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Abstract

Let U be a real algebraic variety in n—dimensional affine space which
is given as a set of zeros of a family of polynomials of the degree less than
d. Let U be the closure in the Zariski topology of set of all smooth
points of dimension s of U. In the paper an algorithm is described for
constructing a set with a polynomial in d" number of points of U which
has a non—-empty intersection with every connected component of dimen-
sion s of every irreducible component of U (). The similar result is valid
for basic real semi—algebraic sets. More precise formulations are given
involving triangulations of U if U is bounded (respectively the Alexan-
drov compactification of U if U is not bounded). The working time of the
algorithm (for the case of algebraic varieties) is polynomial in the size of

input and d".
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Introduction

Let U be a real algebraic set in n—dimensional affine space which is given as a
set of zeros of a family of polynomials of the degree less than d. Let U() be
the closure in the Zariski topology of the set of all smooth points of dimension
s of U. In the paper an algorithm is described for constructing a finite set
S of points of U which has a non—empty intersection with every connected
component of every irreducible component of U(). The number of points of
S i1s bounded from above by a polynomial in d”. The working time of the
algorithm is polynomial in the size of input and d”. More precise formulations
are given below involving triangulations of U if U is bounded (respectively of

the Alexandrov compactification of U if U is not bounded).

Previously known algorithms [14], [1] allow to construct only a finite set S of
points which has a non—empty intersection only with every connected component

of a real algebraic variety (or a real semi-algebraic set).

Now we give the precise statements. Let kg = Q(t1, ... ,%,0) be a real
ordered field where ¢, ... ,#; are algebraically independent over the field @) and ¢
is algebraic over Q(¢y, ... ,#;) with the minimal polynomial F' € Q[ty, ... ,#;, 7]

and leading coefficient lez F' of F'is equal to 1.

We shall assume in what follows that the field ko satisfies the following
property.

(A) Let a finite extension K D kg of real ordered fields be given by its primitive
element and mintmal polynomial. Then for an element a € K one can

decide whether a > 0 within the polynomual time.

Note that if kg = Q then k( satisfies this property. If the field ko satisfies this
property then any finite extension k; which is real ordered field extension of kg
also satisfies this property. If € > 0 is an infinitesimal relative to the field kg
then the real ordered field kq(e) satisfies the formulated property.

Let polynomials fi, ..., fin € k[X1, ..., X,] be given, m > 1. Consider the
closed algebraic set or algebraic variety (in this paper we don’t distinguish these

two concepts)
V={(x1,...,20): fi(z1,...,20) =0, 2; Eko, Y1 <i<m} C A (k).

This is a set of all common zeros of polynomials fi, ..., fm in A" (k), where k
is an algebraic closure of k. In what follows we shall denote for brevity this
set by Z(f1,..., fm). The similar notations will be used also for the sets of all



common zeros (in affine or projective spaces as it will be seen from the context)
of other polynomials. So V.= Z(f1,..., fm)-

Let R be a real closed field containing the real closure l;;o of the field ky and
C = R be the algebraic closure of R. Set

V(R) ={(z1,...,2yn) ¢ fi(e1,...,20) =0, 2, e R, VI <i<m} C A" (R).

This is a set of all common zeros of polynomials fi,..., fi, in A”(R). In what
follows we shall denote for brevity this set by Zgr(fi,..., fm). The similar
notations will be used also for the sets of all common zeros (in affine or projective
spaces as it will be seen from the context) of other polynomials. So V(R) =
Zr(f1,..., fm) is a real algebraic set or (the set of points of) a real algebraic
variety over R (the definition of real algebraic varieties see in [2]). The elements

of Zr(f1,..., fm) are real roots of polynomials fi,..., fim.

We shall represent each polynomial f = f; in the form
1 . :
/= % . Z Z ai17~~~yin7j6]Xil o Xrlzn )
11,..40n 0<j<degF

where ap,a;,, i, € Z[t1,....t], ngil,...,in,j(aoaail,...,in,j) = 1. Define the
length I(a) of an integer @ by the formula {(a) = min{s € Z : |a| < 2°71}. The
length of coefficients {(f) of the polynomial f is defined to be the maximum of

length of coefficients from 7 of polynomials aq, a;,,.. ;,,; and the degree

degta(f) =  mnax .{degta (ao)’degta(aily"'yinhj)}’

21, 9tn,]

where 1 < o <[. In the similar way deg, [ and [(F) are defined.

We shall suppose that we have the following bounds

degXl,...,Xn(fi) < da degta(fi) < d2’ l(fl) <M,
degZ(F) < dl, degta(F) < dl, Z(F) < My .

The size L(f) of the polynomial f is defined to be the product of {(f) to the

number of all the coefficients from Z of f in the dense representation. We have
d+
L(f:) < (( i ”) dy + 1)d5 M

Similarly L(F) < dl1+1M1. Unless we state otherwise, in what follows we suppose
l to be fix.

REMARK 1 In what follows we shall assume without loss of generality that
the polynomuals fi, ..., fm are linearly independent over kg. Hence dimV <

n—1.



Consider at first the case when V(R) is bounded. Hence dimV(R) < n — 1.
Consider some triangulation of V(R), see [2], i.e. a finite simplicial complex
K = Ui<i<pop and a semi-algebraic homeomorphism ¢ : K — V(R) in the
topology of the real field. We shall call for brevity the simplex o of K to
be maximal if and only if 1t is not a face of any other simplex of K. Let
0 < s <n-—1. Consider a non—zero s—dimensional cycle e = ZlSqu op,; with
coeflicients from Z /27 of the simplicial complex K such that o, is maximal for
all j and p;, # pj, if j1 # j2. So the dimension dimo,, = s for all j. Denote
E = le] = Uigj<q@(op;)-

REMARK 2 Note that if there is an irreducible component W of V(R) of
dimension s over R then there is also a cycle e as described such that |e| coin-
cides with the set of all points of dimension s of W. This follows from the fact
that for an arbitrary (s — 1)-dimensional simplex t from the triangulation of
W the number of all s—dimensional simplezes from the considered triangulation

containing 1 as a face is even, see [2].

Now let a non-zero vector y = (y1,...,yn) € R™ be given. By the transfer
principle, see [2], the function )", ., ., ¥:X; has its maximum and minimum on
L. Denote

m’ = max( Z v Xi)(E), F={zeFE Z viXi)(z) = m'},

1<i<n 1<i<n
m" =min( Y uXi)(E), E'={:€E: (> wX)(z)=m"}.
1<i<n 1<i<n

THEOREM 1 Let V(R) be a bounded real affine algebraic variety given as
a set of zeroes of polynomials f1,..., fm. Then for a given non-zero vector y
one can construct a finite set Sy of points of V(R) such that for any semi-
algebraic triangulation ¢ : K — V(R) and any non-zero s—dimensional cycle
e with coefficients from Z /27 as described above the intersections S N E' and
S NE" are non—empty. The number of points of Sy is bounded from above by
a polynomaal in d*. The working time of the algorithm for constructing Sy ts

polynomial in d”, dy, do, M, My, m and the size of the vector y.

Theorem 1 will be deduced from our existence theorem which will be for-
mulated and proved in Section 2. Note that it may happen in some cases that
E=FE =E" eg. whens = 0and E consists of one point. Applying Theorem 1
to n linearly independent vectors y(!), ... ¥ and defining S = Ui<i<nSy() we
get the following result.



COROLLARY 1 Let s > 1. One can construct a finite set S of points of
V(R) such that for any semi-algebraic triangulation ¢ : K — V(R) and any
s—dimensional cycle e as described above with coefficients from 7 /27 the inter-
section SN E consists of at least two different points. The number of points of S
1s bounded from above by a polynomial in d”. The working time of the algorithm

for constructing S s polynomaal in d”, dv, dy, M, My, m.

In the general case, i.e. when V(R) is not necessary bounded, we can verify
this fact within the time polynomial in d”, dy, dy, M, M, m. Recall see [2],
the construction of the algebraic variety Vi such that Vi (R) is the Alexandrov
compactification of V(R) if V(R) is not bounded. Namely, one should construct
a point #(®) € A?(R) such that z(®) ¢ V(R). We can suppose without loss of
generality that z(®) = (0,...,0) effecting if it is necessary an appropriate linear

transformation of coordinates in A” (R). Set

X, Xn .
gi = ( XFydesli g e ,0< i< m.
1322';1 Y1<i<n X7 Y1<i<n X7
Define Vi = Z(¢1,...,9m). So Vi is bounded. We have the isomorphism of
real algebraic varieties ¢ : V(R) — Vi(R) \ {#(9} induced by the inversion

transformation

(Xl,...,Xn)H( X X )

n
Ty 3
ZlSiSn X; 219’3” X;

Let K, ¢, s, e have the same meaning for V1 (R) as previously for V(R).
Applying Corollary 1 to the real algebraic variety Vi (R) we get the following

result.

