On Efficient Decoding of Huffman Codes

Yakov Nekritch *

Abstract
Two new algorithms for space- and time- efficient decoding of min-
imum redundancy codes with numerical sequence property are investi-
gated. Both algorithms are particularly efficient in case of large source
alphabets and limited memory resources. Practical experiments show
a reduction of up to 50 % and more in the number of operations.

*Institut fir Informatik V, Universitat Bonn, Romerstr. 164, D-53117, Bonn, Germany,
email: yasha@cs.uni-bonn.de

1 Introduction

Algorithm for construction of Huffman codes, i.e. prefix codes with minimum
redundancy, was first presented by Huffman [8]. Huffman coding is nowa-
days one of the most popular and widely used compression techniques. It is
a part of many data format specifications, such as JPEG [14] and PNG [1]
image formats and deflate compression method [5]. For a number of applica-
tions, we are specially interested in minimizing time and memory resources
for data decompression, while compression can take significantly more time
and memory. An example of such application is a large information retrieval
system, when compression is done only once and decompression should be
performed for every information retrieval. Another example is data trans-
mission, when the sender is a fast machine and the receiver is a much slower
one and, possibly, has very limited memory resources.

Several decompression schemes for Huffman codes were offered. Table-
lookup scheme allows decoding in constant time, however memory require-
ments are very high. Binary tree representation of Huffman codes allows de-
compression in time proportional to codeword length. Chung [3] also presents
an algorithm working in O(l) time. The code has a numerical sequence prop-
erty if codewords of equal length form a consecutive sequence of integers. For
any Huffman code an equivalent code, satisfying this property can be easily
constructed. Moreover, some compression schemes (for instance, JPEG) use
Huffman codes with numerical sequence property. Connell [4] constructed an
algorithm decoding Huffman codes with numerical sequence property in O(c¢)
time, where ¢ is the number of different codeword lengths. Another efficient
decoding algorithm was presented by Klein [10]. In this paper a decoding
scheme is presented allowing the decoding of Huffman codes in O(log ¢) time.
Moreover this procedure requires very little memory and at most one reading
operation for any codeword is necessary. Besides that, an improvement for
table look-up decoding method is presented.

2 Previous methods

Throughout this paper the following notation will be used.Let [,,,, denote the
length of the longest codeword and [,,, denote average codeword length.Let
a denote a binary sequence and o' denote a binary sequence of length ¢.Let

I(«) denote an integer, whose binary representation is a. We will say that
binary sequence « is lesser than [if an integer corresponding to « is lesser
than integer,corresponding to 3. Let minword(l) be the least codeword of
length [in the given Huffman code. Let first(l) denote the index of the first
codeword of length [.

Decoding the Huffman codes using decoding tables was considered by
Sieminski [12]. The idea is to build a table with entries, corresponding to all
binary sequences of length [,,,,., where [,,,,,. is the length of the longest code-
word. FEach entry in the table, which corresponds to binary sequence wa,
where w is some codeword, contains information on symbol corresponding to
w and the length of w. On each step of the algorithm we read a sequence of
lmar yet unprocessed bits. We output symbol, corresponding to codeword,
which is a prefix of this sequence. This construction allows decoding of Huff-
man code for a single codeword in constant time. Besides this, we don’t
have to process the input stream bit-by-bit, as in other methods.The main
drawback of this method is high memory requirements.

The standard Huffman tree, which was used for constructing Huffman
codes, can be used for decoding. To decode a single codeword, we start
at the root node and traverse the Huffman tree according to the read bit se-
quence. At the beginning of the decoding the current node is the root node.
We check if the current node is a leave. If yes, the decoding is over and we
output the symbol, corresponding to the leave. Otherwise, we read the next
bit from the input stream.If the next bit is 0, we assign the left child of the
current node. If the next bit is 1 the current node is the right child of the
current node. The average number of operations for the decoding of a single
codeword is O(l,.,) In general case, we should transmit the structure of the
chosen Huffman tree, which leads to increase of the size of compressed file.
This increase is negligible in case of large size of compressed data, however
it can be important in case of relatively small files to be compressed. Chung
suggests a method of reducing storage overhead. Instead of transmitting
the tree structure he suggests transmitting the array,which is sufficient for
correct decoding of Huffman codes.

