
On Some Tighter InapproximabilityResultsPiotr Berman� Marek Karpinskiy

AbstractWe prove a number of improved inaproximability results, includingthe best up to date explicit approximation thresholds for MIS problemof bounded degree, bounded occurrences MAX-2SAT, and boundeddegree Node Cover. We prove also for the �rst time inapproxima-bility of the problem of Sorting by Reversals and display an explicitapproximation threshold. This last problem was proved only recentlyto be NP-hard, in contrast to its signed version which is computablein polynomial time.
�Dept. of Computer Science, Pennsylvania State University, University Park, PA16802.Supported in part by NSF grant CCR-9700053. Email: berman@cse.psu.eduyDept. of Computer Science, University of Bonn, 53117 Bonn. Supported in part bythe International Computer Science Institute, Berkeley, California, by DFG grant 673/4-1,ESPRIT BR grants 7079, 21726, and EC-US 030, by DIMACS, and by the Max{PlanckResearch Prize. Email: marek@cs.uni-bonn.de1



1 IntroductionThere was a dramatic progress recently in proving tight inapproximabilityresults for a number of NP-hard optimization problems (cf. [H96], [H97],[TSSW96]). The goal of this paper is to develop a new method of reduc-tions for attacking bounded instances of the NP-hard optimization problemsand also other optimization problems. The method applies to the num-ber of problems including Maximum Independent Set (d-MIS) of boundeddegree, bounded degree Node Cover, and bounded occurrence MAX-2SAT(cf. [PY91], [A94], [BS92], [BF94], [BF95], [AFWZ95]). Independently, weapply this method to prove for the �rst time approximation hardness of theproblem of sorting by reversals, MIN-SBR, motivated by molecular biology[HP95], and proven only recently to be NP-hard [C97]. Interestingly, it signedversion can be computed in polynomial time [HP95], [BH96], [KST97].The core of the new method is the restricted version of the E2-LIN-2problem studied in [H97]. We denote by E2-LIN-2 the problem of maximizingthe number of satis�ed equations for a given number of linear equationsmod 2 with exact 2 variables per equation. We denote by 3-OCC-E2-LIN-2the E2-LIN-2 problem restricted to equations with every variable occuringin at most three equations.Denote by k-OCC-MAX-2SAT the MAX-2SAT restricted for formulas inwhich no variable occurs more than k times.The rest of the paper proves the following main theorem:Theorem 1. For every � > 0(i) it is NP-hard to approximate E2-LIN-2 within factor 332=331� �, evenif each variable occurs in at most three equations (3-OCC-E2-LIN-2);(ii) it is NP-hard to approximate 4-MIS within factor 556=555� �;(iii) it is NP-hard to approximate MIN-SRB within factor 1237=1236� �.Our proof can be easily extended to provide explicit inapproxibility con-stants for many other problems that are related to bounded degree graphs.E.g., we get 1676/1675 for 3-MIS, 332/331 for 5-MIS, 341/340 for NodeCoverin graphs of degree 5 and 668/667 for MAX-2SAT restricted to sets of clausesin which no variable occurs more than six times (6-OCC-MAX-2SAT). Weprovide the proof sketches in Section 7.The technical core of all these results is the reduction to show (i), whichforms structures that can be translated into many graph problems with verysmall and natural gadgets. The best to our knowledge gaps between theupper and lower approximation bounds are summarized in Table 1. Theupper approximation bounds are from [GW94], [BF95], [C98], and [FG95].2



