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Abstract

The bandwidth problem is the problem of numbering the vertices of a given
graph G so that the maximum difference between the numbers of adjacent vertices is
minimal. The topological bandwidth problem is a natural extension of the bandwidth
problem. It is the problem of numbering the vertices of a homeomorphic image of
a given graph G so that the maximum difference between the numbers of adjacent
vertices is minimal, over all numberings and images. Both problems have a long
history and they are known to be N P-hard [Pa 76], [MPS 85].

In this paper we present the first PT AS for the topological bandwidth of trees.
Furthermore we construct n®-approximation algorithms for the bandwidth of graphs
with minimum degree n?, for any &, ¢ > 0.
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1 Introduction

Graph layout problems are a collection of simple graph problems, motivated as
models for VLSI layout problems: given a set of modules, in VLSI we have the
problem to place these modules on a board in a non overlapping manner and wiring
the terminals on the different modules according to a given wiring specification and
in such a way that the wires do not interfere among them. In the modification as
a graph problem we have an input graph G = (V, F') on n vertices. A layout or
numbering of G is a one-to-one mapping f : V — {1,....,n}. Some well known
layout problems are the following;:

Given a graph G = (V, F), find a layout f that

Bandwidth Problem: minimizes the maximum of | f(u) — f(v)| over all {u,v} €

L.

Topological Bandwidth Problem: minimizes the bandwidth of G’ over all G’
that are a homeomorphic image of .

Minimum Cut Problem: minimizes the maximum over all 7,1 < i < n, of the
number of edges that cross over ¢.

In this paper we study the bandwidth and the topological bandwidth problem.
Despite their very long history and their technical importance, it is not much known
about efficient approximability of these problems.

Formally, the bandwidth minimization problem is defined as follows. Let G' =
(V, IY) be a simple graph on n vertices. A numbering (layout) of G is a one-to-one
mapping f:V — {1,...,n}. The bandwidth B(f,G) of this numbering is defined
by

B, G) = max{| f(v) — f(w)| : {v, w} € E},

the maximal distance between adjacent vertices in GG corresponding to f.

The bandwidth B(G) is then
B(G) = min{B(f,G) : f is a layout of G}

Clearly the bandwidth of GG is the maximal bandwidth of its components. Therefore,
we assume without loss of generality that the input graph is connected. There is also
a reformulation of the bandwidth problem in the manipulation of sparse matrices.
Let A = (a;;) be a matrix. One can define the graph G(A) to be the graph with the
adjacency matrix A: a;; # 0 if and only if {7, j} € E/(G(A)). G(A) has bandwidth
b if and only if there is a permutation matrix P such that in PAP? all nonzero
entries appear within b of the main diagonal. In this case A has bandwidth b.
The problem of constructing the bandwidth of a graph is N P-hard [Pa 76],
even for trees with maximum degree 3 [GGJK 78]. There are only few cases where
we can construct the optimal layout in polynomial time. Saxe [Sa 80] designed an
algorithm which decides whether a given graph has bandwidth at most k& in time
O(n*+1) by dynamic programming. His algorithm can be turned into a construction
algorithm of the optimum layout. Bandwidth two can be checked in linear time
[GGJK 78]. Smithline [Sm 95] (see also [Ch 88]) proved that the bandwidth of the
complete k-ary tree Ty 4 with d levels and k% leaves is exactly [k(k?—1)/(k—1)(2d)].
The proof is constructive and entails a polynomial time algorithm for this problem.



The topological bandwidth is a natural generalization of the bandwidth. A
graph G’ is said to be a homeomorphic image of a graph G if G’ can be obtained
from GG by subdividing edges in G with an arbitrary number of degree two vertices.
The topological bandwidth of G is formally defined by

TB(G) = min B(G)
G’ is a homeomorphic image of G

This problem is also known to be N P-complete [MPS 85]. For some special cases
it is solvable in polynomial time [MPS 85]: binary trees in time O(nlogn), topo-
logical bandwidth k& can be checked in time O(n*) (See Theorem 2.1), topological
bandwidth 2 in linear time. As the bandwidth the topological bandwidth has also
an interesting sparse matrix interpretation. Let A be a matrix arising from a linear
system a;x = b;. It is possible that the bandwidth of this matrix is quite large,
meaning that there is no permutation matrix P such that PAP?! has all its nonzero
entries close to its diagonal. To reduce the bandwidth we may replace a term a;;;
by a new variable y and add a new equation of the form a;;2; = y which has the
same effect as adding a degree 2 vertex into the edge {7, j} of G(A).

