
On E�cient Decoding of Hu�man CodesYakov Nekritch �AbstractTwo new algorithms for space- and time- e�cient decoding of min-imum redundancy codes with numerical sequence property are investi-gated. Both algorithms are particularly e�cient in case of large sourcealphabets and limited memory resources. Practical experiments showa reduction of up to 50 % and more in the number of operations.

�Institut f�ur Informatik V, Universit�at Bonn, R�omerstr. 164, D-53117, Bonn, Germany,email: yasha@cs.uni-bonn.de 1



1 IntroductionAlgorithm for construction of Hu�man codes, i.e. pre�x codes with minimumredundancy, was �rst presented by Hu�man [8]. Hu�man coding is nowa-days one of the most popular and widely used compression techniques. It isa part of many data format speci�cations, such as JPEG [14] and PNG [1]image formats and de
ate compression method [5]. For a number of applica-tions, we are specially interested in minimizing time and memory resourcesfor data decompression, while compression can take signi�cantly more timeand memory. An example of such application is a large information retrievalsystem, when compression is done only once and decompression should beperformed for every information retrieval. Another example is data trans-mission, when the sender is a fast machine and the receiver is a much slowerone and, possibly, has very limited memory resources.Several decompression schemes for Hu�man codes were o�ered. Table-lookup scheme allows decoding in constant time, however memory require-ments are very high. Binary tree representation of Hu�man codes allows de-compression in time proportional to codeword length. Chung [3] also presentsan algorithm working in O(l) time. The code has a numerical sequence prop-erty if codewords of equal length form a consecutive sequence of integers. Forany Hu�man code an equivalent code, satisfying this property can be easilyconstructed. Moreover, some compression schemes (for instance, JPEG) useHu�man codes with numerical sequence property. Connell [4] constructed analgorithm decoding Hu�man codes with numerical sequence property in O(c)time, where c is the number of di�erent codeword lengths. Another e�cientdecoding algorithm was presented by Klein [10]. In this paper a decodingscheme is presented allowing the decoding of Hu�man codes in O(log c) time.Moreover this procedure requires very little memory and at most one readingoperation for any codeword is necessary. Besides that, an improvement fortable look-up decoding method is presented.2 Previous methodsThroughout this paper the following notation will be used.Let lmax denote thelength of the longest codeword and lavg denote average codeword length.Let� denote a binary sequence and �t denote a binary sequence of length t.Let2



I(�) denote an integer, whose binary representation is �. We will say thatbinary sequence � is lesser than � if an integer corresponding to � is lesserthan integer,corresponding to �. Let minword(l) be the least codeword oflength l in the given Hu�man code. Let first(l) denote the index of the �rstcodeword of length l.Decoding the Hu�man codes using decoding tables was considered bySieminski [12]. The idea is to build a table with entries, corresponding to allbinary sequences of length lmax, where lmax is the length of the longest code-word. Each entry in the table, which corresponds to binary sequence w�,where w is some codeword, contains information on symbol corresponding tow and the length of w. On each step of the algorithm we read a sequence oflmax yet unprocessed bits. We output symbol, corresponding to codeword,which is a pre�x of this sequence. This construction allows decoding of Hu�-man code for a single codeword in constant time. Besides this, we don'thave to process the input stream bit-by-bit, as in other methods.The maindrawback of this method is high memory requirements.The standard Hu�man tree, which was used for constructing Hu�mancodes, can be used for decoding. To decode a single codeword, we startat the root node and traverse the Hu�man tree according to the read bit se-quence. At the beginning of the decoding the current node is the root node.We check if the current node is a leave. If yes, the decoding is over and weoutput the symbol, corresponding to the leave. Otherwise, we read the nextbit from the input stream.If the next bit is 0, we assign the left child of thecurrent node. If the next bit is 1 the current node is the right child of thecurrent node. The average number of operations for the decoding of a singlecodeword is O(lavg) In general case, we should transmit the structure of thechosen Hu�man tree, which leads to increase of the size of compressed �le.This increase is negligible in case of large size of compressed data, howeverit can be important in case of relatively small �les to be compressed. Chungsuggests a method of reducing storage overhead. Instead of transmittingthe tree structure he suggests transmitting the array,which is su�cient forcorrect decoding of Hu�man codes.Another way to reduce the storage overhead is to choose for compressionprocess the Hu�man trees with some additional properties. The frequentchoice in many applications is the canonical tree, de�ned by Schwartz andKallick [13]. One property of the canonical tree is that if we list leavesleaves of the tree in pre-order, the leaves appear in non-decreasing order of3