Problem Approx. Upper Approx. Lower3-OCC-E2-LIN-2 1.1383 1.00303-MIS 1.2 1.00054-MIS 1.4 1.00185-MIS 1.6 1.0030MIN-SRB 1.5 1.00085-NodeCover 1.375 1.00296-OCC-MAX-2SAT 1.0741 1.0014Table 1: Gaps between known approximation bounds.2 Sequence of reductionsWe start from E2-LIN-2 problem that was most completely analyzed byH�astad [H97] who proved that it is NP-hard to approximate it within a factor12=11��. In the sequel we will use notation of this paper. In this problem weare given a (multi)set of linear equations over Z2 with at most two variable perequation, and we maximize the size of a consistent subset. In our discussion,we prefer to view it as the following graph problem. Given is an undirectedgraph G = hV;E; li where l is a 0/1 edge labelling function. For S � V ,Cut(S) is the set of edges with exactly one endpoint in S (as in the MAX-CUT problem). We de�ne Score(S; e) 2 f0; 1g as follows: Score(S; e) = l(e)i� e 2 Cut(S). In turn, Score(S) = Pe2E Score(S; e). The objective ofE2-LIN-2 is to maximize Score(S).Our �rst reduction will have instance transformation �1, and will map aninstance G of E2-LIN-2 into another instance G0 of the same problem thathas three properties: G0 is a graph of degree 3, its girth (the length of ashortest cycle) is 
(logn), and its set of nodes can be covered with cyclesin which all edges are labeled 0. We will use �1(E2-LIN-2) to denote thisrestricted version of E2-LIN-2.The second reduction will have instance reduction �2; �1(�2(G)) is aninstance of the maximum independent set with the graph of degree 4. Thereduction �2 will replace each node of �1(G) with a small gadget.The next problem we consider is a breakpoint graph decomposition, BGD.This problem is related tomaximum alternating cycle decomposition, (e.g. seeCaprara, [C97]) but has a di�erent objective function (as with another pair3



of related problems, node cover and independent set, the choice of the ob-jective function a�ects approximability). An instance of BGD is a so-calledbreakpoint graph, i.e. an undirected graph G = hV;E; li where l is a 0/1edge labelling function, which satis�es the following two properties:(i) for b 2 f0; 1g, each connected component of hV; l�1(b)i is a simple path;(ii) for each v 2 V , the degrees of v in hV; l�1(0)i and in hV; l�1(1)i are thesame.An alternating cycle C is a subset of E such that hV; C; ljCi has theproperty (ii). A decomposition of G is a partition C of E into alternatingcycles. The objective of BGD is to minimize cost(C) = 12 jEj � jCj.By changing the node-replacing gadget of �2 and enforcing property (i) by\brute force", we obtain reduction �3 that maps �1(E2-LIN-2) into BGD. Thelast reduction, �, converts a breakpoint graph G into a permutation �(G),an instance of sorting by reversals, MIN-SBR. We use a standard reduc-tion, i.e. the correspondence between permutations and breakpoints graphsused in the approximation algorithms for MIN-SRB (this approach was ini-tiated by Bafna and Pevzner, [BP96]). In general, this correspondence is notapproximation preserving because of so-called hurdles (see [BP96, HP95]).However, the permutations in �(�3(�1(E2-LIN-2))) do not have hurdles, andconsequently for these restricted version of BGP, � is an approximation pre-serving reducibility with ratio 1.3 First ReductionTo simplify the �rst reduction, we will describe how to compute the instancetranslation using a randomized poly-time algorithm (rather than determin-istic log-space). In this reduction, every node (variable) is replaced with awheel, a random graphs that is de�ned below (some parts of this de�nitionwill not be used to describe the reduction, but later, in the proof of correct-ness). The parameter � used here is a small constant; in this version of thepaper we sketch the proof that � = 9 su�ciently large, in the full version weshow that � = 6 is also su�cient.De�nition 2. An r-wheel is a graph with 2�r nodes W = Contacts [Checkers, that contains 2r contacts and 2�r checkers, and two sets of edges,C and M . C is a Hamiltonian cycle in which with consecutive contacts areseparated by chains of � checkers, while M is a random perfect matching forthe set of checkers (see Fig. 1 for an example).4



For a set of nodes A � W let aA be the number of contacts in A, bA the num-ber of contiguous fragments of of A in the cycle C (i.e. bA = jCut(A)\Cj=2)and cA = jCut(A) \M j.We say that A is bad i� r � aA > 2bA + cA. A set B is wrong i� for somebad set A we have B = A \ Checkers. A set B � Checkers is isolated i� noedges in M connect B with Checkers�B.
4-wheel