The minimum cut problem is defined as follows. Let f be alayout. The cutwidth
cw(f,G) of this layout for G is

cw(f.G) = max |{{v,w} € B(G)|f(v) i< flw)}]
The modified cutwidth mew(f,G) of this layout for G is

mew(f.G) = max |{{o,w} € B(G)|f(v) <i < flw)}]
The (modified) cutwidth of G is defined as

ew(G) = min cw(f,G) and mew(G) = minmew(f, G).

The problem is N P-complete, even for planar graphs with maximum degree 3
[Ga 77] but in polynomial time solvable for trees [Ya 85] (See Theorem 2.6).

The design of approximation algorithms for N P-hard optimization problems
became an important field of research in the last decade. In the best of situations
we are able to find approximation algorithms which work in polynomial time and
approximate optimal solutions within an arbitrary given constant. Such (meta-
) algorithms are called polynomial time approximation schemes (PTASSs), cf.eg.,
[Ho 97].

In this paper we present the first PT AS for the topological bandwidth of trees.
Furthermore we construct n®-approximation algorithms for the bandwidth of graphs
with minimum degree 7°, for any &, € > 0. For the general bandwidth problem there
are two approximation algorithms known:

Feige [Fe 98] An O(log!'/? n)-approximation algorithm and
Blum, Konjevod, Ravi and Vempala [BKRV 98] an O(y/n/B(G) logn)-ap-
proximation algorithm.

While the approximation-ratio of our algorithm is not as good as the approxi-
mation ratio of [Fe 98], for graphs with minimum degree n° it will be better than
the approximation ratio of [BKRV 98].



It is a very surprising fact that there are PT ASs for the topological bandwidth
problem on trees, since there is no such algorithm possible for the related bandwidth
problem on trees. Blache, Karpinski and Wirtgen [BKW 98] showed that there is
no 4/3-approximation algorithm for the bandwidth problem, unless P = N P.

The paper is organized as follows. In Section 2 we develop an approximation
scheme for the topological bandwidth of trees, by relating the topological bandwidth
to the cutwidth. In Section 3 we use random sampling techniques of Dessmark,
Dorgerloh, Lingas and Wirtgen [DDLW 98] to construct spanner like trees. By
using an approximation algorithm for the Bandwidth of h(k)-trees [HM 97] we
get good approximations for the bandwidth on graphs with guaranteed minimum
degree.

2 A PTAS for the Topological Bandwidth
Problem on Trees

For a constant k it is possible to check whether the topological bandwidth of a given
graph is k or not. This is done by a modification of the dynamic programming
algorithm given in [GS 84] and [Sa 80], which shows that deciding whether a graph
G with n vertices has bandwidth £ € O(1) can be checked in time O(n*).

Theorem 2.1 ([MPS 85]) For all k > 3, it is possible to recognize graphs with
topological bandwidth k in time O(nk) For k = 2, it can be done in linear time.
We can construct such a layout in the same time bounds.

We use this result in our approximation algorithm for the case that the band-
width of the input graph is small.

2.1 Cutwidth and Topological Bandwidth of Trees

In this section we relate the topological bandwidth problem to the cutwidth prob-
lems.

Lemma 2.2 ([MPS 85]) For any graph G we have
cw(G) > TB(G).
Especially if G is a tree.

Proor: We show how to construct for any cutwidth layout f of G a layout f’
and a homomorphic image G’ of G, such that

cw(f,G) > B(f',&).
Choose a subgraph G of GG as follows

1. C=10

2. Choose an edge {u, v} such that f(u) < f(v) and u is the smallest vertex with
f(u) > f(w) for any vertex w which is contained in an edge of C'. Put {u,v}
into C'. If there is no such edge, stop.
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Clearly, the graph G; = G[C] has cutwidth 1. Also the graph G — Gy satisfies
cw(f,G —Gh) = cw(f,G) — 1. Assume, that ¢ is the least number with

[{{u, v} € B(G = G[f(0) <1< f(0)}] = cw(f, G).