their depth. A canonical tree can be unambiguously speci�ed by the string< n1; n2; :::; nlmax >, where ni denotes number of codewords of lengths i,thus reducing the storage overhead for specifying the tree shape. Connell [4]describes the algorithm, allowing the decoding in O(c) time. The algorithmuses the numerical property of canonical tree, i.e. the fact that the code-words of the same length are binary reprersentations of consecutive integers.Therefore after reading l bits we can determine, whether we read a codewordof length l, by comparing the integer value of l read bits with the value oflast codeword of length l.Klein [10] presents an algorithm for fast decoding of canonical Hu�mancodes, using the special data structure. The data structure is a binary treecalled a sk-tree. The algorithm makes use of the numerical sequence propertyof canonical Hu�man codes. Let first(l) be the index of �rst codeword oflength l in the full list of all codewords. Let I(w) be the integer value ofcodeword w. Then for any codeword w of length lfirst(l) + (I(w)� I(first(l))) (1)is an index of codeword w in the full list of all codewords. The idea of thealgorithm is to read single bits untill the length of the codeword, which iscurrently being read is determined. The remainning bits of the codeword arethen read at once and its index in the list is determined by the formula givenabove. The sk-tree is a data structure used for detemining the length of thecurrent codeword as soon as it is possible. External paths of sk-tree con-stitute all posible binary sequences, necessary for uniquely determining thecodeword lengths. The average number of operations per codeword neces-sary for decoding a single codeword with this algorithm can be approximatelyestimated by: Xi2leaves in sk-tree(d(i)2�d(i))the savings in space and time depend on and signi�cantly vary with concretesize and structure of the Hu�man tree. In the worst case there is no saving.Prctical experiments on large text databases show reduction of up to 504



3 Length search tree decodingIn this work a space- and time-e�cient algorithm for decoding of Hu�mancodes with numerical sequence property is presented. The algorithm requiresmaximum dlog2(c)e comparisons, where c is the number of di�erent codewordlengths. The space requirements for the corresponding data structure is O(c),which makes the algorithm very practical for the case, when the number ofsymbols is very high and memory resources are limited. The algorithm canbe e�ciently applied to Hu�man codes with di�erent shapes of Hu�mantree. Besides that, the algorithm avoids single bit manipulation,which leadsto further reduction of decoding time. The algorithm exploits the followingsimple property of Hu�man codes with numerical sequence property.Property 1 For any two codewords w1; w2 in canonical Hu�man code withlengths l1; l2 respectively, if I(w11lmax�l1) < I(w20lmax�l2),then for any othercodewords w01,w02 with lengths l1; l2 respectively I(w011lmax�l1) < I(w020lmax�l2).For ease of description we consider below only the case of canonical Hu�mancodes. However the similar algorithm can be constructed for the general caseof codes with numerical sequence property.Property 2 For any two codewords w1; w2 in canonical Hu�man code withlengths l1; l2 respectively, if l1 < l2 then I(w11lmax�l1) < I(w20lmax�l2).Proof: Let l1; l2; : : : ; ln be the sequence of codeword lengths. Let maxword(l)be the last codeword of length l. In canonical Hu�man codeminword(l1) = 0and minword(li) = 2li�li�1�(minword(li�1)+ni�1)) and the codewords of thesame length are consecutive integers. Hence maxword(li) = minword(li) +ni � 1. For any codeword length liI(minword(li+1)0lmax�li+1) = I(maxword(li)1lmax�li) + 1. Therefore, for any codeword w1, which length is lesser than l,I(minword(l) << (lmax � l)) > I(w1�lmax�l1), where '<<' is a left shiftoperation. Hence if we read the sequence �lmax , pre�x of which is somecodeword w of length l, then for any l0 > l I(minword(l0) << (lmax � l0)) >I(�). In other words, if we read a sequence of lmax bits from the input5