COROLLARY 2 Let V(R) be a not bounded real affine algebraic variety given
as a set of zeroes of polynomials f1,..., fr,. One can construct a finite set S
of points of V(R) such that for any semi-algebraic triangulation ¢ : K —
Vi(R) of Vi(R) and any its s—dimensional cycle e with coefficients from Z./27.
as described above the wntersection S N E is non—empty. The number of points
of S s bounded from above by a polynomial in d”. The working time of the
algorithm for constructing S is polynomial in d”, dy, ds, M, My, m.

Now let g1,...9s € ko[X1,...,X,] be some polynomials which have the
similar estimations for degrees and sizes of integer coefficients as fi,..., fin.

Consider a basic semi-algebraic set, see [14], [1],

U={z€R": fi(z)=...= fm(z) =0& g1(z) > 0& ... & gs(x) > 0}. (1)



Consider the real algebraic variety U; C A"*? which is the set of all common
zeroes of polynomials [, ., .9 —Z, fi,..., fm and ZT — 1 (here Z and 7" are

new variables). Denote by
T RS R (X, X, Z,T) = (X, ., X))

the linear projection. Then the set U coincides with the union of some connected
components of m(U1). Thus, applying Corollary 2 and Remark 2 to the real

algebraic variety U; we get the following result.

THEOREM 2 Consider a basic semi-algebraic set (1). Let UG) be the closure
wn the Zariski topology of the set of all smooth points of dimension s of U. Let
W be a connected component of real dimension s of an irreducible component
of US). Then one can construct a finite set S of points of U such that S has
a non-empty intersection with every W. The number of points of S is bounded
from above by a polynomial in ((s + 1)d)™.
for constructing S is polynomial in ((s + 1)d)", dy, da, M, My, m

The working time of the algorithm

REMARK 3 The working time of the algorithms from theorems of this paper
and their corollaries is essentially the same as for solving system of polynomual
equations with a finite set of solutions in the projective space over an alge-

braically closed field. So they can be formulated also in the case when [ is not

fized, see [5].

1 One algorithm of reduction to general position

Let V(R) be an real algebraic variety such as in the Introduction. So

V(R) = Zr(f1, .. fm),

see the Introduction. We shall suppose in this section V(R) to be non-empty
and bounded, i.e. there is a € R, a > 0 such that

§#V(R)C{(x1,...,2zn) ER" : Z z? <al.
1<i<n

Denote f =3 c.c, f2 Let g =1+ X12d+2 o X2

Let ¢ > 0 be an infinitesimal relative to the field R. Denote f. = f — 2g.
Let (®) and () be new variables.

Denote by

h=X2*20 (X, /Xy,..., X0/ X0) +

6(1) Z Xi2d+2 S R[g(O)aE(l)aXo""’X”]
0<i<n



the P! x P"-homogenization of f., herewith the coordinates of P! are (6(0) : 6(1)),
e =¢e®/eM and the coordinates of P are (Xo :...: X,). Let ya,...,yn be
elements from a field extension of R. Denote y = (ya2, ..., yn), and set the fields

[(1:R(y2a"'ayn)a ClIC(y2,~~~,yn),
[(ZIR(anZa"'ayn)a CZIC(anZa"'ayn)

In the case when ys, ..., y, are elements from a real ordered field extension of
R we shall denote also Ry = Ky and Ry = K5. In this case R; are real ordered
fields and C; have real structures, see [3], [4], in the natural way. In the general
case we shall suppose without loss of generality that the field K is supplied

with a real structure. Then it induces the real structures on Cy, Ko, Cs.

Consider the following system of polynomial equations in Xy, ..., X, and
(@) £(0)
h=20
) 2)
ah dh  _ . (
{ ax; —Yigxr =0, 2<i<n.

LEMMA 1 Let ¢ = &) /(%) Consider (2) as a system in Xo, ..., X,. Then
system (2) has a finite number of solutions in P*(C5).

PROOF Consider the system

{ PNy g, )

X g XL — 2<i<n.

which is obtained by replacing h by ¢ in (2). System (3) has a finite number
of solutions in P?(C1). So, cf. [5] or [3], Corollary 4.1, system (2) has a finite

number of solutions in P"(C5). The lemma is proved.

COROLLARY 3 Let system (2) have a solution (no :...:19) € ]P”(C'_z) with
o = 0. Then (o : ... : nn) € P?(C1) is a solution of system (3). Such a

solution (ng : ... :n) exists if and only if there are integers ja, ..., jn for which

1 3 il <
2<i<n

where (aqy1 15 a primitive root of unity of degree 2d + 1.

PROOF It follows from the fact that deg f < 2d+42. The corollary is proved.

Let €M) /e(® = ¢, Then the solutions (10 : ... : 1,) € PYC3) of system (2)
can be of the following types

(i) with no = 0, then (5o : ...:n,) € P*(C}) by Corollary 3,



(ii) with no = 1 and such that >, ;.. [7:|? is an infinitely large relative to
Cla

(iii) with o = 1 and such that every #; is not infinitely large relative to the
field Cj.

Denote by pa(y) = pa(ya,...,yn) (vespectively po(y) = polyz,...,yn)) the
number of all roots counting with multiplicities of type (iii) (respectively of
type (ii) or (iii)) of system (2). So we have by the Bézout theorem pip(y) <
(2d +2)(2d + 1)"~1.

LEMMA 2 Letys,...,y, be elements from a real ordered field extension of R.
System (2} has at least two different roots ' and " of type (iii) with coordinates
in the real closure Ro of the field Ro. All the coordinates of the roots ' and n'’
are not infinitely large relative to the field R.

PROOF  (Cf[15],[14].) Replace R by R, the infinitesimal ¢ by a positive
number ¢ € R and let ya,...,y, € R. Then Zg(f.) is a smooth bounded
hypersurface in A” (R) for all sufficiently small € > 0. Since Zg(f.) is a bounded
real algebraic hypersurface there are at least two different points ', ' of this
variety in which the hyperplanes of support have the normal vector parallel to
(1,y2,...,yn). These hyperplanes of support are tangent spaces of Zg(f:) in the
points ' and ”. So n’ and 5" are solutions of (2) in A” (R). Now the required
assertion follows from the transfer principle, see [2]. The last statement of the
lemma follows from the fact that the absolute values of the coordinates of all
points from V(R2) are bounded from above by the same constant from R as
the absolute values of the coordinates of all points from V(R). The lemma is

proved.
COROLLARY 4 The inequality ps(y) > 2 holds.

Denote by
D(y) € K1[e™, W Uy, ..., U]

the U-resultant, see e.g. [11], of (2) considered as a system in Xg,..., X,.
The polynomial D(y) is equal (up to a factor from R(e(® () yo ... y,)) to
the product J[;c ;3 0<i<n Uml(j)) where nli) = (néj) N ngj)), jeJisa
family of all roots (counting them with multiplicities) of system (2) in P"(C%).
Denote by J' (respectively J”, J") the subset of indices of J such that j € J’
(respectively j € J”, j € J") if and only if the root 7\/) of system (2) is of type
(1) (respectively (ii), (iii)).



Let ¢ be a coefficient in a monomial in Uy, ..., U, of the U-resultant of n
homogeneous polynomials Fy, ..., F, in Xy, ..., X,. Then it is known that ¢ is
a homogeneous polynomial in the coefficients of F; of the degree
(Hlsjsn deg F;)/ deg F; for every 1 < i < n. Hence, the degree

deg. ) .y D(y) = (2dn+ 2n —1)(2d + 1)" 7.

Let L =10gXo+ ...+, X, € Z[ Xy, ..., X,] be a non—zero linear form with
integer coefficients [;, 0 < ¢ < n, such that L is not vanishing in any point of
type (i) of the variety W' C P?(C5) of solutions of system (2). According to
[11], see also [5], one can verify this condition within the time polynomial in d"

and the size of input including L.

Define the set of linear forms

Ly={) ¢Xi:1<i<NjieZ}
0<i<n

The form L satisfying the considered condition can be chosen from the set Ly
with N < P(d") for a polynomial P.

The condition that L is not vanishing in any point of type (i) of the variety
W' is equivalent to the fact that the polynomial

D(y)(l,e’;‘, L — loXo, —llXo, R —lnXo) & [(1[L,X0,6]

is non-zero. This polynomial is vanishing on the variety W'. Set to(y) (re-
spectively ¢1(L,y)) to be the maximal integer a such that X§ (respectively £%)
divides the polynomial D(y)(1,¢, L — loXo, =11 X0, ..., =1, X0). Then to(y) is
the number of roots of system (2) of type (i) and, hence, does not depend on
the choice of L. Set

Gy) =D(y)(1,e, L —log,—l1,...,=1,) € Ki[¢, L].