The edges {u,v} in G with f(u) <@ < f(v) are not in Gy. From the second step
we know that there is no edge {u,v} in G with f(u) = 7 < f(v). Thus there are
cw(f,G) edges {u, v} with f(u) < i< f(v). Now we have

{{u, v} € BE(G = Gy)f(u) <i—1< f(o)}| = cu(f,G).

This is a contradiction to the minimality of i.

Repeat the above process to partition G into graphs Gy, Gg, ..., Gey(ys,G), such
that cw(f,G;) = 1 for all i = 1,...,cw(f,G). Construct the refinement G’ of G
and the layout f’ of G’ as follows. For any edge {u,v} in G; with f(u) < f(v),
subdivide {u, v} into a path u = wug, u1, ..., us = v of f(v)— f(u)+ 1 vertices. Define

flug) = cwlf,G)(flw)+5)+i-1 j=0,...f(v) = f(u).

Clearly f’is a proper layout. It easy to see, that B(f',G’") = cw(f,G). Thus we
have cw(G) > TB(G). |

Corollary 2.3 For any cutwidth layout [ of a graph G, we can construct in poly-
nomial time a homeomorphic image G' and layout [’ of G', such that

cw(f,G) > B(f',G).

ProoF: We have to check the running time of the algorithm included in Theorem
2.2. Let be n the number of vertices of (.
cw(f,G) is at most O(n?). Thus we have at most O(n?) graphs GG;. For each
graph we have at most O(n?) iterations of cost O(n?). Therefore the construction
of G' and f’ is polynomial in n. [ ]
Makedon et al. improved this bound by relating the topological bandwidth to
the modified cutwidth

Lemma 2.4 ([MPS 85])
TB(G) <mew(G) +1

Their proof gives a polynomial time algorithm, which finds for any modified
cutwidth layout f of a graph (¢, a homeomorphic image G’ and layout f’ of G’,
such that

B(f',G") < mew(G) + 1.

However, this gives the same bound as in Theorem 2.2, since mew(G) < cw(G) — 1.
Theorem 2.5 ([Ch 85]) For any tree T the following inequality holds:
TB(T) < cw(T) < TB(T) +log TB(T) + 2.
For trees the modified cutwidth problem is polynomial solvable.

Theorem 2.6 ([Ya 85]) There is an O(nlogn) time algorithm, which finds for
any tree T' a layout f, such that mew(f,T) = mecw(T).



2.2 The Scheme

Theorem 2.7 There is a PTAS for the topological bandwidth problem on trees.

Proor: Let be T the input tree with n vertices and (1 + €) the desired approxi-
mation ratio.

First we run the algorithm of Theorem 2.6 to construct in polynomial time a
layout f, such that mecw(f,T) = mcw(T). Using the Algorithm of Lemma 2.4, we
get a layout f’ for a homeomorphic image T’ of T', such that

B(f',T") < mecw(T)+1 (Lemma 2.4)
< cw(T)
< TB(T)+4logTB(T)+2 (Theorem 2.5)
logTB(T) + 2
= T(T))TB(T)
Observe that for % < ¢, we have the desired approximation bound. It

is easy to see, that the solution of 10th+2 < € is a constant ¢(¢) only dependent of e.

Run the algorithm of Theorem 2.1 to check in time O(n!()), whether the tree T
has topological bandwidth at most t(€) or not. If not, TB(f',T") < (14 ¢)TB(T).
Otherwise we construct with this algorithm in the time O(n*(9) such a layout.

u

3 An Approximation Algorithm for Graphs
with Guaranteed Minimum Degree

First we state some Chernoff like bounds, which can be found in standard books

(See e.g. [H 64] [MR 95]).

Lemma 3.1 Let be X;, ¢ = 1,..., k independent random variables such that 0 <
X; <1. Let X =3, X; and p = F[X] then

(a) Pr{[X — pu| > p] < 2exp(—p/3).

(b) Pr[X < (1 —8)u] < exp(ué?/2).

We need for our approximation algorithm on non sparse graphs as a subroutine
an approximation algorithm for a class of trees, the so called h(k)-trees: given any
tree vertex v, the depth depth difference of any two nonempty subtrees rooted at
v is bounded by a constant k. Formally a tree T is a generalized height balanced-
or h(k)-tree, whenever:

1. k is a nonnegative integer, and

2. if a vertex v of T has more than one subtrees, then for any two such subtrees,
|d; — d;| < k, where d;, d; denote the respective depths of the subtrees T;,7;.

