Approximation of the Permanent for Graphs of Density Less than $1 / 2$ is hard

Elias Dahlhaus and Marek Karpinski
University of Bonn

Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph with the two partitions V_{1} and V_{2}. Multiple edges are not allowed. We assume that V_{1} and V_{2} have the same cardinality n. We call G an α-DENSE graph iff each vertex has a degree of at least αn.

We call a probabilistic algorithm an (ϵ, δ) - approximation algorithm, iff for given input G, ϵ, δ it computes a number Y, such that the probabiltity that Y is in between $\operatorname{per}(G) /(1+\epsilon)$ and $(1+\epsilon) \operatorname{per}(G)$ is at least $1-\delta$. Here $\operatorname{per}(G)$ is the number of perfect matchings of G (also called the permanent)(see also [4]).
A. Broder[1] stated the following result (see also [4]):

Theorem 1: For 1/2-dense bipartite graphs there is an (ϵ, δ)-approximation algorithm for the permanent, polynomial in n.

Some additional results on approximation algorithms for the permanent are stated in [2].

We can show the following result which is in contrast to theorem 1 :
Theorem 2: Given any $\alpha<1 / 2$. Then an (ϵ, δ)-approximation algorithm for the permanent of any α-dense bipartite graph, which is polynomial in n, implies the existence of a polynomial time (ϵ, δ)-approximation algorithm for any bipartite graph (approximation completeness).

Proof: The proof is very similar to the proof of matching completeness of the perfect matching problem for α-dense graphs (see [3]. Given any bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ We consider two copies $C_{i}=\left(W_{i} \cup W_{i}^{\prime}, E_{i}^{\prime}\right)$ of the complete bipartite graph with m vertices per partition. We construct a new bipartite graph G^{\prime} by joining each vertex of W_{i}^{\prime} and each vertex of V_{i} by an edge. It is easily seen that each perfect matching of G^{\prime} is the disjoint union of a perfect matching of C_{1}, a perfect matching of C_{2} and a perfect matching of G. Therefore G has k perfect matchings if and only if G^{\prime} has $2(m!) k$ perfect matchings. Setting the ratio m / n large enough G^{\prime} is α-dense.

Figure 1: The reduction from any bipartite graph to α-dense graphs

References

[1] A. Broder,How hard is to marry at random? (On the approximation of the permanent), 18-th STOC (1986), pp. 50-58.
[2] P. Dagum, M. Luby, M. Mihail, U. Vazirani, Polytopes, permanents, and graphs with large factors, 29-th FOCS(1988), pp. 412-421.
[3] E. Dahlhaus, P. Hajnal, M. Karpinski, Optimal parallel algorithm for the Hamiltonial cycle problem in dense graphs, 29-th FOCS, pp. 186-193.
[4] M. Luby, A survey of approximation algorithms for the permanent, to appear.