stream, we need one comparison to determine, whether its pre�x codewordhas length, lesser than l, for any l < lmax.The algorithm works as follows. First a binary sequence of length lmax isread.Then the length of its pre�x codeword is determined, using the abovementioned property of canonical codes, by comparing the value of � with thecritical values for di�erent lengths, where under critical value for length l weunderstand I(minword(l)0lmax�l). Then the index of the codeword is com-puted, using the formula (1). To accelerate the search of the length of pre�xcodeword binary search tree is used. As the decoder doesn't know probabil-ities of di�erent symbols, we'll assume that the probability, that codewordlength equals l is 1=c. In this case, to get the length of the codeword withhelp of the binary search tree we need dlog2(c)e comparisons. Alternatively, ifdecoding time is more important than compression e�ciency, encoder, know-ing the probabilities of codewords, can construct an optimal binary lengthsearch tree and transfer it along with encoded data. Then decoder will needdlog2(c)e comparisons in worst case. The storage overhead for optimal searchtree is O(c). To construct such a tree a c log2(c) time is needed [7].This tree has a following structure. Each internal node N contains thecritical value for some codeword length l. We traverse the tree, taking oneach step left edge of current node, if decoded bit sequence is less than value,stored in current node, and right edge otherwise, until we achieve a leaf node.The leaf node contains the length of pre�x codeword of decoded bit sequence.Description of decoding procedure in pseudocode is given below.Procedure decode()beginN:= root of search tree;w:= integer corresponding to sequence of next n undecoded bits;repeatif (w<N.value)N:=left child of N;else N:=rigth child of N;until (N is a leaf node);length:=N.value; 6



4PPPPPPP�����������3 20PPPPPPP������� ����5����4Figure 1: A tree for length searchindex:=first[length]+(I(first length bits of (w-minvalue[length])) );output symbol[index];endAs example consider the following code:a=000; f=0110; k=10101;b=0010; g=0111; ...c=0011; h=1000; u=11111;d=0100; i=1001;e=0101; j=10100;in this case minvalue[3] = I(000 << 2) = 0; minvalue[4] = I(0010 << 1) =4; minvalue[5] = I(10100) = 20;�rst[3]=1; �rst[4]=2; �rst[5]=10;The search tree T for this code is depicted on �g. 1. Internal nodes aredenoted by squares, leaves are denoted by circles. Internal nodes contain7



critical values for codeword lengths 4 and 5. Leaves contain the lengths ofcodeword. For instance, suppose, that we read sequence 10001. I(10001) >minvalue[4] = 4; I(10001) < minvalue[5] = 20; hence pre�x codewordhas length 4. Therefore, the index of the current codeword is first[4] +((I(10001) �minvalue[4])>> 1) = 2 + ((17 � 4) >> 1) = 8.Using length search tree method we need 2 comprarisons to decode a singlecodeword. Number of comparisons necessary to decode the average code-word with the standard Hu�man tree method is 4.25 (average codewordlength of the code). Number of comparisons used in sk-tree decoding is3*(1/8)+3*2*(1/16)+2*4*(1/16)+3*2*(1/16)+3*4*(1/32)+2*8*(1/32)=2.5 .Besides this, our method avoids bit retrieval operations, which are necessaryon every tree traversal step in other two methods.We assumed, that the root of the tree is not a leaf ( otherwise all codewordshave the same length and we don't need the tree to determine lengths of thecodewords). Therefore our decoding procedure uses in worst case dlog2(c)einteger comparisons and dlog2(c)e checks if the current node is a leaf. Gettingthe sequence of yet unencoded bits can be implemented with a constantnumber of bit-oriented operations, independently of the code length 1. Thesearch tree and supplementary structures require kc bytes of memory, wherek is a small constant, depending on the number of codewords 2.Logarithmic limitations on time mean that worth case decoding time growsvery slowly with growth of the size of source data . Suppose that the algo-rithm requires k comparisons, then the height of corresponding Hu�mantree is 2k. Itis known that if Hu�man tree has a leaf on level d, then theprobability of the corresponding element is less than (1=�)d�1, where � isthe golden ratio. [9]. Therefore the minimal length of source �le should be�2k (the corresponding symbol would appear only once in this �le,and be-sides that, there should be at least one leaf on every other level of the tree,which is a very unlikely situation). The memory requirements are O(2k).For instance, supposed that our algorithm requires 6 comparisons, then the1For instance in C getting the next yet unencoded bits can be implemented with 2 shiftand 1 exclusive OR operations, to get the index number we need one more shift operation.2Again, in C minvalue array would require 2c bytes, if maximum codeword length isless then 16, 4c bytes otherwise, �rst array would require c,2c or 4c bytes if number ofcodewords is less than 28, 216 and 232 respectively.we would need 3c bytes of memory forsearch tree, if number of codeword is less than 28, 6c bytes if number of codewords is lessthan 216 and 12c. 8