Denote by H(y) € Kile, L] the separable polynomial which is equal to the
product of all different irreducible factors of G(y) which do not belong to K [e].
According to [11], see also [5], one can compute the polynomial G(y) within the

time polynomial in d” and the size of input including L.

We have jio(y) = degy G(y) = degy,  p, D(y) — to(y). Represent

Gly) = e by) Z a; L’

0<i<uo(y)

where a; € Kq[¢] for all i. Note that a; depends on the coefficients ly, . .., 1, of

the linear form L. So we shall denote also a; = a;(lo, ..., ).



LEMMA 3 Let L be an arbitrary linear form which s not vanishing in any
point of type (i) of the variety of solutions of system (2). Letlc.(a ) (lo, ..., ln))
be leading coefficient of the polynomial a,,)(lo, ..., ln) ine. Then the polyno-
maeal

e TV, (Lo, 1)/ e (@uon (o - - 1n)

does not depend on the choice of L. Besides that,

t1(L,y) 4+ deg. ayyyy(lo, -, 1n) = (2dn 4 2n — 1)(2d + =2

PROOF  Represent the polynomial D(y) = Dy Dy where the polynomial D,
(respectively Ds) is equal to HjeJ’ S icicn UmZ(J) (respectively
HjEJuUJm > oci<n Uml(j) up to a factor from K;[¢]. Hence, by Corollary 3 we

can choose these factors such that Dy € Ky[Uy,...,U,] and
Dy e Ki[¢® M Uy, ..., U,]. Represent

Dy= > AUj
0<i<poly)
where all A; € K3 [6(0),6(1), Ui, ..., U,] are homogeneous polynomialsin Uy, .. .,
Un with degy, ¢, Ai = po(y) — 4. In particular A, ) € Ky [ M), Now

we get immediately that
e EWa, o, b)) = Di(=l1, ..., =1) Ay (L, €).

The first assertion of the lemma follows from this equality. The second assertion
follows from the fact that D(y)(0, 1, Uy, ..., Uy,) is the U-resultant of system (3).

Hence,

0 # AND(@/) (0,6(1)) — (6(1))(2dn+2n—1)(2d+1)n—2a

where a € Ky. The lemma is proved.

Set l«Ll(La y) = dega Qpo(y)-

Set pa(L,y) to be maximal ¢ such that ¢ does not divide a;. Note that
t2(L,y) is the number of roots n counting them with multiplicities of type (ii)
or (iii) of system (2) such that |(L/Xy)(n)| is not infinitely large relative to the
field Cy. So pa(L,y) > pa(y).

Set pi(y) = p1(ya, ..., yn) = maxy pui(L,y) where the maximum is taken
over all linear forms L for which p1 (L, y) is defined.

Note that po(y), p1(L,y), pa(L,y) can be computed within the time poly-

nomial in d" and the size of input including L.

Let L be a linear form which is not vanishing in any point of type (i) of the
variety of solutions of system (2). Consider G(y) as a polynomial in €, L. Let
(ug, vo), (u1,v1),... (ur,v,) be subsequent vertices of the Newton polygon of
G(y), cf. [6], in the coordinates (g, L) such that

10



o (ug,v0) = ((2dn + 2n + 1)(2d + 1)" =2, po(y)),
o uipg <u for0<e<r—1,
o ur = 11(L,y).

Such a sequence exists by Lemma 3 and by the definition of +1 (L, y). So r > 0.
Besides that, our definitions imply

o vy <wgand viyr <wfor 1 <e<r—1,

o ug—u = (L, y),

o v, = pz(L,y) > 2.
Define (tpy1,vr41) = (0,0). We shall denote also u; = w;(L,y), v; = v;(L,y)
and r = r(L,y) when the dependence on L and y will be important.

For a linear form L as above and y define w; = w;(L,y) € Q, 0 < i < po(y)
by the following conditions

® W,y = wo if v1 < v,

® Wy(y) = U1 if v1 = vy,

o wi = ujpr+(w—ujp) (1=vi) /(v —vipa) v <@ <wjand 1< j <.

Hence, the points with the coordinates (w;, ), pa(L,y) < ¢ < po(y) belong to
the Newton broken line of the polynomial G(y). Set

w=w(L,y) = (wo(L,y),..., wuo(y)(L’ y)) € QND(Z/)-H.

Define a partial order on Q#o+1 in the following way. Let z = (zoy .-,

Zuo(yy) and 2 = (2, .. ., z:m(y)) be two elements of Qo) +L Then z > 2’ if and
only if z; > z/ for all 0 <@ < po(y).

LEMMA 4 Set Ny = (2d 4+ 2)(2d + 1)"~'n + 1. Then there is a linear form
Ly € Ly, such that Ly is not vanishing in any point of type (i} of the variety
of solutions of system (2) and

w(Ly,y) <w(l,y).

for every linear form L as above. Further, there is a family of at most (2d +
2)(2d+1)"~1 hyperplanes in (n+1)-dimensional space such that if coefficients of
an arbitrary linear form L does not belong to this union then L s not vanishing

in any point of type (i) of the variety of solutions of system (2) and

w(L,y) = w(li,y).

11



PROOF  We shall use the notations from the proof of Lemma 3. The form
L is not vanishing in any point of type (i) of the variety of solutions of system
(2) if and only if 3, .. ¢, lml(j) # 0 for all j € J'. In what follows in the proof
of the lemma we shall ;uppose that L = > .,c,, (i Xi 1s not vanishing in any

point of type (i) of the variety of solutions of system (2)

Let ord. : Cy — QU {400} be the order function. Recall that ord. (a) is
the exponent of the term of the least degree in the expansion of @ in fractional

power series in € with coefficients in Cf.

By Lemma 3 (or directly considering the Newton broken line of the polyno-
mial G(y)) we get that u,(L,y) is minimal for the linear form L if and only if

orde (auy(y)(lo, - -, ln)) is maximal for this linear form L.

We have G(y) = 6“(L’y)au0(y)(lo, s ln) HjEJ,,UJm(L—(L/Xo)(n(j))) where
N =)
ties) of types (i) or (iii) of system (2) in P"(C3). Let b;, 0 < j < po(y), be the
coefficient of the polynomial HjeJ”UJ”’ (L —(L/X0)(n\9))) in the monomial L.
Then by the definition of ¢ (L, y) we have

is the family of all roots (counting them with multiplici-

orde (au,y(lo, .-, 1n)) =— min ord.(b;).
( Jz (y)( 0 )) 0<i < uo(y) ( ])
Further,
min ord.(b;) = min ord. c— (L/X @) =
OSjSND(y) ( ]) OSCSND(y)vcEZ jEJHUJ”I( ( / 0)(77 ))

min > orde(e— (L/Xo)(n'7)).

OSCSND(y)chszJ,,UJ,”

There is an integer 0 < ¢p < pg(y) such that for every linear form L for every
j E J///
0 = ord. (co — (L/Xo)(n"")) = min ord.(n”/ng").

Further, if j € J” then ord.(co — (L/Xo)(n(j))) > ming<;<n orda(ng‘j)/né‘j)) and
the equality takes place here if and only if

ord: (L/Xo)(n"")) = min ord. (n;"’/ng"), (4)
i.e. when the coefficients of L does not belong to some hyperplane in (n + 1)-
dimensional space. Hence, if (4) holds for all j € J” then ord. (a,,(yy(lo, .-, ln))
is maximal. The Newton broken line (u;,v;), 1 < i < r of the polynomial G(y)
is completely defined by the orders of its roots (L/Xo)(n\)), j € J” and the
order of its leading coefficient a,,y)(lo, . ..,{,). Thus, if the equalities (4) hold
for all j € J” then w(L,y) is the least possible. Now note that (4) holds for
every j € J' if and only if the coefficients of L do not belong to the union of at

12



most #J” hyperplanes in (n + 1)-dimensional space. Hence the required linear

form L; can be chosen from Ly,. The lemma is proved.

Define r(y) = r(L1,¥), u(y) = w(L1,y), vi(y) = w(Lly,y) for 1 <i<r(y)+1
and w(y) = w(L1,y) where Ly is a linear form from the formulation of Lemma 4.

So p1(y) = uo(y) — ur(y)(y) by our definitions.

Define /,L(y) = (/,Lo(y)’ w(y)) c % QND(y)‘l'l.