Figure 1

checker node
contact node

Consider an instance of E2-LIN-2 with n nodes (variables) and m edges(equations). Let k = dn=2e. A node v of degree d will be replaced with akd-wheel Wv. All wheel edges are labelled 0 to indicate our preference forsuch a solution S that either Wv � S or Wv \ S = ;. An edge fv; ug withlabel l is replaced with 2k edges, each of them has label l and joins a contactof Wv with a contact of Wu. In the entire construction each contact is usedexactly once, so the resulting graph is 3-regular.We need to elaborate this construction a bit to assure a large girth of theresulting graph. First, we will assure that no short cycle is contained insidea wheel. We can use these properties of an r-wheel W : each cycle diferent oflength lower than 2�r must contain at least one edge of the matchingM andthe expected number of nodes contained in cycles of length 0:2 log2(�r) orless is below (�r)�0:8 fraction). Thus we can destroy cycles of length below0:2 log2 n by deleting matching edges incident to every node on such a cycleand neglect the resulting changes in Score.5



Later, we must prevent creation of short cycles when we introduce edgesbetween the wheels; this can be done using a construction described by Bol-lob�as [B78]. While Bollob�as described how to build a graph of large girthfrom scratch, his construction can assure the following: given a graph of de-gree 3 with girth at least 0:5 log2 n and two n-element disjoint sets of nodesof degree 2, each of size n, say A and B, one can increase the set of edges bya perfect bipartide matching of A and B without increasing the girth above0:5 log2 n. Note that we are indeed replacing an edge of the original graphwith a perfect matching with at least n edges, which allows us to use theconstruction of Bollob�as.The solution translation is simple. Suppose that we have a solution Sfor a translated instance. First we normalize S as follows: if the majorityof contacts in a wheel W belong to S, we change S into S [W , otherwisewe change S into S �W . A normalized solution S can be converted into asolution S 0 of the original problem in an obvious manner: a node belongs toS 0 i� its wheel is contained in S. Assuming that G has m edges/equations,we have Score(S) = 2k((3� + 2) + Score(S 0)). H�astad [H97] proved that forE2-LIN-2 instances with 16n equations it is NP-hard to distinguish thosethat have Score above (12� �1)n and those that have Score below (11+ �2)n,where the positive constants �1; �2 can be arbitrarily small. By showing thatour reduction is correct for � = 6 we will proveTheorem 3. For any positive �1; �2, it is NP-hard to decide whether an in-stance of �1(E2-LIN-2) with 336n edges (equations) has Score above (332 ��1)n or below (331 + �2)n.The latter claim uses the assumption that Score(S) is not decreased bythe normalization. Because the reduction uses a randommatching, it actuallydoes not have to be the case, i.e. the normalization may fail. Obviously, ifthe normalization fails, than one of its step, say dealing with wheel W , fails.Let us inspect closer what such a failure means. For some d,W is a kd-wheel,so it contains 2kd contacts. Let A be the subset of W consisting of nodesthat change membership in S during the normalization step. It is easy tosee that Score(S; e) changes i� e 2 Cut(A). According to our de�nition, thesize of Cut(A) is aA+2bA + cA. The edges counted by 2bA and cA are insideW , so their score is changed to 1 (from 0); the edges counted by aA areconnecting the contacts in A with contacts of other wheels, pessimisticallywe may assume that their score changes to 0. As a result, Score(S) decreasesby at most aA� 2bA� cA; the normalization step fails only if aA > 2bA+ cA,i.e. only if A is a bad subset of the wheel W . To show that our reductionpreserves the approximation with a high probablility we need to show that6