For any h(k)-tree Haralamides and Makedon [HM 97] presented an O(log d)-
approximation algorithm, where d is the depth of the input tree.



Theorem 3.2 ([HM 97]) Let be T' a h(k)-tree with depth d, for some constant k.
There is a polynomial time O(logd)-approzimation algorithm for the bandwidth of
T.

A basic tool in our algorithm is the random sampling of vertices of the input
graph. We restrict ourselves to graphs with a guaranteed minimum degree of n’
for some delta. In these graphs a small random vertex subset suffices to construct
a dominating set.

Lemma 3.3 Let G = (V, F) be a graph with minimum degree d(n). A set of
k = ©(log(n)n/d(n)
randomly chosen vertices R forms a dominating set with high probability.

Clearly if the minimum degree is in ©(n), then k can be chosen to be ©(logn)
([KWZ 97], [DDLW 98]). Such graphs are called dense.
Proor: The probability, that one particular vertex v will be dominated by one of
the randomly chosen vertices, is at least d(n)/n. Define the random variable X, ;
to be 1, if the ¢th random vertex dominates this vertex and

k
X’U = ZXv,i
e = FIX,]
= Qlogn)

Using Lemma 3.1 (a) we get
Prip, < 1] < 1/w(n)

Using Lemma 3.1 (b) we get that with high probability each vertex will be domi-
nated. [

If we choose a small sample set R in a dense graph, G[R] will be again dense
with high probability.

Lemma 3.4 Let G = (V, F) be a §-dense graph and R C V be a set with |R| =
Glogn. Then G[R] is (1 — v)d-dense with high probability.

ProoF: We define the random variable X, for v € V to be the number of neighbors
of vin R. Then E[X,] > clogn, where ¢ = §3. Now we bound the probability that
X, deviates far from its expectation by applying the Chernoff bound (Lemma 3.1

(b)).

PriX, < (1-7EX.] < exp(=E[X.,]r*/2)
< 1/ exp(clogny?/2)
_ 1/2010gnlogew2/2

= 1/nE 0 = py(n).



Define Y, as

1 otherwise.

Y, e { 0 if X, > (1-7)E[X,]

and set Y = 3" -pY,. Then the probability that a vertex v € R has fewer than
(1—7)clogn neighbors in R is at most Pr[Y > 1]. By applying Markov’s inequality,
we obtain that

Pr[Y > 1]

IN

B[Y]
= Z E[Yv]
vER <m (n)
< pi(n)Blogn
Blogn

= etegesz = P2(n)-

Thus G[R] is (1 — v)d-dense with probability 1 — pa(n) =1 — o(1).

We can generalize this lemma as follows.

Lemma 3.5 Let Gy = G = (V,E) be a graph with minimum degree do(n) = n®

(6>0). A set of S s
m =0T (= 2(1(—_1/2)5))

randomly chosen vertices R forms a dominating set with high probability. Further-
more Gy = G[R] has with high probability a minimum degree of dy(ny) = Q(ni/z).

Proor: Clearly R is a dominating set (Lemma 3.3). We define again a random
variable X, for v € V to be the number of neighbors of v in R.

By Lemma 3.1 (b) we get
Pr{X, < (1 —7)E[X,]] < 1/ exp(O(n"))
Thus each vertex in G[R] has with high probability at least

dl(k):ni/z _ (n5’+1—5)5/2

_ 2GS (1)

_ L 820-9)( )
5(1—4)

= p20-1/29)

= n5/
neighbors. [
Let Gy = G = (V, E) be a connected graph with minimum degree do(n) = n
(6 > 0). Let be k the smallest integer satisfying

9 k
(1_%) <. )



Clearly k = k(¢, §) is for fixed ¢ and ¢ a constant.
Consider the following algorithm

Step 1: Set ¢t =0, ng=n, Go =G, g = 4.
2((§1i(—11_/gi5)i) +1-4i

7

Step 2: Choose a random subset R; C V(G) of size njp1 = n
Step 3: Seti=14+1, G; = Gi—l[Ri—1]7 o = 52’—1/2-
Step 4: If ¢« <k, goto 2.

Lemma 3.6 Gyq has at most n° vertices.