minimum source �le length is �64 = 20:693�64 = 244:352 i.e the �le would be atleast 20,911.371 Gigabytes long. Or, in other words, for any �le of size lesserthan 20,911.371 Gigabytes we'll need no more than 6 comparisons to decodethe codeword.For decoding of such �le about 1Kbyte of memory would berequired. Klein [10] argues, the Hu�man trees for distributions of charactersor character pairs in natural languages have depth O(log(n)). In this casethe number of comparisons with length search tree is O(log(log(n))). Theseresults can be further improved, if we store the optimal length search treealong with compressed data.4 Improved decoding with look-up table.In the decoding with the look-up table we �rst try to look-up the code ina table, containing all t-bit sequences. The decoding of the next codewordbegins with reading the sequence of next t bits from the input stream. Ifsome codeword w is a pre�x of the read sequence we output the symbol,corresponding to w, otherwise decoding proceeds, using further tables oranother decoding method, for instance, the method described above, but weknow already that the codeword length is greater than t. In this sectionwe propose an improvement to the look-up table method. To the best ofour knowledge, this method is new. Based on ideas from [10] , we try to getadditional information about the length of the current codeword from its �rstt bits, thus simplifying the decoding. The �rst t bits of the codeword cancontain enough information to determine the codeword length unambiguouslyor to limit the range of codelengths. These ideas are used in the followingway. For decoding of the next codeowrd we �rst read the sequence � ofnext t bits from the input stream. If a certain codeword w is a pre�x ofsequence � we output symbol corresponding to w. Otherwise we try to getinformation about the possible codeword length. If the codeword lengthcan be determined unambiguously, we compute the codeword index with theformula index(w0l�t) + I(next l � t bits) and output the symbol with thisindex. If codewords with di�erent lengths have pre�x �, we grab the nextk � t bits from the input stream, where k is the maximal possible codewordlengrth. If k� t � 3 decoding proceeds with use of a further decoding table.If k � t > 3 decoding proceeds with length-search tree method, similar toone described in the previous section, except that we know already, that the9



codeword length is greater than t and smaller than k. The data structure,neseccary for improved look-up decoding, can be implemented as a table ofrecords, each record contains the length �eld, value �eld and type �eld. Type�eld speci�es which type of decoding should be applied to the given sequence.Length �eld contains the length of the current codeword, if codeword lengthis less than t or codeword length can be determined. Value �eld containsvalue of the encoded symbol, if codeword length is less than t, index of the�rst codeword with given pre�x, if codeword length can be determined, orreference to corresponding search tree or decoding table, if decoding shouldbe continued with a length search tree or decoding table respectively. Analgorithm for construction of the look-up table is given below.Procedure ContructDecodingTable()begincode:=first codeword;while (length[code] < t)beginfor (all strings w of length t such,that code is prefix of t)beginlook-up_table[w].value:=value[code];look-up_table[w].length:=length[code];look_up_table[w].type:=DIRECT_DECODE;endcode= next code;endi:=length[code];w:=first unprocessed string of length t;while (i <= maximum code length)beginfor (all unprocessed strings w, such that all codewordswith prefix w have length i )beginlook-up_table[w].value:=index of first codewordwith prefix w;10



look-up_table[w].length:= i-t;look_up_table[w].type:=SAME_LENGTH;endj:=i;w:= next unprocessed string of length t;while (there are codewords of length j having prefix w)j:=j+1;if (j>i) AND (j<t+3)beginconstruct look-up table, containingall possible endings of w;look-up_table[w].value:=refernce to this table;look-up_table[w].length:= j-t-1;look_up_table[w].type:=NEXT_TABLE;endif (j>i) AND (j>t+3)beginconstruct length search tree for codewordswith prefix w;look-up_table[w].value:=refernce to this tree;look-up_table[w].type:= SEARCH_TREE;endif (j=i)i:=i+1;elsei:=j;end whileendAlgorithm 2. Construction of the data structure forthe improved look-up method.The construction of this data structured can be done in time, linear on num-ber of symbols in the source alphabet.11



