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1 IntroductionGraph layout problems are a collection of simple graph problems, motivated asmodels for VLSI layout problems: given a set of modules, in VLSI we have theproblem to place these modules on a board in a non overlapping manner and wiringthe terminals on the di�erent modules according to a given wiring speci�cation andin such a way that the wires do not interfere among them. In the modi�cation asa graph problem we have an input graph G = (V;E) on n vertices. A layout ornumbering of G is a one-to-one mapping f : V ! f1; :::; ng. Some well knownlayout problems are the following:Given a graph G = (V;E), �nd a layout f thatBandwidth Problem: minimizes the maximum of jf(u)� f(v)j over all fu; vg 2E.Topological Bandwidth Problem: minimizes the bandwidth of G0 over all G0that are a homeomorphic image of G.Minimum Cut Problem: minimizes the maximum over all i; 1 � i � n, of thenumber of edges that cross over i.In this paper we study the bandwidth and the topological bandwidth problem.Despite their very long history and their technical importance, it is not much knownabout e�cient approximability of these problems.Formally, the bandwidth minimization problem is de�ned as follows. Let G =(V;E) be a simple graph on n vertices. A numbering (layout) of G is a one-to-onemapping f : V ! f1; :::; ng. The bandwidth B(f;G) of this numbering is de�nedby B(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;the maximal distance between adjacent vertices in G corresponding to f .The bandwidth B(G) is thenB(G) = minfB(f;G) : f is a layout of GgClearly the bandwidth ofG is the maximal bandwidth of its components. Therefore,we assume without loss of generality that the input graph is connected. There is alsoa reformulation of the bandwidth problem in the manipulation of sparse matrices.Let A = (aij) be a matrix. One can de�ne the graph G(A) to be the graph with theadjacency matrix A: aij 6= 0 if and only if fi; jg 2 E(G(A)). G(A) has bandwidthb if and only if there is a permutation matrix P such that in PAP t all nonzeroentries appear within b of the main diagonal. In this case A has bandwidth b.The problem of constructing the bandwidth of a graph is NP -hard [Pa 76],even for trees with maximum degree 3 [GGJK 78]. There are only few cases wherewe can construct the optimal layout in polynomial time. Saxe [Sa 80] designed analgorithm which decides whether a given graph has bandwidth at most k in timeO(nk+1) by dynamic programming. His algorithm can be turned into a constructionalgorithm of the optimum layout. Bandwidth two can be checked in linear time[GGJK 78]. Smithline [Sm 95] (see also [Ch 88]) proved that the bandwidth of thecomplete k-ary tree Tk;d with d levels and kd leaves is exactly dk(kd�1)=(k�1)(2d)e.The proof is constructive and entails a polynomial time algorithm for this problem.2



The topological bandwidth is a natural generalization of the bandwidth. Agraph G0 is said to be a homeomorphic image of a graph G if G0 can be obtainedfrom G by subdividing edges in G with an arbitrary number of degree two vertices.The topological bandwidth of G is formally de�ned byTB(G) = minG0 is a homeomorphic image of GB(G0)This problem is also known to be NP -complete [MPS 85]. For some special casesit is solvable in polynomial time [MPS 85]: binary trees in time O(n logn), topo-logical bandwidth k can be checked in time O(nk) (See Theorem 2.1), topologicalbandwidth 2 in linear time. As the bandwidth the topological bandwidth has alsoan interesting sparse matrix interpretation. Let A be a matrix arising from a linearsystem aix = bi. It is possible that the bandwidth of this matrix is quite large,meaning that there is no permutation matrix P such that PAP t has all its nonzeroentries