Another way to reduce the storage overhead is to choose for compression
process the Huffman trees with some additional properties. The frequent
choice in many applications is the canonical tree, defined by Schwartz and
Kallick [13]. One property of the canonical tree is that if we list leaves
leaves of the tree in pre-order, the leaves appear in non-decreasing order of

their depth. A canonical tree can be unambiguously specified by the string
< ny,ng,...,ng, . >, where n; denotes number of codewords of lengths i,
thus reducing the storage overhead for specifying the tree shape. Connell [4]
describes the algorithm, allowing the decoding in O(¢) time. The algorithm
uses the numerical property of canonical tree, i.e. the fact that the code-
words of the same length are binary reprersentations of consecutive integers.
Therefore after reading [bits we can determine, whether we read a codeword
of length [, by comparing the integer value of [read bits with the value of
last codeword of length [.

Klein [10] presents an algorithm for fast decoding of canonical Huffman
codes, using the special data structure. The data structure is a binary tree
called a sk-tree. The algorithm makes use of the numerical sequence property
of canonical Huffman codes. Let first(l) be the index of first codeword of
length [in the full list of all codewords. Let I(w) be the integer value of
codeword w. Then for any codeword w of length [

first(l) + (I(w) — I(first(l))) (1)

is an index of codeword w in the full list of all codewords. The idea of the
algorithm is to read single bits untill the length of the codeword, which is
currently being read is determined. The remainning bits of the codeword are
then read at once and its index in the list is determined by the formula given
above. The sk-tree is a data structure used for detemining the length of the
current codeword as soon as it is possible. External paths of sk-tree con-
stitute all posible binary sequences, necessary for uniquely determining the
codeword lengths. The average number of operations per codeword neces-
sary for decoding a single codeword with this algorithm can be approximately

estimated by:
S (i)
icleaves in sk-tree
the savings in space and time depend on and significantly vary with concrete
size and structure of the Huffman tree. In the worst case there is no saving.
Prctical experiments on large text databases show reduction of up to 50

3 Length search tree decoding

In this work a space- and time-efficient algorithm for decoding of Huffman
codes with numerical sequence property is presented. The algorithm requires
maximum [log,(¢)] comparisons, where ¢ is the number of different codeword
lengths. The space requirements for the corresponding data structure is O(¢),
which makes the algorithm very practical for the case, when the number of
symbols is very high and memory resources are limited. The algorithm can
be efficiently applied to Huffman codes with different shapes of Huffman
tree. Besides that, the algorithm avoids single bit manipulation,which leads
to further reduction of decoding time. The algorithm exploits the following
simple property of Huffman codes with numerical sequence property.

Property 1 For any two codewords wy,wy in canonical Huffman code with
lengths 11,1y respectively, if I(w1'me==1Y) < [(wq0'me==2) then for any other
codewords w),wh with lengths 11,1y respectively I(w}1'mer=11) < [(whQlmaez=l2),

For ease of description we consider below only the case of canonical Huffman
codes. However the similar algorithm can be constructed for the general case
of codes with numerical sequence property.

Property 2 For any two codewords wy,wy in canonical Huffman code with
lengths 1y, 1y respectively, if I} < ly then I(w;1mes=l) < [(wqQlmez=l2),

Proof: Let ly,1s,...,l, be the sequence of codeword lengths. Let mazword(l)
be the last codeword of length [. In canonical Huffman code minword(l;) =0
and minword(l;) = 2% ~-1x(minword(l;_1)+n;_1)) and the codewords of the
same length are consecutive integers. Hence mazword(l;) = minword(l;) +
n; — 1. For any codeword length [;

I(minword(liz,)0' =141y = [(mazword(l;)1'm==1) + 1

Therefore, for any codeword wy, which length is lesser than [,
I(minword(l) << (lper — 1)) > [(wia'==11) where '<<’ is a left shift
operation. Hence if we read the sequence a'mes prefix of which is some
codeword w of length [, then for any " > | I(minword(l') << (Iye — 1)) >
I{a). In other words, if we read a sequence of [, bits from the input

stream, we need one comparison to determine, whether its prefix codeword
has length, lesser than [, for any { < {,,4»

The algorithm works as follows. First a binary sequence of length [,,,, is
read.Then the length of its prefix codeword is determined, using the above
mentioned property of canonical codes, by comparing the value of o with the
critical values for different lengths, where under critical value for length [we
understand I(minword(l)0's==1). Then the index of the codeword is com-
puted, using the formula (1). To accelerate the search of the length of prefix
codeword binary search tree is used. As the decoder doesn’t know probabil-
ities of different symbols, we’ll assume that the probability, that codeword
length equals [is 1/c. In this case, to get the length of the codeword with
help of the binary search tree we need [log,(c¢)] comparisons. Alternatively, if
decoding time is more important than compression efficiency, encoder, know-
ing the probabilities of codewords, can construct an optimal binary length
search tree and transfer it along with encoded data. Then decoder will need
[log,(c)] comparisons in worst case. The storage overhead for optimal search
tree is O(c). To construct such a tree a clog,(¢) time is needed [7].