the probablility that a wheel contains a bad subset is very low. Note thatwhen we try to �nd a bad set A in a wheel, it is very easy to obtain anypossible combination of the values of aA and bA. However, the number cAis establish by a random matching, so we need to use the fact that with avery high probability Cut(A) \M contains many edges. We start with thefollowing lemma.Lemma 4. Assume that Q is a clique, P � Q, 2q = jQj and 2p = jP j.Choose, uniformly at random, a perfect matching M for Q. Then the proba-bility that Cut(P ) \M is empty equals qp! 2q2p!�1 � 2 p2q! :Proof. Let �r be the number of perfect matchings in a complete graph with2r nodes. By an easy induction, �r = Qri=1(2i � 1) = (2r)!=(2rr!). Theprobability of our event is�p�q�p�q = (2p)!2pp! (2(q � p))!2q�p(q � p)! 2qq!(2q)! = (2p)!(2p� 2q)!(2q)! q!p!(q � p)! :The second part of the claim follows from standard estimates.Consider now a bad set A. Suppose that a node u 2 A has two neighborsin W � A. It is easy to see that after removing u from A the expressionaA � 2bA � cA increases, so A remains bad. Similarly, if u 62 A has twoneighbors in A we may insert u and A again remains bad. Therefore Wcontains a bad set only if it contains such a bad set A that neither A norW � A contains fragments of size 1.Consider now set B � Checkers. Let Bi be the set of contacts that haveexactly i neighbors in B. According to our last remark, B is wrong i� forsome B0 � B1 the set A = B [B2 [B0 is bad. Clearly, whatever the choiceof B0, we have aA = jB2j + jB0j, bA = bB[B2 and cA = cB. Thus if jB2j > rthen B cannot be wrong, else if jB2j+ jB1j > r we can assume that aA = r,and in the remaing case we can assume that aA = jB2j+ jB1j. Later we willuse notation aB, bB and cB to denote these reconstructed values of aA, bAand cA.The probability that W contains a bad subset can be estimated with asum, over every B � Checkers, of the probability that B is wrong. Insteadof computing this probability, we will estimate it, using three parameters ofthis set.The �rst parameter of B is �, de�ned by the equality aB = �r. BecauseB is wrong only if aB � r, we may assume that � 2 (0; 1]. The second7



parameter is �, de�ned by bB = ��r. Because B can be wrong only ifaB > 2bB, � is a fraction in the range (0; 12).Before we de�ne the third parameter, we will use the �rst two to countthen number of ways in which B can be generated. The sets B andCheckers �B together contain 2��r fragments which can be described byindicating, for each of them, the �st element (say, if we move in clockwise di-rection). This description leaves ambigous which is set B and which isW�B,this can be decided using the property aB � r. Thus we can generate B in 2�r2��r! � (e�)2��r 1��!2��r = �many ways.After we generated a set B, we need to estimate the probability that itis wrong. To do so, we need to make an assumption conerning its size. Itis easy to see that a fragment of B that contributes, say, a, to aB, mustcontain a� 1 complete chains of checkers, each of length �, so it contributesat least (a � 1)� to the size of B. Additionally, this fragment may containtwo \fringe" chains of length between 0 and �� 1, so it contributes less thanmost (a + 1)� to the size. After adding such inequalities together over ��rfragments we see that��r � ���r � jBj < ��r + ���r ;hence for some 
 2 [�1; 1] we have jBj = (1 + 
�)��r. Note that B willbecome isolated if we remove the endpoints of the matching edges that con-nect B with W �B; if B is wrong, then the number of such endpoints is atmost cB < (1� 2�)�r. We can estimate the probability that B is wrong bymultiplying the number of ways in which we can remove (1 � 2�)�r nodes(call it �) with the probability that the result is isolated. The former can beestimated as (1 + 
�)��r(1� 2�)�r ! � (e�)(1�2�)�r 1 + 
�1� 2�!(1�2�)�r = � :To express the latter, we de�ne �(�; 
) so that the size of our candidates foran isolated set is 2�(�; 
)�r, one can see that �(�; 
) = [(1+
�)��(1�2�)]=2and the probability that the candidate set is indeed isolated is below �(�; 
)�2� !�(�;
)�r =  :8



