and leading tothe accepting node t.De�ne a probabilistic branching program as a branching program which has inaddition to its standard (deterministic) inputs especially designed random (\coin-toss") input nodes. When these random inputs are chosen from the uniformdistribution, the output of the branching program is a random variable.We say that a probabilistic branching program P (a; b)-computes a function fif it outputs 1 with the probability at most a for an input � such that f(�) = 0,and it outputs 1 with the probability at least b for an input � such that f(�) = 1.A probabilistic branching program is called randomized if it ("; 1� ")-computesthe function f for some " < 1=2. " is called an error probability of P .For a branching program P , we de�ne size of P size(P ) (complexity of P ) asthe number of its internal nodes of P .For a probabilistic branching program P , size(P ) is the sum of numbers of itsinternal and random nodes.The size of a nondeterminstic branching program is the number of its internalnodes (without \guessing" nodes).A read-once branching program is a branching program in which no variableappears more than once on any computation path. An ordered read-once branch-ing program is a read-once branching program which respects a �xed ordering �of variables, i.e., if an edge leads from an xi-node to an xj-node, the condition�(i) < �(j) has to be ful�lled.A read-k-times branching program is a branching program with the propertythat no input variable xi appears more than k times on any consistent computa-tion path in the program (a path is consistent if for all i the labels \xi = 0" and\xi = 1" do not both appear on the path).A syntactic read-k-times branching program [BRS93] is a branching programwith the property that no input variable xi appears more than k times on any3



path (consistent or not) in the program.An ordered read-k-times branching program is a read-k-times branching pro-gram which is partitioned into k layers such that each layer is an ordered read-oncebranching program respecting the same ordering �. Ordered branching programscan be layered. In this case all nodes that test the same variable should havethe same distance from the source node. This can be accomplished easily byintroducing redundant nodes. In the case of probabilistic branching programs westipulate additionally that the deterministic and probabilistic layers alternate.The width of such programs is the maximum size of a layer.3 Explicit Boolean FunctionsIn this section we de�ne some explicit boolean functions for which we are goingto prove computational upper and lower bounds on di�erent types of branchingprograms.Firstly, we de�ne a boolean function Fn: f0; 1g4m ! f0; 1g as follows. Forx 2 f0; 1g4m we shall call the odd bits, the \type" bits, and the even bits, the\value" bits. We say that the even bit xi, i 2 f2; 4; : : : ; 4mg is of \type" 0(1) ifthe corresponding odd bit xi�1 is 0(1). For x 2 f0; 1g4m, we denote by x0(x1) asubsequence of x that consists of all even bits of type 0(1).Now we de�ne a boolean function fn: f0; 1gn ! f0; 1g as follows: fn(x) = 1i� x0 = x1.We are going to de�ne now the second class of boolean functions. For a giveninteger n denote by p[n] the smallest prime greater or equal to n. For everyinteger s, de�ne!n(s) = ( j if j = s mod p[n] and 1 � j � p[n],1 otherwise.De�ne a boolean function gn: f0; 1gn ! f0; 1g as follows. gn(x) = xj for j =!n(Pni=1 ixi).We de�ne a function PERMn (cf. [KMW88], [J89]) on a boolean n � n ma-trix x = [xij]1�i;j�n, PERMn: f0; 1gn2 ! f0; 1g. For a given x 2 f0; 1gn2,4



PERMn(x) = 1 i� x is a permutation matrix, i.e., each row and each columnof x contains exactly one 1 entry.We introduce now a boolean function DMULT: f0; 1g4n ! f0; 1g of testinginteger multiplication such that DMULT(x; y; z) = 1 i� xy = z (x; y, and z arebinary representations of integer numbers, and jxj = jyj = n, jzj = 2n).Further, we de�ne the integer multiplication function MULT as follows. Thefunction MULTk: f0; 1g2n ! f0; 1g computes the kth bit of the product of twon-bit integers, i.e., MULTk(x; y) = zk where x = xn�1 : : : x0, y = yn�1 : : : y0,and z = z2n�1 : : : z0 for 0 � k � 2n � 1. Now de�ne MULT to be MULTn�1computing the middle bit in the product xy. It is known that the middle bit isthe \hardest" bit in the multiplication (cf., e.g., [P95a]). It is also well knownthat MULT besides being hard for many arithmetic functions is also reducibleunder read-once reductions to other arithmetic functions like squaring, inversion,and division (cf. [P95b]).4 Randomized Upper Bounds and Determinis-tic Lower BoundsWe are going to characterize the computational power of randomized OBDDs onthe explicit boolean functions introduced in Section 3, and formulate also corre-sponding lower bounds on the deterministic branching programs. The techniquesfor randomized upper bounds and �rst separating deterministic lower boundswere introduced by Ablayev and Karpinski [AK96], [AK98a]. The other boundswere proven by Sauerho� [S97a], Krause, Meinel and Wack [KMW88], and Jukna[J89], [J95].Theorem 1. ([AK96], [AK98a])1. The function fn can be computed by an "(n)-error randomized OBDD ofsize O n6"3(n) log2 n"(n)! :5