This tree has a following structure. Each internal node N contains the
critical value for some codeword length [. We traverse the tree, taking on
each step left edge of current node, if decoded bit sequence is less than value,
stored in current node, and right edge otherwise, until we achieve a leaf node.
The leaf node contains the length of prefix codeword of decoded bit sequence.
Description of decoding procedure in pseudocode is given below.

Procedure decode()

begin

N:= root of search tree;

w:= integer corresponding to sequence of next n undecoded bits;

repeat
if (w<lN.value)

N:=left child of N;
else

N:=rigth child of N;
until (N is a leaf node);
length:=N.value;

@ 20
© ®

Figure 1: A tree for length search

index:=first[length]+

(I(first length bits of (w-minvalue[length])));
output symbol[index];
end

As example consider the following code:

a=000; £=0110; k=10101;
b=0010; g=0111;
c=0011; h=1000; u=11111;
d=0100; 1=1001;

e=0101; j=10100;

in this case minvalue[3] = (000 << 2) = 0; minvalue[4] = [(0010 << 1) =
4; manvalue[5] = 1(10100) = 20;
first[3]=1; first[4]=2; first[5]=10;
The search tree T for this code is depicted on fig. 1. Internal nodes are
denoted by squares, leaves are denoted by circles. Internal nodes contain

7

critical values for codeword lengths 4 and 5. Leaves contain the lengths of
codeword. For instance, suppose, that we read sequence 10001. 7(10001) >
minvalue[4d] = 4; 1(10001) < minvalue[b] = 20; hence prefix codeword
has length 4. Therefore, the index of the current codeword is first[4] +
((1(10001) — minvalue[d]) >> 1) =24+ ((17 —4) >> 1) = 8.

Using length search tree method we need 2 comprarisons to decode a single
codeword. Number of comparisons necessary to decode the average code-
word with the standard Huffman tree method is 4.25 (average codeword
length of the code). Number of comparisons used in sk-tree decoding is
3*(1/8)4+3%2*(1/16)+2%4*(1/16)+3%2*(1/16)+3%4*(1/32)+2%8%(1/32)=2.5 .
Besides this, our method avoids bit retrieval operations, which are necessary
on every tree traversal step in other two methods.

We assumed, that the root of the tree is not a leaf (otherwise all codewords
have the same length and we don’t need the tree to determine lengths of the
codewords). Therefore our decoding procedure uses in worst case [log,(c)]
integer comparisons and [log,(¢)] checks if the current node is a leaf. Getting
the sequence of yet unencoded bits can be implemented with a constant
number of bit-oriented operations, independently of the code length 1. The
search tree and supplementary structures require k¢ bytes of memory, where
k is a small constant, depending on the number of codewords 2.

Logarithmic limitations on time mean that worth case decoding time grows
very slowly with growth of the size of source data . Suppose that the algo-
rithm requires k£ comparisons, then the height of corresponding Huffman
tree is 2F. Itis known that if Huffman tree has a leaf on level d, then the
probability of the corresponding element is less than (1/¢)?"!, where ¢ is
the golden ratio. [9]. Therefore the minimal length of source file should be
" (the corresponding symbol would appear only once in this file,and be-
sides that, there should be at least one leaf on every other level of the tree,
which is a very unlikely situation). The memory requirements are O(2%).
For instance, supposed that our algorithm requires 6 comparisons, then the

!For instance in C getting the next yet unencoded bits can be implemented with 2 shift
and 1 exclusive OR, operations, to get the index number we need one more shift operation.
ZAgain, in C minvalue array would require 2c bytes, if maximum codeword length is
less then 16, 4c bytes otherwise, first array would require c,2c or 4c bytes if number of
codewords is less than 28, 215 and 232 respectively.we would need 3¢ bytes of memory for
search tree, if number of codeword is less than 28, 6¢ bytes if number of codewords is less

than 26 and 12e.

minimum source file length is ¢ = 20:693x64 — 944.352] o the file would be at
least 20,911.371 Gigabytes long. Or, in other words, for any file of size lesser
than 20,911.371 Gigabytes we’ll need no more than 6 comparisons to decode
the codeword.For decoding of such file about 1Kbyte of memory would be
required. Klein [10] argues, the Huffman trees for distributions of characters
or character pairs in natural languages have depth O(log(n)). In this case
the number of comparisons with length search tree is O(log(log(n))). These
results can be further improved, if we store the optimal length search tree
along with compressed data.