We need to show �� << 1; it su�ces to show that (�� )1=(�r) < 1. Weeasily can compute that(�� )1=(�r) = e� 1�
!2� 1 + 
�1� 2�!1�2� �(�; 
)�2� !�(�;
) :One can quickly check that the above formula is an increasing function of �.Because we want to estimate it from above, we can put � = 1. Now it remainsto check that the simpli�ed function is always smaller than 1 for � 2 (0; 12and 
 2 [�1; 1]. Using the fact that the partial derivative is bouded, one canaccomplish it by evaluating this function in a limited number of points. For� = 9 we checked that 0.72 is an upper bound. With a more complicatingargument, and more accurate estimates than Lemma 4, one can also showthat � = 6 is su�cient as well.4 Reductions to 4-MISWe can reduce instances of E2-LIN-2 with 3-regular graphs to MIS instanceswith graphs of degree 4 (we will use 4-MIS to denote this subproblem). Con-sider an instance of E2-LIN-2, a 3-regular graph G with 2n nodes and 3nedges. The gadget used to replace each node of G is a 2 � 4 grid, parti-tioned into 0-nodes and 1-nodes, as shown Fig. 2a. Three pairs of nodes,each containing a 0-node and a 1-node form contacts. A pair of gadgets cor-responding to an edge of G is connected as follows: we choose one contactpair in each of the gadgets. If the edge is labelled with 0, we identify the0-node of one contact pair with the 0-node of the other; if the edge is labeledwith 1, then we switch the order of identi�cation. Note that the nodes of thecontacts representing the edges of the main (Hamiltonian) cycle of a wheelhave degree 4, and the other contacts have degree 3.
Figure 2a: a part of a 4-MIS instance

Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts are darker.
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The solution translation starts from normalizing the independent set I ofthe new graph. After the normalization, each gadget is \pure", i.e. the inter-section of I with the gadget consists of one type of nodes only. If this typeis 1, we include the respective node of G in S (in terms of linear equations,we set the value of the variable to 1). It is easy to see that a normalizedI contains 1 node for each node of G plus 1 node for each edge of G thatscores 1. In other words, the correspondence between the score s obtained for�1(E2-LIN-2) with n nodes and i = jIj is i = n + s. Moreover, the resulting4-MIS instance has 5n nodes.To normalize I, we \purify" gadgets one at the time. To describe anormalization of a gadget �, we assume that � = fa; b; : : : ; hg, as shown inFig. 2a. We consider several cases. Assume �rst that fb; cg \ I = ;. Then� \ I contains at most 3 nodes. If only one of them (or none) is a 1-node,we change I by inserting b and removing its neighbor (if any), the gadgetbecomes pure and I is not smaller than before. If � \ I contains more thanone 1-node, we can achieve the same e�ect by using c instead of b. Now weconsider the case when b 2 I (the case of c 2 I is symmetric). If � is notpure, then h 2 I while f; g 62 I. If the neighbor of g in the adjacent gadgetis not in I, we change I by replacing h with g; otherwise the neighbor of fis not in I and we can replace fb; eg with fc; fg.Given and instance G of �1(E2-LIN-2) with 2n nodes and 3n edges, ourconstruction creates 4-MIS instance G0 with 10n nodes, and the correspon-dence between the size i of an independent set in G0 and s, Score of thecorresponding solution of G is i = 2n+ s. Together with our previous theo-rem this impliesTheorem 5. For any positive �1, �2, it is NP-hard to decide whether aninstance of 4-MIS with 1120n nodes has the maximum size of an independentset above (556� �1)n or below (555 + �2)n.An instance of 4-MIS can be modi�ed to became an instance of BGDin a simple manner: each node can be replace with an alternating cycle oflength 4; adjacent nodes will be replaced with a pair such cycles that have anedge in common. If we are \lucky", after the replacement we indeed obtaina breakpoint graph.Unfortunately, if we apply such translation to a graph from Fig. 2a, wewill get a graph violates part (ii) of the de�nition of BGD. However, thisapproach is succesful if we apply a somewhat larger gadget shown in Fig. 2b.It is easy to see that the size of the resulting 4-MIS graph is 9n, and thatthe correspondence between the size of the pure solution and the score in theoriginal �1(E2-LIN-2) instance is i = 3n + s. The \purifying" normalization10



Figure 2b: a part of a 4-MIS instance made of larger gadgets

Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts are darker.