Consider (2) as a system in £® ¢ and Xy, ..., X, with coefficients in the
field K;. Then it has solutions in the product of projective spaces (P! x P")(C})
with the coordinates ((¢() : () (Xg :...: X,,)). Denote by W the union of all
irreducible components W of the variety of solutions of (2) in (P! x P")(C}) such
that W is not contained in a hyperplane Z(CQE(O) + 616(1)) for any ¢g,c¢; € C).
On the other hand, consider system (2) over the field Cy and recall that W’ is the
variety of solutions of system (2) in P"(C5). Then, see [5] or [3], Corollary 4.1,
every irreducible components W of W corresponds bijectively by localization
to the irreducible component W’ defined over the field Cy(¢) of the variety
W'. Thus, every irreducible components W of W corresponds to the subset
of solutions of (2) contained in W’'. Note that if W’ is fixed then one of the

following conditions hold

o for every n € W’ the solution 7 is of type (i),

o for every n € W' the solution 7 is of type (ii) or (iii).

Besides that, all considered components W are curve, i.e. dimW = 1.

Denote by V = V(y) the union of all irreducible components W of W which
corresponds to the solution of (2) of type (ii) or (iii). Then the intersection

VN Z(Xy) is not infinite by Corollary 3 and since dimy = 1 is a curve.

Consider a linear form L € Z[Xy, ..., X,] such that

(a) L is not vanishing in any point of W’ of type (i),

(b) L is not vanishing in any point of V N Z(Xy).
One can verify whether a linear form L satisfies to (a) and (b) within the time
polynomial in d” and the size of input including L. Besides that for every y,

such a linear form L can be chosen from a set £, with N2 bounded from above

by a polynomial in d”.

LEMMA 5 Let L be a linear form satisfying condition (a), hence, w(L,y) is
defined. Then w(L,y) = w(y) if and only if L satisfies condition (b).
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PROOF  We shall use one fact from the proof of Lemma4. Let Céj), ce Q(Lj) €
K5 be such that

¢ = (Céj) cocl)y = (néj) copl)) e PY(EKY),
orda(CZ»(j)) > 0 for every 0 < ¢ < n and there exists 1 < i5 < n such that

ord, (CZ»(j)) = 0 for every j € J”. Now let a linear form L = >, .., [;X; satisfies
conditions (a) and (b). We have

VN Z(Xo) = {st.(¢Y)) : jeJ"}
where st. : P?(Cy) — P?(Cy) is the mapping of the standard part, see [3],
[4]. Hence, 0 ¢ L(V N Z(Xy)) if and only if for every j € J" the equality

ord. (Ypeic, iCY)) = 0 holds, ie. if and only if
N = s (1)
ord, ( Z L) = O%glnorda(ci )
0<i<n ==

for every j € J”. This is equivalent to the condition that for every j € J” the

equality
orda((L/Xo)(n(j))) — OIgnzlSnn Orda((Xi/XO)(n(j)))

holds. It was ascertained in the proof of Lemma 4 that this is equivalent to the

equality w(L,y) = w(y). The lemma is proved.

LEMMA 6 Let L be a linear form satisfying conditions (a) and (b). Denote
by Ay = K[V \ Z(X0)] the ring of regular functions of the algebraic variety
V\ Z(Xo) and by Ay = Ki[e, (L/Xo)lwz(x,)] the subalgebra of Ay generated
by the regular functions ¢ and L/Xo. Then Ay C Ay is a finite extension of

algebras. Bestdes that, the 1somorphism
Ao —> Ka[Z1, Zo]/ (H (y) (%1, Z2))

holds where 7y, 75 are new variables, H(y) € Ki[e, L] is the polynomial in-
troduced previously and ¢ — 7y mod H(y)(Z1, Z2), L — Zs mod H(y)(Z1, Z2)

under this isomorphism.

PROOF  There is an integer A such that £(®) + Ae(") is not vanishing in any
point of VN Z(Xy). Consider the rational morphism 7 : Pt x P™ — P? defined
by the formula

(e ey (Xp o0 X)) = (60 XML MW X O X).
By the choice of L and A the morphism 7 is defined everywhere on V. The

inverse image (7|y) ™' (2) is finite for every point z € 7(V). Thus, 7(V) is closed

in the Zariski topology and the morphism

mly V= (V)
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is finite. So the coordinates functions (X;/Xo)|w\ z(x,) of the algebraic variety
VAZ(Xy) (they are regular functions on this variety) are integral over the algebra
Kile, (14 Ae) L/ Xo) v\ z(x,)] for all i. Hence, these coordinates functions are
also integral over the algebra Ki[e, (L/Xo)[w\ z(x,)]. The last statement of the
lemma follows directly from the definitions of the algebraic variety V and the

polynomial H(y). The lemma is proved.

COROLLARY 5 Let L be a linear form satisfying conditions (a) and (b).
Then pa(L,y) = p2(y).

PROOF  The number of solutions n of (2) of types (ii) or (iii) for which
(L/X0o)(n) is not infinitely large relative to the field Cy is equal to pa(L,y).
Further, by the proved assertion about integral dependence of coordinates func-
tions if (L/Xo)(n) is not infinitely large (respectively is infinitely large ) relative
to field Cy then (X;/X0)(n) is not infinitely large for all 1 < ¢ < n (respectively
is infinitely large for at least one 1 < ¢ < n). Thus, we have pa(y) = pa(L, y).

The corollary 1s proved.

LEMMA 7 Let L be a linear form satisfying conditions (a) and (b). Then n
is a root of type (iii) (respectively (i) of system (2) if and only if |(L/X0o)(n)|
is not infinitely large (respectively is infinitely large) relative to the field Cy. Be-
sides that, the family of roots counting with multiplicities of the polynomial G(y)
coincides with the family of values {(L/Xo)(nU)}jesnogm where {n)Y e gy gm
is a family of all roots of types (ii) or (iii) of system (2).

PROOF  The first assertion follow directly from definitions. The second one
was already ascertained in the proof of Lemma 4. The lemma is proved.

Let Ya,...,Y, be new variables. Denote ¥ = (Ya,...,Y,). Thus, we have
o(Y) > poly), w(L,Y) < w(L,y) for every y.

The U-resultant
D(Y) € R[Ys,...,Y,, &9 W 15, ... 1,]
is a polynomial in Ya,...,Y,. Note that the degree of D(Y) in Y3,..., ¥, is

bounded from above by a polynomial in d”.

LEMMA 8 For an arbitrary y there is a polynomial ®3(y) € R[Ya, ..., Y] with

the degree bounded from above by a polynomial in d"* such that ®2(y)(y2, ..., yn) #
0 and if ' = (v, ..., y,) € APV(K3), ®o(y) (4, ..., 4,) # 0 (where K3 is an

arbitrary extension of Ca) then po(y') > po(y) and if po(y') = po(y) then

w(y') < w(y).
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PROOF Let L be a linear form satisfying the condition (a) for y and such
that w(L,y) = w(y). By Corollary 3 the linear form L satisfies the condition
(a) for ¢ if ¢’ belongs to an open in the Zariski topology neighborhood of the
point y which is a set of all non—zeros of a polynomial from R[Ys,...,Y,] with
the degree bounded from above by a polynomial in d”. We have ¢3(y') < to(y)
if ¢ belongs to a neighborhood Uy(y) in the Zariski topology of y. Hence then
to(y') > po(y). Further, there is a neighborhood Uy (y) in the Zariski topology
of y such that if ¢ € Ui(y) and po(y') = po(y) then w(lL,y') < w(L,y) and
hence, w(y') < w(y). The considered neighborhoods U; (y), i = 0, 1, as it follows
from our definitions can be chosen as sets of all non—zeros of some polynomials
from R[Y2,...,Y,] with the degree bounded from above by a polynomial in d”.

Now the required assertions follows from Lemma 7. The lemma is proved.

COROLLARY 6 For an arbitraryy and a linear form L satisfying (a), (b) for
y there is a polynomial ®3(y) € R[Ya, ..., Y,] with the degree bounded from above
by a polynomial in d™ such that ®3(y)(ya,...,yn) Z 0 and if ¢ = (vh,...,y,) €
AP=D(K3), ®3(y)(4h, ... 4) # 0 (where K3 is an arbitrary extension of C)
then the linear form L satisfies (a) for y' one of the conditions is fulfilled

o 1i0(y') > po(y),

o po(y') = poly) and w(L,y') <w(L,y).
PROOF This statement was ascertained in the proof of lemma.

LEMMA 9 There are non-empty open wn the Zariski topology subsets Uy, Uy
mn A(”_l)(C’l) and non—negative such that U; C Uy

e y € Uy if and only if po(y) = po(Y),

o yc Uy if and only if po(y) = po(Y) and w(y) = w(Y).

Besides that, po(Y) = (2d + 2)(2d 4+ 1)"~1.

PROOF We have uo(Y) = (2d +2)(2d + 1)"~! by our definitions and Corol-
lary 3. Set Y; — y;, 2 < i < n, to be algebraically independent infinitesimals
relative to the field K. Then all the required assertions follows from Lemma 8.

The lemma is proved.