4 Improved decoding with look-up table.

In the decoding with the look-up table we first try to look-up the code in
a table, containing all ¢-bit sequences. The decoding of the next codeword
begins with reading the sequence of next ¢ bits from the input stream. If
some codeword w is a prefix of the read sequence we output the symbol,
corresponding to w, otherwise decoding proceeds, using further tables or
another decoding method, for instance, the method described above, but we
know already that the codeword length is greater than ¢. In this section
we propose an improvement to the look-up table method. To the best of
our knowledge, this method is new. Based on ideas from [10] , we try to get
additional information about the length of the current codeword from its first
t bits, thus simplifying the decoding. The first ¢ bits of the codeword can
contain enough information to determine the codeword length unambiguously
or to limit the range of codelengths. These ideas are used in the following
way. For decoding of the next codeowrd we first read the sequence o of
next ¢t bits from the input stream. If a certain codeword w is a prefix of
sequence « we output symbol corresponding to w. Otherwise we try to get
information about the possible codeword length. If the codeword length
can be determined unambiguously, we compute the codeword index with the
formula index(w0'=") + I(next [— ¢ bits) and output the symbol with this
index. If codewords with different lengths have prefix «, we grab the next
k — t bits from the input stream, where k is the maximal possible codeword
lengrth. If £ —¢ < 3 decoding proceeds with use of a further decoding table.
If £ —1t > 3 decoding proceeds with length-search tree method, similar to
one described in the previous section, except that we know already, that the

codeword length is greater than ¢ and smaller than k. The data structure,
neseccary for improved look-up decoding, can be implemented as a table of
records, each record contains the length field, value field and type field. Type
field specifies which type of decoding should be applied to the given sequence.
Length field contains the length of the current codeword, if codeword length
is less than ¢ or codeword length can be determined. Value field contains
value of the encoded symbol, if codeword length is less than ¢, index of the
first codeword with given prefix, if codeword length can be determined, or
reference to corresponding search tree or decoding table, if decoding should
be continued with a length search tree or decoding table respectively. An
algorithm for construction of the look-up table is given below.

Procedure ContructDecodingTable()
begin
code:=first codeword;
while (lengthl[code] < t)
begin
for (all strings w of length t such,
that code is prefix of t)
begin
look-up_table[w].value:=value[code];
look-up_table[w].length:=length[codel;
look_up_table[w] .type:=DIRECT_DECODE;
end
code= next code;
end

i:=lengthlcode];
w:=first unprocessed string of length t;
while (i <= maximum code length)
begin
for (all unprocessed strings w, such that all codewords
with prefix w have length i)
begin
look-up_table[w].value:=index of first codeword
with prefix w;

10

look-up_table[w].length:= i-t;
look_up_table[w] .type:=SAME_LENGTH;
end
Jj:=1;
w:= next unprocessed string of length t;
while (there are codewords of length j having prefix W)
jr=j+L;
if (j>1) AND (j<t+3)
begin
construct look-up table, containing
all possible endings of w;
look-up_table[w].value:=refernce to this table;
look-up_table[w].length:= j-t-1;
look_up_table[w].type:=NEXT_TABLE;
end
if (j>1) AND (j>t+3)
begin
construct length search tree for codewords
with prefix w;
look—up_table[w].value:=refernce to this tree;
look-up_table[w].type:= SEARCH_TREE;
end
if (j=1)
1:=1+1;
else
1:=7;
end while
end

Algorithm 2. Construction of the data structure for
the improved look-up method.

The construction of this data structured can be done in time, linear on num-
ber of symbols in the source alphabet.

11

5 Experimental results

The described decoding methods were tested on files from Calgary text com-
pression corpus.(see [2]). Table 1 compares the results of decoding,using
binary search tree with decoding, using standard Huffman tree. Table 2
compares decoding with standard Huffman tree and decoding using opti-
mal binary search tree. The third column displays the average length of
Huffman code, which corresponds to number of comparisons, using decoding
method with a standard Huffman tree. Sixth column displays the depth of
binary length search tree, which corresponds to number of comparisons in
presented method. Fourth and seventh columns give the number of opera-
tions per codeword in both methods. We assumed that for standard Huffman
tree method we need 5 operations for each traversed tree node (namely, we
should check if current node is a leaf node, read the next bit, increment po-
sition in the bit stream,check whether bit’s value is 1 or 0 and descend on
one level in tree) and for presented method we need 3 operations (check if
node is a leaf,compare its value with critical value of the node and descend
one level deeper) plus 7 additional arithmetic operations. Fifth and eighth
columns contain information about the size of respective tree structures for
both methods.