ProOOF: We have following inequality:

5 (1=46)
— 114 < &(1-=19; 1-94;
21— 1/28) s Sll-d)+
N——
<1/2
N—— —
>1
< 1-6
Thus we have
n < né_ég
N9 S n}_éf S nél_ég)(l_éf)
This gives us
npyr < iz (1-(5/24%)
< p(1=(6/27)%)
(1) < nf

|
Lemma 3.5 ensures, that the minimum degree of G is [V (G;)|*/*. Thus the
random chosen vertices R; of each iteration build a dominating set in the graph Gj.
Step 5: Find spanning trees 71, ..., T, for the components of Gp4q1. Set i = k.
Step 6: For each vertex v in V(G;) find a neighbor w in R;. If w belongs to T}
augment 71 by the edge {v, w}.
Step 7: Set ¢t =¢—1. If ¢ > 0, goto 6.

Step 8: For each tree T; we choose one vertex t; of this tree as its representant
(See Figure 1).

Step 9: Set Feonneet = {{t1,t:}i =2, ...,¢}.
Step 10: 7' =S T; U Feonneet (See Figure 2).

Clearly T is connected and the depth of T"is O(n®), since the depth of each T}
(t=1,..,¢)is O(n°).
In the next step we modify 71" to get a h(0)-tree:



Figure 1: The Forest of Step 8 with rooted trees 711, ..., T (¢ € n'™?).

Step 11: Let be h the height of T'. For each leaf [ of T" we denote by h; the distance
of [ to ty in T. We replace the edge {l,a;} in T' by a path of length h — h; + 1.
This gives us T".

Lemma 3.7 1" is a h(0)-tree.

Proor: By the construction, the distance of any leaf to t is the same. [ |

Lemma 3.8 The bandwidth B(T) of T is at most O(n**B(G)).

PrOOF: Suppose we have some layout f of G with bandwidth B(G). Clearly
B(f, T\ Econnect) < B(G)

If we insert in the layout f for each leaf [ of T the vertices of the corresponding
path just before [ (See Figure 3), we get a layout f’, such that

B(f/7 T/ \ Econnect) S O(TLEB(G)),

since the length of this path is O(n®).

For each vertex v € V(') there is some tree Tj(v) to which it belongs to. Thus
there is some representant ¢;(,). Since the depth of each tree is at most O(n*), the
distance of v and f;(,) is at most O(n®). Thus the distance for connected vertices
is at most O(n*). This gives us

B(f',T") < O(n*B(G))

10



Figure 2: The Tree T' of Step 10 build of the rooted trees 71, ..., T..

Lemma 3.9 Suppose an algorithm gives us a layout ' of T'. Then we can trans-
Jorm this layout to a layout [ of G such that,

B(f,G) <O(n"B(f,T))

Proor: We get f by taking the same order for the vertices of T as in f’. Thus
B(f,G) < O(n"B(f',T")),

since each edge of G is represented by a path of length O(n€) in T". [ |

Theorem 3.10 Let Gy = G = (V, F) be a connected graph with minimum degree
do(n) = n® (§ > 0). For any € > 0 there is a polynomial time approximation
algorithm for the bandwidth which finds a layout f such that

B(f,G) < O(n**logn)B(G).

Proor: For given G and ¢, run the above algorithm to get 7”. Clearly this can
be done in polynomial time. Now we get with the algorithm of Theorem 3.2 for
h(0)-trees a layout f’, such that

B(',T") < O(log n) B(T").
Using Lemma 3.8 and Lemma 3.9 we get a layout f, such that
B(f,G) O(n"B(f, 1)
O(nlognB(T"))
O(n* log nB(G))

AN VAN VAN
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I aj

Figure 3: A possible layout for 7".

|
For dense graphs we can even improve this result, by using Lemma 3.4 and the
results of [DDLW 98].

Theorem 3.11 Let G be a dense graph. For any integer k > 0 there is a polyno-
mial time algorithm which finds a layout f, such that

B(f,G) < log®™ 1og ™) B(G),
where log\®) is the k-times iterated logarithm (Iog(l) = log, log*t1) = log log(k))

This theorem gives a somewhat worse approximation ratio (a 3-approximation)
for dense graphs, than given in [KWZ 97]. But the running time is significantly
more practical.
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