0-node 1-node

has to proceed somewhat di�erent, however. We do it in two stages. Theresult of the �rst stage is that gadgets are either pure, or contain no nodesof I in their contacts.If an impure gadget contains only 4 nodes of I (or less), we replace thesenodes with the (unique) independent set of size 4 with no contact nodes(i.e. contained in the light gray area of Fig. 2b). A gadget that contains 6nodes of the independent set is already pure. If an impure gadget contains 5nodes of I, then it must contain one of the two \central" points (note thatthe non-central nodes form a cycle of length 10). Suppose that this centralnode has label 0. Then I cannot contain neither of the 4 adjacent 1-nodes,and the remaing 7 nodes form two isolated 0-nodes and a chain of the form0-1-0-1-0, where the �nal 0-1 is a contact. If the chain contains 3 nodes ofI, the gadget is pure. Otherwise we can set the intersection of I with thischain to contain two 0-nodes that do not belong to the contact; afterwardthe gadget becomes pure.At this point, we have \pure" gadgets, with 0 or 1 values, and at least5 nodes of I, and \undecided" gadgets that contain only 4 nodes of I. Ifan undecided gadget is adjacent to two gadgets that are either 0-pure orundecided, then we can incease I by increasing the number of nodes of I to5, all of them 0. There is also symmetric case for 1, and one of the two casesmust hold.5 Reduction to BGDThe idea of reducing MIS problem to BGD is very simple and natural. Ob-serve that the set E of all edges forms an alternating cycle (AC for short), adisjoint union of ACs is an AC, and a di�erence of two ACs, one contained inanother is also an AC. Thus any disjoint collection of ACs can be extended toa decomposition of AC. Consequently, the goal of BGD is to �nd a collectionof disjoint ACs as close in size to the maximum as possible.11



Second observation is that the consequences of not �nding an AC diminishwith the size of AC. Suppose that the input has n breakpoints (edges of onecolor), and that we neglect to �nd any AC's with more than k breakpoints.The increase in the cost of the solution is smaller than n=k, while the costis at least n=2. Thus if k = 
(logn), such oversight does not a�ect theapproximation ratio.The strategy suggested by these observation is to create instances of BGPin which alternating cycles that either have 2 breakpoints, or 
(logn). Thenthe task of approximating is equivalent to the one of maximizing the size ofindependent set in the graph G of all ACs of 4; we draw an edge between twoACs if they share an edge.More to the point, we need to �nd a di�cult family of graphs of degree 4which can be converted into breakpoint graphs by replacing each node withan alternating cycle of size 4. To this end, we can use the results of thesecond reduction described in the previous section. Fig. 3 shows the resultof this replacement applied to the long cycles of gadgets. The union of ACsused in the replacements is also a disjoint union of 5 ACs (in Fig. 3 these ACsare horizontal zigzags). To apply the resoning of the previous sections, weneed to establish that no cycles of length larger than 4 have to be considered.In the short version we only sketch this argument.The cycles in question fall into three categories. The �rst kind of cycles areincluded in an adjacent pair of gadgets, identi�ed on their diagonally placedcorners. By an easy case analysis one can show that we can replace suchcycles with a larger collection of cycles of size 4. The second kind traversesa collection of gadgets that is cycle-free (if each gadget is considered to bea node). Such a cycle has a de�ned interior; the union of the cycle withits interior can be easily decomposed into 4-cycles. The third and last kindtraverses a cycle of gadgets. Then it must be at least as long as such a cycle,i.e. 
(logn).At this point the translation is still not correct, as the resulting graphsMUST violated property (i) of BPG: edges of one kind form a collection ofcycles: in Fig. 3 such edges form diagonal lines consisting of 5 edges each;such a line crosses to another strip of gadgets and then proceeds without end.However, these cycles induce cycles of gadgets, hence have length 
(logn),moreover, they are disjoint. Therefore we can remove all these cycles bybreaking O(n=logn) contacts between the strips.Given and instance G of �1(E2-LIN-2) with 2n nodes and 3n edges, thisconstruction creates BGD instance G0 with 20n breakpoints (edges of onecolor), and the correspondence between the cost c of a cycle decompositionin G0 and s, Score of the corresponding solution of G is c = 20n � 3n � s.Together with Theorem 3 this implies12



Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts have darker shade,
dash lines show the contact
with another wheel.