Tables 3 and 4 show the results of encoding the same files, but instead
of assigning a code to every single symbol, sequences of two symbols are
encoded. Table 3 and 4 show results for standard and optimal binary length
search respectively. The time and memory advantages grow dramatically
with the growth of alhabet.

12

File File Standard tree Length search tree

Size | Average | Number | Tree | Average | Number | Tree

depth of op-s | size | depth of op-s | size

bib 111261 5.23 26.15 161 3.69 18.07 25
bookl | 768771 4.56 22.8 163 4 19 33
book2 | 610856 4.82 24.1 191 3.84 18.52 27
objl 21504 5.97 29.85 511 3.40 17.2 21
obj2 | 246814 6.29 31.45 511 3.60 17.8 25
paperl | 53161 5.01 25.05 189 3.67 18.01 25
paper2 | 82199 4.63 23.15 181 3.74 18.22 27
paper3 | 46526 4.68 23.4 167 3.23 16.69 21
paperd | 13286 4.73 23.65 159 3.62 17.86 23
paperd | 11954 4.97 24.85 181 3.68 17.04 23
paper6 | 38105 5.04 25.2 185 3.63 17.89 25
pic 513216 1.66 8.3 317 3.12 16.36 29
proge | 39611 5.23 26.15 183 3.62 17.86 23
progl | 71646 4.80 24.0 173 3.75 18.25 23
progp | 49379 4.89 24.45 177 3.58 17.74 25

Table 1:

13

File File Standard tree Length search tree

Size | Average | Number | Tree | Average | Number | Tree

depth of op-s | size | depth of op-s | size

bib 111261 5.23 26.15 161 2.67 15.01 25
bookl | 768771 4.56 22.8 163 2.46 14.38 33
book2 | 610856 4.82 24.1 191 2.52 14.56 27
objl 21504 5.97 29.85 511 3.03 16.09 21
obj2 | 246814 6.29 31.45 511 3.10 16.30 25
paperl | 53161 5.01 25.05 189 2.62 14.86 25
paper2 | 82199 4.63 23.15 181 2.45 14.35 27
paper3 | 46526 4.68 23.4 167 2.49 14.47 21
paperd | 13286 4.73 23.65 159 2.51 14.53 23
paperd | 11954 4.97 24.85 181 2.62 14.86 23
paper6 | 38105 5.04 25.2 185 2.66 14.98 25
pic 513216 1.66 8.3 317 1.33 10.99 29
proge | 39611 5.23 26.15 183 2.64 14.92 23
progl | 71646 4.80 24.0 173 2.41 14.23 23
progp | 49379 4.89 24.45 177 2.75 15.25 25

Table 2:

14

File File Standard tree Length search tree

Size | Average | Number | Tree | Average | Number | Tree

depth of op-s size depth of op-s | size
bib 111261 8.58 42.9 2645 3.62 17.86 23
bookl | 768771 8.14 40.7 3267 3.95 18.85 29
book2 | 610856 8.56 42.8 HATT 3.94 18.82 27
objl 21504 9.17 45.85 6127 3.26 16.78 17
obj2 | 246814 8.93 44.65 | 12339 3.78 18.34 27
paperl | 53161 8.64 43.2 2705 3.53 17.59 21
paper2 | 82199 8.13 40.65 2243 3.45 17.35 21
paper3 | 46526 8.23 41.15 2021 3.46 17.38 21
paperd | 13286 8.13 40.65 1409 3.07 16.21 17
paperd | 11954 8.43 42.15 1623 3.00 16.00 15
paper6 | 38105 8.61 43.05 2435 3.44 17.32 19
pic 513216 2.38 11.9 4641 3.11 16.33 25
proge | 39611 8.80 44.0 2885 3.42 17.26 19
progl | 71646 8.00 40.0 2063 3.67 18.01 23
progp | 49379 8.06 40.3 2507 3.52 17.56 23

Table 3:

15

File File Standard tree Length search tree

Size | Average | Number | Tree | Average | Number | Tree

depth of op-s size depth of op-s | size
bib 111261 8.58 42.9 2645 2.96 15.88 23
bookl | 768771 8.14 40.7 3267 3.02 16.06 29
book2 | 610856 8.56 42.8 HATT 3.17 16.51 27
objl 21504 9.17 45.85 6127 3.19 16.57 17
obj2 | 246814 8.93 44.65 | 12339 3.63 17.89 27
paperl | 53161 8.64 43.2 2705 3.08 16.24 21
paper2 | 82199 8.13 40.65 2243 2.99 15.97 21
paper3 | 46526 8.23 41.15 2021 2.99 15.97 21
paperd | 13286 8.13 40.65 1409 2.92 15.76 17
paperd | 11954 8.43 42.15 1623 2.89 15.67 15
paper6 | 38105 8.61 43.05 2435 3.04 16.12 19
pic 513216 2.38 11.9 4641 1.56 11.68 25
proge | 39611 8.80 44.0 2885 3.06 16.18 19
progl | 71646 8.00 40.0 2063 3.21 16.63 23
progp | 49379 8.06 40.3 2507 3.26 16.78 23

Table 4:

Table 5 contains results of decoding the Huffman codes with table look-up
method with ¢ = 8. The same set of files combined as in table 3 and 4
was used. in the standard table-lookup method we read ¢ bits and then, if
current codeword length is greater than ¢, read following bits until current
codeword is read, in a way, similar to algorithm described by Connell(s.
section 2).Improved look-up method uses the algorithm described in section
4.

Improved look-up method gives the best results in case of decoding data
with large source alphabet when memory is limited. In case when memory
resources are extremely limited, optimal length search tree seems to be the
best choice.

References

[1] T. Boutell et. al. PNG(Portable Network Graphics) Specifications, RFC

16

File File | Alphabet Number of operations
size size Look-up | Improved look-up
method method
bib 111261 1324 11.73 7.95
bookl | 768771 1634 10.34 7.54
book2 | 610856 2739 11.92 7.74
objl 21504 3064 19.34 9.06
obj2 | 246814 6170 16.13 8.24
paperl | 53161 1353 11.98 7.85
paper2 | 82199 1122 10.23 7.30
paper3 | 46526 1011 10.46 7.47
paperd | 13286 705 10.16 7.25
paperb | 11954 812 11.18 7.62
paper6 | 38105 1218 11.81 7.82
pic 513216 2321 7.37 5.99
progc | 39611 1443 12.73 8.04
progl | 71644 1032 10.44 7.53
progp | 49379 1254 12.04 7.95
Table 5:

2083,ftp://wuarchive.wustl.edu/doc/rfc/rfc2083.txt, March 1997.

Bell T.C., Cleary J.G., Witten I.H., Text Compression. Prentice Hall,
Englewood Cliffs, NJ, 1990.

Kuo-Liang Chung. Efficient Huffman decoding. Information Processing

Letters, 61(2),1997, 97-99.

Connell J.B. A Huffman-Shannon-Fano Code. Proc. of IEEE
61,7(July),1973, 1046-1047.

P. Deutsch, Deflate compression data format specifications, RFC
1951,ftp:/ /ftp.isi.edu/in-notes/rfc1951.txt, May 1996.

Hirschberg D.S., Lelewer D.A. Efficient decoding of prefix codes, Com-
munication of the ACM 33(1990),449-459.

17

7]

[10]

[11]

[12]

[13]

[14]

T.C.Hu, A.C. Tucker. Optimal computer search trees and variable-
length alphabetical codes.. SIAM Journal on Applied Mathematics,
21(1971), 514-532.

D.A.Huffman. A method for construction of minimum redundancy

codes. Proc. IRE, 40(1951),1098-1101.

Katona G.H.O., Nemetz T.O.H. Huffman codes and self-information,
[EEE Transactions on Information Theory, 11(1965),284-292.

Shmuel T.Klein. Space- and time- efficient decoding with canonical Huff-
man trees. 8th Annual Symposium on Combinatorial Pattern Match-
ing,Aarhus,Denmark,30 June-2 July 1997, Lecture Notes in Computer
Science,vol. 1264, 65-75.

Lelewer D.A., Hirschberg D.S., Data compression, ACM Computing
Surveys, 19(1987), 261-296.

Sieminski A., Fast decoding of the Huffman codes, Information Process-

ing Letters, 26(1988), 237-241.

Schwartz E.S. Kallick B., Generating a canonical prefix encoding, Com-

munications of the ACM 7(1964), 166-169.

Gregory K.Wallace. JPEG still image compression standard., Commu-
nications of the ACM, 34(1991),46-58.

18