COROLLARY 7 For any y if po(y) = po(Y) then p(y) = 0.
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PROOF  This follows from Corollary 3 and the definition of pg(Y).

Let € > 0 be an infinitesimal relative to the field Ry, the element £, be an
infinitesimal relative to the field Ri(¢) and €3 be an infinitesimal relative to
the field Ry(e,e1). The algebraic closure m is supplied with the real
structure. So we can consider systems of polynomial equations and inequalities
with squares of absolute values, see [3], [4]. Namely, consider the system of

polynomial equations in Xy, Xq,..., X,, Yo,..., Y,

h=0,

= Yige =0, 2<i<nmn,

D ocicn Vi —uil* = e, (5)
Do<i<n | Xil* > ert,

Xo=1.

LEMMA 10 (i) If po(Y) > po(y) then system (5) has a solution in the
affine space A (Ry(g,e1,€3)).

(i1) Let (1,m1, ... 0n, Y, - o) € A2" (R1(g,e1,¢2)) be an arbitrary solution
of (5). Then po(y') > po(y).

PROOF  Choose the elements y; € Ry(g2), 2 < i < n, such that

* Z2§i§n(yg —yi)? =2,

o (¥h - un) € U,

and set ¥ = (¥4, ...,4,). Let L be a linear form satisfying (a) and (b) simulta-
neously for y, ¥ and the variables Y.

Let po(Y) > po(y). Then the degree deg; G(y') > degy G(y) . The coef-
ficients of both polynomials D(y') and D(y) are obtained from coefficients of
D(Y') by substituting the values Y; = y; and Y; = ¢} respectively. The coefficient
of G(Y) in L can be represented as a polynomial ¢;(Za, ..., Z,) in Z; = Y;—y;,
2 < j < n. So by our definitions if i > deg; G(y) then the free term of the poly-
nomial ; is equal to zero. Hence there is a root L = X € m of the
polynomial G(y') such that |X| is infinitely large relative to the field m
By Lemma 6, there are ny,...,1m, € m such that L(1,m,...,n,) = X
and (1,71, ..., 9n, Y5, ..., 4, ) is the required solution of (5). The assertion (i) is

proved.

Suppose that there is a solution

(Lm1y e Ty Yy -y U) € AP (Ra(e,61,2))
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of (5). We shall assume without loss of generality that the linear form I as
previously satisfies (a), (b) simultaneously for Y, y and y'. Since y} — y; are
infinitesimals we have by Lemma 8 po(y') > po(y). Suppose that uo(y') = po(y).
Then there is a polynomial ¥ € Ry(¢)[L, Za, ..., Zy,] of the degree deg¥y <
#o(y) such that ¥(L,0,...,0) =0 and

Gy) = et TG (y) + U(L, gy — ya, ., Yy — Yn)- (6)

All the roots of the polynomial G(y) € Rs[L] (considered as a polynomial in
L) are not infinitely large relative to the field Ry(s). Hence (6) implies that
all the roots of the polynomial G(y') are also not infinitely large relative to the
field Ry(¢). Now by Lemma 6, we get that > ;. |7/|? is not infinitely large
relative to field Ri(g). Tt is a contradiction. The assertion (i) and the lemma

are proved.

Let ¢9 > 0 be an infinitesimal relative to the field Ry, the element €; be an
infinitesimal relative to the field R;(gq), the element €2 > 0 be an infinitesimal
relative to the field Ry(gg,¢1) and €3 > 0 be an infinitesimal relative to the field
Ri(g0,€1,€2). The algebraic closure Ry(eg,£1,€2,€3) is supplied with the real

structure.

Let L be a linear form satisfying conditions (a) and (b) for y. Let r =
T(L,y), 0 S .7 S r—= 1a Uj = U](L,y), Uj41 = uj-l—l(Lay)a vj = vj(Lay)a Vit1 =
vj+1(L,y). Consider the system of polynomial equations and inequalities in
EaXOaXla"'aXna YZa"'aYn

h=0,

ah oh __ ;

Docicn Vi —uil? =1, )
L63 = 1,
626§(vj—vj+1)/(uj'—uj'+1) < e < 606§(vj—vj+1)/(uj'—uj'+1)

Xo=1.

LEMMA 11 Let pio(y) = po(Y).

(i) Let 0 < j <r—1,j€Z. Let v(L,)Y) > j+1 and w; = w(L,Y),
vi = v;(L,Y) forall 0 <i<j,
vi—vit1 _ 9L Y) = vin(LY)

uj =iy wi(L,Y) —ujqi(L,Y)

ujt1 # ujy1(L,Y). Then system (7) has a solution in
AZntl (R1(61,63)).
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(ii) Let
(&1, M1, Ny Yy -y Ul) € AP TH(Ry (0,61, 62, €3)) (8)
be an arbitrary solution of (7). Then po(y') = pwo(Y) and w(L,y') <
w(L, y).

PROOF  We shall use the facts ascertained in the proof of Lemma 6. To

prove (i) choose the elements y; € Ry(e1), 2 < i < n, such that

. Ezgign(% —y)® = e,

and set ¥ = (¥4, ...,4,). Let G(y) = Zil,@zogil,iz‘filLiQ where all g5, 5, € Ry.
Set

Aj = {(i1,12) € Z% ¢ (vj41 = vj)in = (uj1 — wj)iz = vjprty — wj1v;}
GW)= D g
(i1,i2)EA;

So the set A; is the set of all integer points which are contained in the edge
with the vertices (ujy1,vj41), (u5,v;) of Newton broken line of the polynomial
G(y). Similarly the polynomial G*(y') is defined. By the conditions of the
lemma and since w(y') = w(Y") there is a root ¢ € m of G*(y') considered
as polynomial in ¢ such that e} is infinitesimal relative to the field R;. Hence,

289 < |66|2 < 60/2.

Considering the Newton polygon of the polynomial G(y') relative to ¢ and
L we get that there is a root of this polynomial in the field of fractional power

series in e3 with coefficients in Ry(e1) such that

_ -1 ot (=) /(=) /iy
L=¢35", e=¢ =c¢ye; + E €53

1<i€L,ifv>(vi—viqta)/ (us—usq1)
(9)

where 0 < v € Z and ¢} € Ry(e1) for all i. Hence, 626§(Uj_vj+l)/(uj_uj+l) <

2(v,—v; U;—U
|6|2 < 6063( 7 s+1)/ (u; J+1).

The polynomial G(y') considered as a polynomial in the variables L and ¢
with coefficients in Ry(e1) is vanishing on the affine algebraic variety V(y') \
Z(Xy). More than that, by Lemma 6 there is a root (8) of system (7) such that

the element ¢’ from (8) and (9) is the same. The assertion (i) is proved.

Conversely under conditions of (ii) po(v') = po(y) and w(L,y) < w(L,y)
since ' belongs to the infinitesimal neighborhood of y. Further, by the similar
arguments as in the proof of (i) we deduce that deg, G*(y/) > deg. G*(y). Hence
w(L,y") < w(L,y). The lemma is proved.
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Let L be a linear form satisfying conditions (a) and (b) for y. Let r = »(L, y),
0<j<r u =ui(L,y), v; = v;(L,y) forall 0 <i<r+1. Set u_y = ug+ 1,
v_1 = vg — 1. Consider the system of polynomial equations and inequalities in
£ X0, X1, X, Yo, .., Y

h=0,

dh oh  __ .
6_)(,_Yi6X1_0’ QSZSR

Yacicn |Yi —uil® = e,
L63 — 1a (10)
(vi=vjit1)/(uj—ujy1) lf_] <r-—1,

2 2
£ale]® > e5
e < 626;(%—1—%)/(%—1—%)’

Xo = 1.

LEMMA 12 Let pio(y) = po(Y).

(i) Let0< j<r,jE€Z. Let v(L,Y) > j+1 and w; = u;(L,Y), v; = v;(L,Y)
foral0<i<j. Letvg# vy tf j=0. Let

Ui Tt vi (L, Y) = vj41(L,Y)
uj —wjpr ui(L,Y) —ujpa(L,Y)

if j <r—1. Then system (10) has a solution in A2"*1 (R (g1, €3)).

(ii) Let
(€ Lmy e W, 0h) € AT (Ra(eo, 61 82,3)) (1)
be an arbitrary solution of (10). Then po(y') = po(Y) and w(L,y') <
w(L, y).