2. The size lower bound on any nondeterministic ordered read-k-times branch-ing program computing fn is 2
(n=k) :Theorem 2. ([S97a], [AK98a], [KMW88], [J89])1. The function PERMn can be computed by an "(n)-error randomized OBDDof size O n5"2(n) log3 n! :2. The size lower bound on any nondeterministic read-once branching programcomputing PERMn is 2
(n).The �rst part of the next theorem formulates a surprising fact on the powerof randomized OBDDs for testing graphs of arithmetic functions.Theorem 3. ([AK98b], [J95])1. The test function for integer multiplication DMULT can be computed byan "(n)-error randomized OBDD of sizeO n6"5(n) log4 n"(n)! :2. The size lower bound on any nondeterministic syntactic read-k-timesbranching program computing DMULT is O(2
(n1=4=k2k)).5 Randomized Lower BoundsThe following randomized lower bounds of [A97], and [AK98b] were establishedusing the property of the entropy function, and the one-way probabilistic com-munication complexity arguments.Theorem 4. ([A97])1. The size lower bound on any randomized OBDD computing the function gnis 2
(n=log n). 6



2. The function gn can be computed by a nondeterministic ordered read-oncebranching program in size O(n3).Theorem 5. ([AK98b])The size lower bound on any randomized OBDD computing the integer mul-tiplication function MULT is 2
(n=log n).6 Manipulability and Satis�ability Problem forRandomized OBDDsIt is easy to see that randomized OBDDs are closed under boolean combinations,and that various boolean model checking combinations of randomized OBDDsstay in the class of randomized OBDDs. In particular, equivalence problem forrandomized OBDDs can be reduced to the satis�ability problem.We call a width of a randomized OBDD to be a maximum number of nodesin a layer of a program.The following recent results of Agrawal and Thierauf [AT97] relate the compu-tational complexity of the satis�ability problem for randomized OBDDs to theirerror probability.Theorem 6. ([AT97])1. The satis�ability problem for randomized OBDDs is NP-complete.2. Given a randomized OBDD P with an error probability " < (1=W + 2) forW the width of P . There is a polynomial time algorithm for solving thesatis�ability problem for P .7 Randomized Read-k-Times Branching Pro-gramsIt was observed by Borodin, Razborov and Smolensky [BRS93] that there aretwo di�erent types of read-k-times branching programs, the �rst, syntactic type7



where the restriction on readings applies to all paths in the program, and thesecond, semantic type where the restriction on readings applies only to consis-tent computational paths. The corresponding classes of functions are potentiallydi�erent. The two classes coincide for k = 1. For k � 2, up to now no non-trivial lower bounds are known for semantic read-k branching programs. In thesequel we deal only with syntactic read-k-times branching and their randomized,deterministic, and nondeterministic variants.For a number p we call a branching program p-way if its outgoing edges arelabeled with \xi = 0", \xi = 1", . . . , and \xi = p� 1".We de�ne now the function SIP:ZZn3 � ZZn3 ! f0; 1g (Silvester inner product)for n = 2`, by SIP(x; y) = 1 i� x>Ay = 0for A = [aij]1�i;j�2` the Sylvester matrix of dimension 2` � 2`,ai+1;j+1 = (�1)hbin(i);bin(j)ifor 0 � i; j � 2` � 1, and with bin(i) the binary representation of i, and h ; i theinner product in ZZ2̀.A boolean variant SIPB of SIP can be obtained by a straightforward encodingof ZZ3 over f0; 1g2 (see for details [S97a]).Using a modi�ed technique of rectangles of Borodin, Razborov and Smolen-sky [BRS93], and combining it with the communication complexity arguments,Sauerho� [S97a] was able to proveTheorem 7. ([S97a])The size lower bound on any randomized 3-way (2-way) read-k-times branch-ing program computing SIP (SIPB) is 2
(n=ckk3) for some constant c.8 Some Further ResultsQuite recently some further exponential lower bounds on randomized read-k-times branching programs were obtained by Thathacher [T98]. Also some in-8



teresting insights about computational power of Las Vegas (zero-error) branch-ing program were gained recently by Sauerho� [S98]. [S98] displays an explicitboolean function (\addressing functions") and designs for it a polynomial size LasVegas read-once branching program. It is well known that this function cannotbe computed by polynomial size deterministic read-once branching programs.On other hand Karpinski and Mubarakzjanov [KM98] proved using commu-nication complexity techniques, that Las Vegas public coin (all random variablesare read at the beginning of computation) OBDDs are equivalent to deterministicOBDDs.One can also construct an explicit boolean function which is computable bypolynomial size randomized OBDD but not computable in polynomial size byany nondeterministic or co-nondeterministic OBDD (cf. [AKM98])9 Open ProblemsIt remains an important open problem to develop new more powerful lower boundtechniques for randomized read-once (and read-k-times) branching programs. Adevelopment of new two-way probabilistic communication complexity techniquescould be a possible way to accomplish it.Also an important open problem remains the status of the integer multi-plication function MULT on randomized read-once and read-k-times branchingprograms on both types syntactic, and semantic programs.A challenging open remains still a constuction of an explicit boolean func-tion which can be computed in polynomial size by both nondeterministicand co-nondeterministic read-once branching programs and which is not com-putable by any polynomial size randomized read-once branching program (cf. also[JRSW97]).Another question concerns the computational power of Las Vegas OBDDs andLas Vegas ordered read-k-times branching programs.It would be also very interesting to shed some light on computational powerof randomized branching with restricted readings of variables and additionally9
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