Figure 3: a part of a BPG instanceTheorem 6. For any positive �1; �2, it is NP-hard to decide whether an in-stance of BGD with 2240n breakpoints has the minimum cost of an alternatingcycle decomposition below (1236 + �1)n or above (1237� �2)n.6 Reduction to MIN-SRBOur reduction from BGD to MIN-SRB is straightforward, in particular wecan use the procedure GET-PERMUTATION of Caprara [C97, p.77] to ob-tain permutation �(G) from a given breakpoint graph G. It is easy to showthat if G is the result of reduction �4 � �1 applied to E2-LIN-2, then � haso(n) hurdles. The basic reason is that all ACs of length 4 that may belongto a normalized solution (decomposition into ACs) form a single connectedcomponent in the interleaving graph (cf. [BP96, HP95]), because the numberof longer cycles in a cover is O(n=logn), this implies that the total numberof connected components of the interleaving graph is O(n=logn). Becausehurdles are de�ned as connected components with a special property, we canconclude that there are O(n=logn) = o(n). As a result, the number of re-versals needed to sort � is exactly equal (modulo lower order terms) to theminimum cost of a decomposition of G into alternating cycles. ThereforeTheorem 6 apllies also to MIN-SRB.7 Bounded MIS, NodeCover and MAX-2SATThe hardness bound of 1676/1675 for 3-MIS follows directly from the con-struction in Theorem 5 for 4-MIS.To show that it is hard to approximate 5-MIS within a constant factorbetter than 332/331, we can reduce E2-LIN-2 to MIS, and then apply The-orem 3. An edge fx; yg is replaced with two nodes, each with a pair of13



labels; if l(fx; yg) = 1 (i.e. the edge stand for x 6= y), the pairs of labels arefx1; y0g and fx0; y1g, otherwise (when the edge stands for x = y) this pairsare fx1; y1g and fx0; y0g. Then we introduce an edge between nodes u andv if for some x, u has label x1 and v has label x0.The solution translation is computed as follows. We start with an inde-pendent set I for a 5-MIS instance. For each variable/node x of the originalinstance of 3-OCC-E2-LIN-2 we de�ne a set of nodes Vx that have label x0 orx1. If Vx\I contains a node with label x1, then the implied solution S for theoriginal instance contains x. We further normalize the solution by inspectingeach edge e of the original instance such that Score(S; e) = 1. Suppose thatfx; yg is such an edge, and that it has the label 0. Then Vx \ Vy consistsof two nodes, with label sets fx0; y0g and fx0; y0g. One can see that eitherthis pair contains exactly one node of I, or one of these two nodes can beinserted; if x; y 2 S, then we can insert the node with label set fx1; y1g, andif x; y 62 S, we can insert the other node. The case of label 1 is similar. Onecan see that the normalization may only increase the set S, and after thenormalization, Score(S) = jIj. Therefore every approximation ratio which ishard for 3-OCC-E2-LIN-2 is also hard for 5-MIS.To show that it is hard to approximate 5-NodeCover within a constantfactor better than 341/340, we can use the same instance reduction. One canobserve that if the original graph of 3-OCC-E2-LIN-2 had 336n edges, thenew graph has 772n nodes, and it is hard to distinguish between instanceswith MIS larger than (332 � �1)n nodes and those with (331 + �2)n; equiv-alently, it is hard to distinguish between instances with minimal node coversize below (340 + �1)n from those above (341� �2)n.The reduction of 3-OCC-E2-LIN-2 to 6-OCC-MAX-2SAT with variablesoccuring at most six times is very simple: an equality (equivalence) is re-placed with the corresponding pair of implications. One can see that for a�xed truth assignment, an equality is satis�ed i� both of the correspondingimplications are satis�ed, otherwise exactly one implication is satis�ed. Be-cause it is di�cult to decide whether in a given set of 336n equations we mayhave only (4 + �1)n unsatis�ed ones, or we must have at least (5� �2)n, thesame is true for the the corresponding 6-OCC-MAX-2SAT instance, thus it isdi�cult to distinguish between instances with score at least (2 �336�4��1)nand those with score at most (2 � 336� 5 + �2)n.8 Further Research and Open ProblemsIt would very interesting to improve still huge gaps between approximationupper and lower bounds for bounded approximation problems of Table 1.14



The lower bound of 1.0008 for MIN-SRB is the �rst inapproximability resultfor this problem. The especially huge gap between 1.5 and 1.0008 for theMIN-SRB problem re
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