PROOF To prove (i) define ¢ as in the proof of Lemma 11. Since u; =
wi(L,Y), v; = v;(L,Y) for all 0 < ¢ < j the inequality

vyl Y) = v (L Y) | vj-1 = v
ui(L,Y) =i (L,Y) 7 ujo1 —

holds. Considering the Newton polygon of the polynomial G(y') relative to ¢
and L we get that there is a root of this polynomial in the field of fractional

power series in 3 with coefficients in Ry (£1) such that
L=¢e3t, e=¢= Z ehell” (12)
i0<i€T
where 0 < v € Z,
do/v < (vj —vjg1)/(uj — tjt1)
ifj<r—1,

io/v > (vj—1 — v;)/(uj—1 — uj),
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€; € Ry(e1) for all ¢ and 0 # ¢ is an infinitesimal relative to the field ;. Hence,
62|6|2 > Eg(vj—vj+1)/(uj—uj+1) if j <r—1and |6|2 < 6263(%—1—%)/(“]‘—1—“]‘).

The remaining part of the proof of the lemma is similar to one of Lemma 11.

The lemma is proved.

Set N3 = 2(2d+2)(2d+1)""*n+1. Then by Lemma 4 and Lemma 5 there
is a linear form L € Ly, satisfying simultaneously the conditions (a) and (b)
for y and Y.

Now we shall describe an algorithm for constructing integers zs, . . ., z, with
lengths O(nlogd) such that po(Y) = po(z2,...,25) and w(Y) = w(za, ..., 2n).
Choose integers ya, ..., y, with lengths O(nlogd), say, y; = 0, 2 < i < n. So
now R; = R. Construct a solution of system (5) or ascertain that it has no solu-
tions, see [3], [4] (here one use should condition (A) from the Introduction). In

the case when system (5) has no solutions we have po(Y) = po(y) by Lemma 10.

Let system (5) has a solution (1,71, ..., 0, %5, ..., y,) € A (m)
Then po(yh, ..., u,) > po(y) by Lemma 10. Let us show that we can con-
struct subsequently yy,...,y, € 7Z such that wo(ysy,. ..,y ¥ipr, -5 ¥n) >
Ho(Yh, ..., yn) for every 2 < ¢ < n, c.f. the auxiliary algorithms from [3], [4].
Enumerating integer values y5 = 0,..., N where N is bounded from above by a
polynomial in d” and constructing each time po (¥4, ¥4, . .., y,) we shall find the
required y4. The last fact follows from Lemma 8. In the similar way construct
vy, ..., yl. Now replace ya, ..., yn by 94, ...,y and return to the beginning of

the algorithm under description.

Note that po(Y) is bounded from above by a polynomial in d”. Hence
there might be at most polynomial in d” such returns to the beginning of the

algorithm. So finally we shall come to the case when system (5) has no solutions
and pio(Y') = pio(y).

Now let po(Y) = po(y). Enumerate all the linear forms L € Ly,. Construct
the subset £’ of £ consisting of all linear forms I satisfying conditions (a)
and (b). So w(L,y) = w(y) for every L € L' and there is L € £’ such that
w(L,Y) = w(Y) by the choice of N3. Enumerate all the linear forms L € £'.

For the considered linear form L construct the polynomial G(y) and w(L, y).
Set r = r(L,y) and u; = u;(L,y), v; = vi(L,y) for all 0 < ¢ < r 4+ 1. Set
Uy =ug+1,v_1 =vg—1. Suppose 0 < j < r, j € Z (the base of the recursion
J = 0) and we have already ascertained that u; = w;(L,Y), v; = v;(L,Y) for all
0<i<yj. Soif j <r—1 then

vi = Vi1 YL Y) = vin(L,Y)
uj —wjpr  ui(L,Y) —ujpa(L,Y)
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for every L € L’.

Let wg # v1 if j = 0. Then for each L € £’ construct a solution of system (10)
or ascertain that it has no solutions, see [3], [4] (here one use should condition
(A) from the Introduction).

Let system (10) has a solution

Lm0, Yy ) € AP TN (R(e1, £2,635))

for some L € L£'. Then po(y') = po(Y) and w(L,y) < w(L,y) = w(y) by
Lemma 12 (ii).

If j = r and system (10) has no solutions for all L € £ then w(y) = w(Y)
by Lemma 12 (i) and by the choice of N3. Set in this case z; = y; for 2 < i < n.

Let j =0 and vg = v1 or 0 < j < —1 and system (10) has no solutions for

all L € £'. Then
vi = v _ u(Y) =i (Y)
uj =i i (Y) —uj(Y)

(13)

by Lemma 12 (i) and by the choice of N3. In this case again enumerate L € £’.
For every L € L’ construct a solution of system (7) or ascertain that it has no

solutions, see [3], [4] (here one use should condition (A) from the Introduction).

Let system (7) has a solution

(1,0, s Yoy oY) € AT (R(e0, €1, 0, 63))

for some L € L£'. Then po(y') = po(Y) and w(L,y) < w(L,y) = w(y) by

Lemma 11 (ii).

When system (7) has no solutions for all L € £ and j < r — 1 we have
ujp1 = t;4+1(Y) and v;41 = vj41(Y) by Lemma 11 (i) and by the choice of Ns.
In this case we replace j by j + 1 and return to the beginning of the algorithm

under description. Now j is greater than it was previously.

Thus, it remains to consider the cases when system (10) or system (7) has a

solution
(1,0, s Yoy oY) € AT (R(e0, €1, 0, 63))

(for system (10) this solution does not depend in ep). Hence po(y') = po(Y)
and w(L,y") < w(L,y) = w(y), see above. Let us show that we can construct

subsequently ¥, ...,y € Z such that po(y4, ...,y ¥iy1,---,¥,) = po(Y) and

w(y/Z/a"'ayglay£+1a"'ay;L) S w(ylz,...,y;l)

for all 2 < 7 < n, cf. the auxiliary algorithms from [3], [4]. Enumerating

integer values y§ = 0,..., N where N is bounded from above by a polynomial
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in d” and computing each time po(y4, v4, ..., y,) and w(yh, 44, .. ., y,) we shall
find the required y. The last fact follows from Lemma 8. In the similar way
construct y4,...,y.. Now replace ya,...,yn by 94,..., 4 and return to the
beginning of the algorithm under description. This completes the description of

the algorithm for constructing zs, ..., z,.

Note that in the recursion of the described algorithm the quotient (v; —
vjt1)/(u; — uj41) can take at most polynomial in d” values and when (13)
holds the integer u;41 also can take at most polynomial in d” values. Hence, in
the described algorithm there might be at most polynomial in d” returns to the
beginning when the value of j is the same. Since there are at most polynomial
in d” different values j the total number of such returns is bounded from above

by a polynomial in d”.

Note that the degrees of all equations and inequalities from systems (5), (10
(7) relative to all their variables are O(d). The constant fields in systems (7
(respectively (10)) are extensions of R(gg,¢1,¢€2,¢3) (respectively R(e1,e2,23))
of the degree polynomial in d”. According to [14], [7], see also [3], [4], the
working time of the algorithm for deciding whether systems (5), (10), (7) have

),
)

bl

solutions and constructing these solutions is polynomial d”, dy, d2, M, M1, m.
Thus, the working time of the algorithm described in this section is polynomial
n dn, dl, dz, M, Ml, m.

2 Existence theorem

We shall suppose that R = R in this section. Let V = Z(f1,..., f;,) be an
algebraic variety from the Introduction and V(R) the corresponding real alge-
braic variety. We shall suppose in this section as in the previous one V(R) to

be non—empty and bounded.

We need the following lemmas

LEMMA 13 Let a compact set C' C C™ L my > 0, be given. Let for an
arbitrary point (by,...,by,) € C' the coordinate by # 0. Let

C={ > b:Z™m7 :(bo,....,bm,) €C"}
0<i<my
be the set of polynomials ¢ = 37 ic, b;zm™—t € C[Z] of degree degt) = my
with coefficients from C'. Let ms be an integer such that ms > my and 0 < 6 €
R. Let 1; € C[Z] be a polynomial of degree deg{/; < my such that the absolute
values of all coefficients of the polynomial {/; — v are less than §. Denote by
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zi € C, 1 < ¢ < my, (respectively z; € C, 1 < i < deg {/;) the families of roots
taking into account their multiplicities of polynomials ¢ (respectively {/;) Then
for every dg > 0 there 1s § > 0 such that for every & € C for every 1; as described
there is a permutation o of the set'1,..., dng such that

o [Zo) — 2| <do for 1 <i <y,

o |Zo()l > o5t formi +1<i<degi.

PROOF  Since ' is compact it is sufficient to prove this lemma for a small
neighborhood W of an arbitrary polynomial g instead of the compact C’.
Consider a finite family of non—intersecting circumferences ¢,, a« € A, with the
radiuses less than Jy and such that inside each circumference ¢, there is only
one but may be multiple with the multiplicity m, root of the polynomial ;.
Consider also a circumference ¢ containing inside all the roots of the polynomial
1y with the radius more than (50_1. Let ¢ be a polynomial from a sufficiently
small neighborhood W of 1y Let ¢’ be ¢, for some a or ¢. Then we can choose &
and W so small that ¢ and {/; do not have any zero on ¢’ and the absolute value
of every integral [, (¢'(2)/¢(z) — {/;’(z)/{/;(z))dz is less than 1/2. The lemma is

proved.