5 Experimental resultsThe described decoding methods were tested on �les from Calgary text com-pression corpus.(see [2]). Table 1 compares the results of decoding,usingbinary search tree with decoding, using standard Hu�man tree. Table 2compares decoding with standard Hu�man tree and decoding using opti-mal binary search tree. The third column displays the average length ofHu�man code, which corresponds to number of comparisons, using decodingmethod with a standard Hu�man tree. Sixth column displays the depth ofbinary length search tree, which corresponds to number of comparisons inpresented method. Fourth and seventh columns give the number of opera-tions per codeword in both methods. We assumed that for standard Hu�mantree method we need 5 operations for each traversed tree node (namely, weshould check if current node is a leaf node, read the next bit, increment po-sition in the bit stream,check whether bit's value is 1 or 0 and descend onone level in tree) and for presented method we need 3 operations (check ifnode is a leaf,compare its value with critical value of the node and descendone level deeper) plus 7 additional arithmetic operations. Fifth and eighthcolumns contain information about the size of respective tree structures forboth methods.Tables 3 and 4 show the results of encoding the same �les, but insteadof assigning a code to every single symbol, sequences of two symbols areencoded. Table 3 and 4 show results for standard and optimal binary lengthsearch respectively. The time and memory advantages grow dramaticallywith the growth of alhabet.
12



File File Standard tree Length search treeSize Average Number Tree Average Number Treedepth of op-s size depth of op-s sizebib 111261 5.23 26.15 161 3.69 18.07 25book1 768771 4.56 22.8 163 4 19 33book2 610856 4.82 24.1 191 3.84 18.52 27obj1 21504 5.97 29.85 511 3.40 17.2 21obj2 246814 6.29 31.45 511 3.60 17.8 25paper1 53161 5.01 25.05 189 3.67 18.01 25paper2 82199 4.63 23.15 181 3.74 18.22 27paper3 46526 4.68 23.4 167 3.23 16.69 21paper4 13286 4.73 23.65 159 3.62 17.86 23paper5 11954 4.97 24.85 181 3.68 17.04 23paper6 38105 5.04 25.2 185 3.63 17.89 25pic 513216 1.66 8.3 317 3.12 16.36 29progc 39611 5.23 26.15 183 3.62 17.86 23progl 71646 4.80 24.0 173 3.75 18.25 23progp 49379 4.89 24.45 177 3.58 17.74 25Table 1:
13



File File Standard tree Length search treeSize Average Number Tree Average Number Treedepth of op-s size depth of op-s sizebib 111261 5.23 26.15 161 2.67 15.01 25book1 768771 4.56 22.8 163 2.46 14.38 33book2 610856 4.82 24.1 191 2.52 14.56 27obj1 21504 5.97 29.85 511 3.03 16.09 21obj2 246814 6.29 31.45 511 3.10 16.30 25paper1 53161 5.01 25.05 189 2.62 14.86 25paper2 82199 4.63 23.15 181 2.45 14.35 27paper3 46526 4.68 23.4 167 2.49 14.47 21paper4 13286 4.73 23.65 159 2.51 14.53 23paper5 11954 4.97 24.85 181 2.62 14.86 23paper6 38105 5.04 25.2 185 2.66 14.98 25pic 513216 1.66 8.3 317 1.33 10.99 29progc 39611 5.23 26.15 183 2.64 14.92 23progl 71646 4.80 24.0 173 2.41 14.23 23progp 49379 4.89 24.45 177 2.75 15.25 25Table 2:
14



File File Standard tree Length search treeSize Average Number Tree Average Number Treedepth of op-s size depth of op-s sizebib 111261 8.58 42.9 2645 3.62 17.86 23book1 768771 8.14 40.7 3267 3.95 18.85 29book2 610856 8.56 42.8 5477 3.94 18.82 27obj1 21504 9.17 45.85 6127 3.26 16.78 17obj2 246814 8.93 44.65 12339 3.78 18.34 27paper1 53161 8.64 43.2 2705 3.53 17.59 21paper2 82199 8.13 40.65 2243 3.45 17.35 21paper3 46526 8.23 41.15 2021 3.46 17.38 21paper4 13286 8.13 40.65 1409 3.07 16.21 17paper5 11954 8.43 42.15 1623 3.00 16.00 15paper6 38105 8.61 43.05 2435 3.44 17.32 19pic 513216 2.38 11.9 4641 3.11 16.33 25progc 39611 8.80 44.0 2885 3.42 17.26 19progl 71646 8.00 40.0 2063 3.67 18.01 23progp 49379 8.06 40.3 2507 3.52 17.56 23Table 3:
15