close to its diagonal. To reduce the bandwidth we may replace a term aijxjby a new variable y and add a new equation of the form aijxj = y which has thesame e�ect as adding a degree 2 vertex into the edge fi; jg of G(A).Theminimum cut problem is de�ned as follows. Let f be a layout. The cutwidthcw(f;G) of this layout for G iscw(f;G) = maxi=1;:::;n jffv; wg 2 E(G)jf(v)� i < f(w)gj:The modi�ed cutwidth mcw(f;G) of this layout for G ismcw(f;G) = maxi=1;:::;n jffv; wg 2 E(G)jf(v)� i � f(w)gj:The (modi�ed) cutwidth of G is de�ned ascw(G) = minf cw(f;G) and mcw(G) = minf mcw(f;G):The problem is NP -complete, even for planar graphs with maximum degree 3[Ga 77] but in polynomial time solvable for trees [Ya 85] (See Theorem 2.6).The design of approximation algorithms for NP -hard optimization problemsbecame an important �eld of research in the last decade. In the best of situationswe are able to �nd approximation algorithms which work in polynomial time andapproximate optimal solutions within an arbitrary given constant. Such (meta-) algorithms are called polynomial time approximation schemes (PTASs), cf.eg.,[Ho 97].In this paper we present the �rst PTAS for the topological bandwidth of trees.Furthermore we construct n�-approximation algorithms for the bandwidth of graphswith minimum degree n�, for any �; � > 0. For the general bandwidth problem thereare two approximation algorithms known:Feige [Fe 98] An O(logd11=2en)-approximation algorithm andBlum, Konjevod, Ravi and Vempala [BKRV 98] an O(pn=B(G) logn)-ap-proximation algorithm.While the approximation-ratio of our algorithm is not as good as the approxi-mation ratio of [Fe 98], for graphs with minimum degree n� it will be better thanthe approximation ratio of [BKRV 98]. 3



It is a very surprising fact that there are PTASs for the topological bandwidthproblem on trees, since there is no such algorithm possible for the related bandwidthproblem on trees. Blache, Karpinski and Wirtgen [BKW 98] showed that there isno 4=3-approximation algorithm for the bandwidth problem, unless P = NP .The paper is organized as follows. In Section 2 we develop an approximationscheme for the topological bandwidth of trees, by relating the topological bandwidthto the cutwidth. In Section 3 we use random sampling techniques of Dessmark,Dorgerloh, Lingas and Wirtgen [DDLW 98] to construct spanner like trees. Byusing an approximation algorithm for the Bandwidth of h(k)-trees [HM 97] weget good approximations for the bandwidth on graphs with guaranteed minimumdegree.2 A PTAS for the Topological BandwidthProblem on TreesFor a constant k it is possible to check whether the topological bandwidth of a givengraph is k or not. This is done by a modi�cation of the dynamic programmingalgorithm given in [GS 84] and [Sa 80], which shows that deciding whether a graphG with n vertices has bandwidth k 2 O(1) can be checked in time O(nk).Theorem 2.1 ([MPS 85]) For all k � 3, it is possible to recognize graphs withtopological bandwidth k in time O(nk). For k = 2, it can be done in linear time.We can construct such a layout in the same time bounds.We use this result in our approximation algorithm for the case that the band-width of the input graph is small.2.1 Cutwidth and Topological Bandwidth of TreesIn this section we relate the topological bandwidth problem to the cutwidth prob-lems.Lemma 2.2 ([MPS 85]) For any graph G we havecw(G) � TB(G):Especially if G is a tree.Proof: We show how to construct for any cutwidth layout f of G a layout f 0and a homomorphic image G0 of G, such thatcw(f;G) � B(f 0; G0):Choose a subgraph G1 of G as follows1. C = ;2. Choose an edge fu; vg such that f(u) � f(v) and u is the smallest vertex withf(u) � f(w) for any vertex w which is contained in an edge of C. Put fu; vginto C. If there is no such edge, stop.4