Now let the integer ya, ..., yn have lengths O(nlogd). Recall that in Sec-
tion 1 po(y), pi(y), p2(y), w(y) and p(y) were defined. Let p(ya,...,yn) =
u(Y) where Y = (Ya,...,Y,), see Section 1. Recall that the polynomial & €
R[e® M) Xy, ..., X,.], the polynomial G(y) € R[e, L]. Let vs, ..., v, € R and
0 # 6 € R. Denote for brevity v = (va,...,vs) and |v|? = >, ., [uil?.
Also denote p; = w;(YV), i = 1,2,3, p = p(Y) and w = w(Y)_. " Define
P(y) = Gly) /9 € B, I).

Consider the following system of polynomial equations in Xg,..., X,.
h(1,d, Xo,..., Xn) =0, (14)
(1,8, X0, ., Xn) —yi = (1,6, Xo, ..., Xp) =0, 2<i<n.

LEMMA 14 Let ju(y) = p. There is v > 0 such that for every va, ..., vy € R
Jor every 0 # 8 € R 4f [v|> < v and |8| < v then p(y +v) = p(y) and system
(14) has a finite number of solutions in P™(C).

PROOF Let v be a vector with sufficiently small |v|>. Then by Lemma 8
we have p(y +v) = p(y). Choose a linear form I with integer coefficients
satisfying (a) and (b) for y, see Section 1. Then ¢3(y) = 0 by Corollary 7 and
1L,y +v) > pa(Lyy) by Corollary 6. So pi(L,y +v) = p1(L,y) = p1 and
t(L,y+v) = t1(L,y). Hence,

D(y+v)(1,8,L —lo,—ly,...,—l,) = 62V F(y+v)(8, L).
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The similar equality holds if one replace y+v by y. By Corollary 6 pa(L, y+v) >
po(Lyy). So pa(L,y+v) = po(L,y) = po. Since D(Y) is a polynomial in
Ya,...,Y, and by the definition of ps(L,y) the coefficient in L#2(Z¥) in the
polynomial F(y+ v)(d, L) is non—zero for all § # 0 and v with sufficiently small
|6] and |v|*. Hence under these conditions D(y + v) is non-zero and therefore,

system (14) has a finite number of solutions. The lemma is proved.

Let va, ..., v, € R be such that if |v|? < v. Replace in system (2) y by y+v.
Denote by

ED(e,0) = (1:69(e,0) . €9)(e, ) € P(T(e)), 1< j < po,
the family of all roots of type (iii) of the considered system. Set
D) = (st (€7 (e,0)) st (€90 (e, 0)) € PHT), 1< 5 < paly +v),

where st. is the standard part defined for the elements of the field C(¢) which
are not infinitely large relative to the field C.

Let v and § are such that system (14) has a finite number of solutions in
P?(C). Denote by £€W)(8,v) € P*(C), 1 < j < po (recall that po = (2d +2)(2d +
1)7=1) the family of roots of (14) counting with multiplicities. Denote

DG v) = €96, 0) €96, v) 1. €96, v))

where f}j)((s, v) € C and we shall suppose without loss of generality that if
5(()])(& v) # 0 then €é])(5, v) = 1 for all j.

REMARK 4 Let some ) (e, v) (respectively €9)(v), £€U)(8,v)) does not be-
long to the hyperplane Z(Xg) in P™. Then we shall use the same notation for

this element constdered as a point from A" . This will not lead to the ambiguity

LEMMA 15 Let u(y) = p. Let v > 0 be from the statement of Lemma 14.
There is 0 < vy < v such that for every 61 > 0 there is 0 < § < v such that for
every vs, ..., v, € R satisfying the inequality |v|? < vy if |§] < 82 then there is
a permutation o of the set 1,..., pg such that

o forevery 1 < j < s the equalztzes 50 (6 v) =1 and
2 o<i<n |‘5 ) (5 v) — ( )2 < 61 hold,

e for every /12 —|— 1 <7< po zf&’oa(j))(é, v) = 1 then
>0<i<n €79 (8, 0)7 > 67
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PROOF  There is a family of different linear forms Ly, 1 <u < (n4+1)po+1
such that

Ly = Z A X ey €L
0<i<n
and for every u the form L, satisfies conditions (a) and (b) for y. Denote the
polynomials F(y) and F(y + v) corresponding to the linear form L, by Fy(y)
and Fy, (y+v) respectively. Denote by J(d,v) C {1,..., po} the subset of indices
such that €éj)(5, v) # 0if and only if j € J(§, v). We shall suppose without loss
of generality that J(d,v) = {1,...,deg; Fu(y+v)}. Since D(Y') is a polynomial

in Ys,...,Y, we can represent
Fuly+v) =eVUs(e, Ly, vay .., 0n) + Wy (Ly, va, ..., 0p)
where the polynomials W3 € Rle, Z, 7, ..., Z,], Y4 € R[Z, 75, ..., Z,]. By the
choice of y and L, we have deg, ¥4(7,0,...,0) = ps. Besides that,
degz Wa(Z, v, .., 0n) = Fu(y +0)(0,2) 2 pa(L,y +v) = pa(L, y) = po

by Corollary 6 for all v with sufficiently small |v|?. Hence, the degree of the
polynomial deg, U4(7Z, va, ..., vn) = pia by the definition of pa.

By our definitions the family of roots the polynomial Fy,(y 4+ v) coincides
with (L./X0)(€Y)(8,v)), j € J(8,v). The family of roots of the polynomial
U,y (Z,va, ..., v,) coincides with (L, /X0)(€V)(v)), 1 < j < pa.

Now Lemma 13 implies that there is 1 > 0 such that for every d3 > 0 there is
J2 > 0 such that for every u for every v; € R with |v|? < vy if |§] < 65 then there
is a permutation p = p, (it depends on u) of the set 0, ... deg, Fy(y+v)(6, 7)
such that

o |(Lu/Xo)(EPUD (8, v)) — (Lu/Xo) (€9 ()] < 65 for 1 < j < pio,

o [(Lu/Xo) (P (8, 0))| > 5 for s + 1 < j < degy Fuly +v)(3, 2).

For every u consider the projections
pu @ AM(C) = ANOC), (X1, Xn) = La(1, X1, ..o, Xp).
Set for every 01 > 0,85 > 0, uand 1 < j < puy

W ;(d3) ={z€C: Iz—(L / Xo) (€Y (v))|<53}
Wi(81) = {(z1, .o z0) €AT(C) + Y | — €7 (0)? < 61}

1<i<n

Choose d3 so small that for all v with sufficiently small |v|? for all 1 < j < s
forall 1 <wug<...<wu, <(n+1)po+ 1 the intersection

M) 77 (W i(8s)) C Wi(61) (15)

0<i<n
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(it is possible since the linear forms Ly, . . ., Ly, are linearly independent). Note
that factually d5 does not depend on v since it is sufficient to satisfy (15) for only
point. Besides that, we shall require, may be choosing smaller d3, that for every
u the inequality |(Ly/Xo)(1, 21,...,2,)] > 65" implies > c;c, |2i]? > 671

Now let 1 < j < ps. Set J(j) to be the set of indices 1 < j; < pg such that
€U (v) = €U (v). Let a = #J(j) be the number of elements of J(j). Let us
show that there is a subset S C {1,..., uo} with #5 = « elements such that
Y o<i<n |€£s)((5, v) —€Z(j)(v)|2 < 4y for all s € 5. Suppose contrary, then for every
u there is an index 0 < ju < pp such that

|(Lu/ X0) (€9)(8,0)) = (Lu/X0) (€Y (v))] < 0

but Y o cicp |€£j”)((5, v) — €£j)(v)|2 > 4d1. Hence, there is 0 < jy < pg for which
there are 1 < ug < ... < up < (n 4 1)pg + 1 such that j, = jo for 0 < r < n.
But then (15) implies that > ., |€£‘7”)((5, v) — €£])(v)|2 < 61. The obtained

contradiction proves our assertion.

Finally, let j ¢ S(j1) for every 1 < j; < p2 and &’éj)(é, v) = 1. Then
Y o<i<n |€Z(‘7)((5, v)|? > &7 by the choice of §3. The lemma is proved.

Now note that for every vs, ..., v, € R satisfying the inequality > ;. [v]* <
v the equalities pa(y + v) = pa(y) = po holds.

LEMMA 16 For everyd > 0 there 1s0 < vo < v such that for everyva, ..., v, €
R satisfying the inequality |v|? < vy there is a permutation o of the set 1,..., po
such that 3 o, |€Z(T(‘7))(v) - €£])(0)|2 < § for every 1 < j < po.