File File Standard tree Length search treeSize Average Number Tree Average Number Treedepth of op-s size depth of op-s sizebib 111261 8.58 42.9 2645 2.96 15.88 23book1 768771 8.14 40.7 3267 3.02 16.06 29book2 610856 8.56 42.8 5477 3.17 16.51 27obj1 21504 9.17 45.85 6127 3.19 16.57 17obj2 246814 8.93 44.65 12339 3.63 17.89 27paper1 53161 8.64 43.2 2705 3.08 16.24 21paper2 82199 8.13 40.65 2243 2.99 15.97 21paper3 46526 8.23 41.15 2021 2.99 15.97 21paper4 13286 8.13 40.65 1409 2.92 15.76 17paper5 11954 8.43 42.15 1623 2.89 15.67 15paper6 38105 8.61 43.05 2435 3.04 16.12 19pic 513216 2.38 11.9 4641 1.56 11.68 25progc 39611 8.80 44.0 2885 3.06 16.18 19progl 71646 8.00 40.0 2063 3.21 16.63 23progp 49379 8.06 40.3 2507 3.26 16.78 23Table 4:Table 5 contains results of decoding the Hu�man codes with table look-upmethod with t = 8. The same set of �les combined as in table 3 and 4was used. in the standard table-lookup method we read t bits and then, ifcurrent codeword length is greater than t, read following bits until currentcodeword is read, in a way, similar to algorithm described by Connell(s.section 2).Improved look-up method uses the algorithm described in section4.Improved look-up method gives the best results in case of decoding datawith large source alphabet when memory is limited. In case when memoryresources are extremely limited, optimal length search tree seems to be thebest choice.References[1] T. Boutell et. al. PNG(Portable Network Graphics) Speci�cations, RFC16



File File Alphabet Number of operationssize size Look-up Improved look-upmethod methodbib 111261 1324 11.73 7.95book1 768771 1634 10.34 7.54book2 610856 2739 11.92 7.74obj1 21504 3064 19.34 9.06obj2 246814 6170 16.13 8.24paper1 53161 1353 11.98 7.85paper2 82199 1122 10.23 7.30paper3 46526 1011 10.46 7.47paper4 13286 705 10.16 7.25paper5 11954 812 11.18 7.62paper6 38105 1218 11.81 7.82pic 513216 2321 7.37 5.99progc 39611 1443 12.73 8.04progl 71644 1032 10.44 7.53progp 49379 1254 12.04 7.95Table 5:2083,ftp://wuarchive.wustl.edu/doc/rfc/rfc2083.txt, March 1997.[2] Bell T.C., Cleary J.G., Witten I.H., Text Compression. Prentice Hall,Englewood Cli�s, NJ, 1990.[3] Kuo-Liang Chung. E�cient Hu�man decoding. Information ProcessingLetters, 61(2),1997, 97-99.[4] Connell J.B. A Hu�man-Shannon-Fano Code. Proc. of IEEE61,7(July),1973, 1046-1047.[5] P. Deutsch, De
ate compression data format speci�cations, RFC1951,ftp://ftp.isi.edu/in-notes/rfc1951.txt, May 1996.[6] Hirschberg D.S., Lelewer D.A. E�cient decoding of pre�x codes, Com-munication of the ACM 33(1990),449-459.17



[7] T.C.Hu, A.C. Tucker. Optimal computer search trees and variable-length alphabetical codes.. SIAM Journal on Applied Mathematics,21(1971), 514-532.[8] D.A.Hu�man. A method for construction of minimum redundancycodes. Proc. IRE, 40(1951),1098-1101.[9] Katona G.H.O., Nemetz T.O.H. Hu�man codes and self-information,IEEE Transactions on Information Theory, 11(1965),284-292.[10] Shmuel T.Klein. Space- and time- e�cient decoding with canonical Hu�-man trees. 8th Annual Symposium on Combinatorial Pattern Match-ing,Aarhus,Denmark,30 June-2 July 1997, Lecture Notes in ComputerScience,vol. 1264, 65-75.[11] Lelewer D.A., Hirschberg D.S., Data compression, ACM ComputingSurveys, 19(1987), 261-296.[12] Sieminski A., Fast decoding of the Hu�man codes, Information Process-ing Letters, 26(1988), 237-241.[13] Schwartz E.S. Kallick B., Generating a canonical pre�x encoding, Com-munications of the ACM 7(1964), 166-169.[14] Gregory K.Wallace. JPEG still image compression standard., Commu-nications of the ACM, 34(1991),46-58.
18