Clearly, the graph G1 = G[C] has cutwidth 1. Also the graph G � G1 satis�escw(f;G�G1) = cw(f;G)� 1. Assume, that i is the least number withjffu; vg 2 E(G�G1)jf(u) � i < f(v)gj = cw(f;G):The edges fu; vg in G with f(u) � i < f(v) are not in G1. From the second stepwe know that there is no edge fu; vg in G with f(u) = i < f(v). Thus there arecw(f;G) edges fu; vg with f(u) < i < f(v). Now we havejffu; vg 2 E(G�G1)jf(u) � i� 1 < f(v)gj = cw(f;G):This is a contradiction to the minimality of i.Repeat the above process to partition G into graphs G1; G2; :::; Gcw(f;G), suchthat cw(f;Gi) = 1 for all i = 1; :::; cw(f;G). Construct the re�nement G0 of Gand the layout f 0 of G0 as follows. For any edge fu; vg in Gi with f(u) < f(v),subdivide fu; vg into a path u = u0; u1; :::; ut = v of f(v)�f(u)+1 vertices. De�nef 0(uj) = cw(f;G)(f(u) + j) + i� 1 j = 0; :::; f(v)� f(u):Clearly f 0 is a proper layout. It easy to see, that B(f 0; G0) = cw(f;G). Thus wehave cw(G) � TB(G).Corollary 2.3 For any cutwidth layout f of a graph G, we can construct in poly-nomial time a homeomorphic image G0 and layout f 0 of G0, such thatcw(f;G) � B(f 0; G0):Proof: We have to check the running time of the algorithm included in Theorem2.2. Let be n the number of vertices of G.cw(f;G) is at most O(n2). Thus we have at most O(n2) graphs Gi. For eachgraph we have at most O(n2) iterations of cost O(n2). Therefore the constructionof G0 and f 0 is polynomial in n.Makedon et al. improved this bound by relating the topological bandwidth tothe modi�ed cutwidthLemma 2.4 ([MPS 85]) TB(G) � mcw(G) + 1Their proof gives a polynomial time algorithm, which �nds for any modi�edcutwidth layout f of a graph G, a homeomorphic image G0 and layout f 0 of G0,such that B(f 0; G0) � mcw(G) + 1:However, this gives the same bound as in Theorem 2.2, since mcw(G) � cw(G)�1.Theorem 2.5 ([Ch 85]) For any tree T the following inequality holds:TB(T ) � cw(T ) � TB(T ) + logTB(T ) + 2:For trees the modi�ed cutwidth problem is polynomial solvable.Theorem 2.6 ([Ya 85]) There is an O(n logn) time algorithm, which �nds forany tree T a layout f , such that mcw(f; T ) = mcw(T ).5



2.2 The SchemeTheorem 2.7 There is a PTAS for the topological bandwidth problem on trees.Proof: Let be T the input tree with n vertices and (1 + �) the desired approxi-mation ratio.First we run the algorithm of Theorem 2.6 to construct in polynomial time alayout f , such that mcw(f; T ) = mcw(T ). Using the Algorithm of Lemma 2.4, weget a layout f 0 for a homeomorphic image T 0 of T , such thatB(f 0; T 0) � mcw(T ) + 1 (Lemma 2.4)� cw(T )� TB(T ) + log TB(T ) + 2 (Theorem 2.5)= (1 + logTB(T ) + 2TB(T ) )TB(T )Observe that for logTB(T )+2TB(T ) � �, we have the desired approximation bound. Itis easy to see, that the solution of log t+2t � � is a constant t(�) only dependent of �.Run the algorithm of Theorem 2.1 to check in time O(nt(�)), whether the tree Thas topological bandwidth at most t(�) or not. If not, TB(f 0; T 0) � (1 + �)TB(T ).Otherwise we construct with this algorithm in the time O(nt(�)) such a layout.3 An Approximation Algorithm for Graphswith Guaranteed Minimum DegreeFirst we state some Cherno� like bounds, which can be found in standard books(See e.g. [H 64] [MR 95]).Lemma 3.1 Let be Xi, i = 1; :::; k independent random variables such that 0 �Xi � 1. Let X =PiXi and � = E[X ] then(a) Pr[jX � �j > �] < 2 exp(��=3):(b) Pr[X < (1� �)�] < exp(��2=2):We need for our approximation algorithm on non sparse graphs as a subroutinean approximation algorithm for a class of trees, the so called h(k)-trees: given anytree vertex v, the depth depth di�erence of any two nonempty subtrees rooted atv is bounded by a constant k. Formally a tree T is a generalized height balanced-or h(k)-tree, whenever:1. k is a nonnegative integer, and2. if a vertex v of T has more than one subtrees, then for any two such subtrees,jdi � dj j � k, where di; dj denote the respective depths of the subtrees Ti; Tj.For any h(k)-tree Haralamides and Makedon [HM 97] presented an O(log d)-approximation algorithm, where d is the depth of the input tree.6



Theorem 3.2 ([HM 97]) Let be T a h(k)-tree with depth d, for some constant k.There is a polynomial time O(logd)-approximation algorithm for the bandwidth ofT . A basic tool in our algorithm is the random sampling of vertices of the inputgraph. We restrict ourselves to graphs with a guaranteed minimum degree of n�for some delta. In these graphs a small random vertex subset su�ces to constructa dominating set.Lemma 3.3 Let G = (V;E) be a graph with minimum degree d(n). A set ofk = �(log(n)n=d(n))randomly chosen vertices R forms a dominating set with high probability.Clearly if the minimum degree is in �(n), then k can be chosen to be �(log n)([KWZ 97], [DDLW 98]). Such graphs are called dense.Proof: The probability, that one particular vertex v will be dominated by one ofthe randomly chosen vertices, is at least d(n)=n. De�ne the random variable Xv;ito be 1, if the ith random vertex dominates this vertex andXv = kXi Xv;i�v = E[Xv]= 
(logn)Using Lemma 3.1 (a) we get Pr[�v < 1] < 1=!(n)Using Lemma 3.1 (b) we get that with high probability each vertex will be domi-nated.If we choose a small sample set R in a dense graph, G[R] will be again densewith high probability.Lemma 3.4 Let G = (V;E) be a �-dense graph and R � V be a set with jRj =� log n. Then G[R] is (1� 
)�-dense with high probability.Proof: We de�ne the random variable Xv for v 2 V to be the number of neighborsof v in R. Then E[Xv] � c logn, where c = ��. Now we bound the probability thatXv deviates far from its expectation by applying the Cherno� bound (Lemma 3.1(b)). Pr[Xv < (1� 
)E[Xv]] < exp(�E[Xv]
2=2)� 1= exp(c logn
2=2)= 1=2c logn log e
2=2= 1=nc log e
2=2 =: p1(n):7



De�ne Yv as Yv := ( 0 if Xv � (1� 
)E[Xv]1 otherwise.and set Y = Pv2R Yv . Then the probability that a vertex v 2 R has fewer than(1�
)c logn neighbors in R is at most Pr[Y > 1]. By applying Markov's inequality,we obtain that Pr[Y � 1] � E[Y ]= Xv2R E[Yv]| {z }<p1(n)< p1(n)� logn= � lognnc log e
2=2 =: p2(n):Thus G[R] is (1� 
)�-dense with probability 1� p2(n) = 1� o(1).We can generalize this lemma as follows.Lemma 3.5 Let G0 = G = (V;E) be a graph with minimum degree d0(n) = n�(� > 0). A set of n1 = �(n�0+1��) (�0 = �(1� �)2(1� 1=2�))randomly chosen vertices R forms a dominating set with high probability. Further-more G1 = G[R] has with high probability a minimum degree of d1(n1) = 
(n�=21 ).Proof: Clearly R is a dominating set (Lemma 3.3). We de�ne again a randomvariable Xv for v 2 V to be the number of neighbors of v in R.E[Xv] = n1Xi jN(v)jn � n�0 nd0(n) d0(n)n = n�0By Lemma 3.1 (b) we getPr[Xv < (1� 
)E[Xv]] < 1= exp(O(n�0))Thus each vertex in G[R] has with high probability at leastd1(k) = n�=21 = (n�0+1��)�=2= n�=2( �(1��)2(1�1=2�)+(1��))= n�=2(1��)( �+2��2(1�1=2�) )= n �(1��)2(1�1=2�)= n�0neighbors.Let G0 = G = (V;E) be a connected graph with minimum degree d0(n) = n�(� > 0). Let be k the smallest integer satisfying 1� �24k!k � � (1)8



Clearly k = k(�; �) is for �xed � and � a constant.Consider the following algorithmStep 1: Set i = 0, n0 = n, G0 = G, �0 = �.Step 2: Choose a random subset Ri � V (Gi) of size ni+1 = n �i(1��i)2(1�1=2�i)+1��ii .Step 3: Set i = i+ 1, Gi = Gi�1[Ri�1], �i = �i�1=2.Step 4: If i � k, goto 2.Lemma 3.6 Gk+1 has at most n� vertices.Proof: We have following inequality:�i(1� �i)2(1� 1=2�i| {z }�1=2 )| {z }�1 + 1� �i � �i(1� �i) + 1� �i� 1� �2iThus we have n1 � n1��200n2 � n1��211 � n(1��20)(1��21)0:::This gives us nk+1 � n�ki=0(1�(�=2i)2)� n(1�(�=2k)2)k(1) � n�Lemma 3.5 ensures, that the minimum degree of Gi is jV (Gi)j�=2i. Thus therandom chosen vertices Ri of each iteration build a dominating set in the graph Gi.Step 5: Find spanning trees T1; :::; Tc for the components of Gk+1. Set i = k.Step 6: For each vertex v in V (Gi) �nd a neighbor w in Ri. If w belongs to Tjaugment Tj by the edge fv; wg.Step 7: Set i = i� 1. If i � 0, goto 6.Step 8: For each tree Ti we choose one vertex ti of this tree as its representant(See Figure 1).Step 9: Set Econnect = fft1; tigji = 2; :::; cg.Step 10: T = Sci Ti [ Econnect (See Figure 2).Clearly T is connected and the depth of T is O(n�), since the depth of each Ti(i = 1; :::; c) is O(n�).In the next step we modify T to get a h(0)-tree:9
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T1 2 3Figure 1: The Forest of Step 8 with rooted trees T1; :::; Tc (c 2 n1��).Step 11: Let be h the height of T . For each leaf l of T we denote by hl the distanceof l to t1 in T . We replace the edge fl; alg in T by a path of length h�hl +1.This gives us T 0.Lemma 3.7 T 0 is a h(0)-tree.Proof: By the construction, the distance of any leaf to t is the same.Lemma 3.8 The bandwidth B(T ) of T is at most O(n2�B(G)).Proof: Suppose we have some layout f of G with bandwidth B(G). ClearlyB(f; T nEconnect) � B(G)If we insert in the layout f for each leaf l of T the vertices of the correspondingpath just before l (See Figure 3), we get a layout f 0, such thatB(f 0; T 0 nEconnect) � O(n�B(G));since the length of this path is O(n�).For each vertex v 2 V (G) there is some tree Ti(v) to which it belongs to. Thusthere is some representant ti(v). Since the depth of each tree is at most O(n�), thedistance of v and ti(v) is at most O(n�). Thus the distance for connected verticesis at most O(n�). This gives usB(f 0; T 0) � O(n2�B(G))10



Figure 2: The Tree T of Step 10 build of the rooted trees T1; :::; Tc.Lemma 3.9 Suppose an algorithm gives us a layout f 0 of T 0. Then we can trans-form this layout to a layout f of G such that,B(f;G) � O(n�B(f 0; T 0))Proof: We get f by taking the same order for the vertices of T as in f 0. ThusB(f;G) � O(n�B(f 0; T 0));since each edge of G is represented by a path of length O(n�) in T 0.Theorem 3.10 Let G0 = G = (V;E) be a connected graph with minimum degreed0(n) = n� (� > 0). For any � > 0 there is a polynomial time approximationalgorithm for the bandwidth which �nds a layout f such thatB(f;G) � O(n3� logn)B(G):Proof: For given G and �, run the above algorithm to get T 0. Clearly this canbe done in polynomial time. Now we get with the algorithm of Theorem 3.2 forh(0)-trees a layout f 0, such thatB(f 0; T 0) � O(logn)B(T 0):Using Lemma 3.8 and Lemma 3.9 we get a layout f , such thatB(f;G) � O(n�B(f 0; T 0))� O(n� lognB(T 0))� O(n3� log nB(G))11
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lFigure 3: A possible layout for T 0.For dense graphs we can even improve this result, by using Lemma 3.4 and theresults of [DDLW 98].Theorem 3.11 Let G be a dense graph. For any integer k > 0 there is a polyno-mial time algorithm which �nds a layout f , such thatB(f;G) � log(k) log(k+1)B(G);where log(k) is the k-times iterated logarithm (log(1) = log; log(k+1) = log log(k))This theorem gives a somewhat worse approximation ratio (a 3-approximation)for dense graphs, than given in [KWZ 97]. But the running time is signi�cantlymore practical.AcknowledgmentI thank Gunter Blache, Carsten Dorgerloh and Marek Karpinski for a number ofinteresting discussions on the subject of this paper.References[BKW 98] Blache, G., Karpinski, M., Wirtgen, J., On Approximation Intractabil-ity of the Bandwidth Problem, Technical Report ECCC TR 98-014,1998. 12
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