PROOF The proof of this lemma is similar to one of Lemma 15 but easier.
It follows from Lemma 13 and the fact that deg, ¥4(7,0,...,0) = p2, see the

proof of Lemma 15. The lemma is proved.

REMARK 5 In what follows for convenience of notations applying Lemma 15
and Lemma 16 we shall suppose without loss of generality that o and T are the
wdentity permutations. We shall say in this situation that the famailies €(j)(5, v),
1 < j < po, and E9)(v), 1 < j < pa, (respectively €9)(v), 1 < j < pa, and
€W(0), 1 < j < pa), are coordinated by Lemma 15 (respectively Lemma 16).

LEMMA 17 Letn > 2. Let zo € R” Let the points z1,...,zn € R™ be different

from zy. Then there is a O™ —diffeomorphism
6 R7? —)Rn, (Xl,...,Xn) — (ﬁl(Xl,...,Xn),...,6H(X1,...,Xn))

such that £y (%) < 0 for every 1 < i < N and (%) > 0.
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PROOF  This follows from the fact that R™\ {zg, 21, ..., 25 } consists of one

connected component. The lemma is proved.

Recall that the family of roots of system (2) in A" (C ( )) is €W)(e,0), 1 <
J < pa, (these roots correspond to the solutions of type (iii) of system (2)).
Denote for brevity for every 1 < j < ps

0= (&, ) =eD(0) =
ste (€9)(,0)) = (st (7 (,0)), ..., st (61 (£,0))) € A7 (C).

For any vector z = (z1,...,2,) € C* denote |z| = (3, c;cp |2 '|2)1/2 Define

also Re(z) € R” and Im(z) € R™ by the equality z = Re( )+ v/ —1Tm(z).
|€ |2 Zl<z<n |€ |2 for 1 < .7 < H2-

Consider some semi-algebraic triangulation of V(R) and its non-zero s—
dimensional cycle e = Zl<j<q 0y, with coefficients from Z /27 defined in the
Introduction. So all the simplexes o, are maximal. Let y = (y1,...,yn) € R”

be a vector such as in the Introduction. Let y; = 1 in this section.
Recall that in the Introduction m’, E’, m”, E" were defined for vector y.

Now we shall suppose in this section that every simplex ¢(op,;), 1 < j <gq,
see the Introduction, is not contained in any hyperplane Zg (3", ¢;<, 4iXi — @),
a€cR.

THEOREM 3 Let n > 3 and V(R) be a bounded non-empty real affine alge-
bratc variety given as a set of all common zeroes of polynomials fi,..., fm €
(R[X71, ..., Xpn], see Introduction. Let dimV(R) <n—2. Let = p(ya, ..., Un),
see Section 1. Let e = ZlSqu op,; be a non—zero s—dimensional cycle with co-
efficients from 7 /27, of a semi-algebraic triangulation of V(R) such as above,
herewsth all the simplexes op, are marimal. Let the image of every simplex
o(op,), 1 < j < gq, is not contained in any hyperplane Zr(} 1<, <, ¥iXi — a),
a € R (hence s > 1). Then there are at least two different points §<j7, 1<y < ps
which belong to E. More precisely, E'UE" C {€U) 1 1 < j < ps}. In particular

under the conditions of this theorem the sets E' and E" are finite.

PROOF  Effecting the linear transformation of coordinates X; — X; +
ZZSJSH ¥ Xi, X — Xi, ¢ = 0,2,3,...,n we shall suppose in what follows
that (y2,...,4n) = (0,...,0) and pu(0,...,0) = . Thus, (2) with Xg = 1 is
equivalent to the system of polynomial equations in X1, ..., X, with coefficients

in the field R (¢)

& :0’
j(;fs , (16)
ax, =0, 2<i<n.
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Recall that m’ = max Xy (F) and B ={z € F : X;1(z) = m'}. We shall
suppose without loss of generality that m’ = 0 effecting if necessary the linear
transformation X; — X7 +m’. Denote by W’ the algebraic variety which is
the closure in the Zariski topology of E’. Then dim W/’ < s since every simplex
#(0p;), 1 < j < ¢, is not contained in any hyperplane Zg(X;, — a), a € R.
Suppose that there is a point £(¥) € B’ and ¢ + ¢U) for every 1< j < 1o,

Denote by J; C {1, ..., p2} the subset of indices such that j € J; if and only
if X;(¢U))=0and V) e R

Denote by Js C {1, ..., pa} the subset of indices such that j € J, if and only
if X1(60))#0and V) ¢ R™

Denote by Js C {1, ..., pa} the subset of indices such that j € Js if and only
if £0) ¢ R”,

So{l,...,pet=J1UJoUJgand J;NJ; =@ forall 1 <i#j<3.
Consider the projection
pr o RT R (X X)) = (X, X,

Replace n by n — 1 in the formulation of Lemma 17 and apply this lemma to
p1(€(9) and the points p; (€U)), j € J1. Denote by 8 = (Ba,...,0,) : R*~1 —
R~ the obtained C®-diffeomorphism, herewith G2 (p1(£9))) < 0 for all j € J;
and B2(p1(£(?)) > 0. Define the C*®-diffeomorphism v = (y1,...,7,) : R® —
R” by the formulasy; = X7 and 4; = 3 o py for 2 < i < n. Then y2(6W)) < 0
for all j € J; and y2(£(®)) > 0.

Definition of e1. Choose €; > 0 so small that

(1a) for every j € Jy the inequality v2(€)) < —2¢; holds,
(1b) for every j € J, the inequality |X;(¢1))| > 2¢; holds,
(1c) for every j € J3 the inequality | Tm(¢U))| > 2¢; holds,

(1d) 'yz(é’(o)) > 2¢1 holds.
Definition of es. Choose €3 > 0 so small that
(2a) €3 < vy where vy is from Lemma 15

Now note that there is w > 0 so small that (1a), (1b) and (1c) will take place
also if one replace 2¢; by 2¢; + w. Hence there is 6’ > 0 such that if = € C* and
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|z — €W|? < ¢ then for every j € J; (vespectively j € Ja, j € J3) the inequality
y2(Re(z)) < —2¢; (respectively |X1(z)| > 2¢1, |Im(z)| > 2¢;) holds.

Recall that v; < v. So set § = ¢’, apply Lemma 16 and Remark 5. We shall
suppose in what follows that the corresponding families E’(j)(v), 1 <j < s, and
€U 1< j < p, are coordinated by Lemma 16. We shall require that

(2b) €2 < va where vy corresponds to & = §’ by Lemma 16.
Note that (2b) implies
(2i) for every j € Jy for every v € R"~! such that |v|? < e the inequality

vo(Re(€W) (v))) < —2¢; holds,

(2ii) for every j € Jy for every v € R"™! such that |v]” < ¢ the inequality
X1 (6@ ()] > 2¢; holds,

(21ii) for every j € Js for every v € R"™% such that Ju|* < ¢ the inequality
|Im(€(j)(v))| > 2¢; holds,

(2iv) there is mg > 0 such that for every 1 < j < ps for every v € R"~! such
that |v]> < €3 the inequality [¢)(v)|> < mg holds.

Definition of e3.  Let r : R — R be a C"°—function such that r(z) = 1 if
z < —ep, r(x) = 0if & > ¢; and r is a monotone decreasing function in the open

interval —e; < & < €7.

Choose an open n-dimensional ball B C R” with the center in the point
(0,...,0) containing V(R). Denote by B the closure in the classic topology of
B. Denote v’ = dr/dx. Set

m; = max{r'(z) : z € R}
ay —
ms = Zrélias)%maxﬂa—);(zﬂ sz € B&|ya(2)| < e}

We shall require that

(3a) e3 < min{y/e2/(n —1)/(mima), e1/2}.

This implies (ezmims)?(n — 1) < €.

Definition of e4. Note that for every sufficiently small neighborhood U in
the classic topology of the point £ there is a smooth point zo € U such that

(4i) the point zp € E,
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(4i1) the point zg is smooth on V(R) of dimension s,

(4iii) the tangent space 1%, v (&), is not contained in the hyperplane Zg(X1), i.e.
the vector (1,0,...,0) is not orthogonal to T, v (&),

(4iv) y2(z0) > 2€;.
These requirements can be satisfied due to the fact that every simplex ¢(o,,),
1 < j < g, is not contained in any hyperplane Zg(X; — a),

Choose ¢4 > 0 such that

(4a) €4 < €3/2,
(4b) the intersection F N Zg (X1 — €4) contains a point zy which satisfies con-

ditions (4i)—(4iv).

Definition of e5. Consider the n-dimensional ball B C R™ introduced
previously. Set

my = min{f(z) : 2 € BN(R™\ B)},
Then my > 0. Denote by ms the radius of B. Set mg = max{mo + 2, ms + 1}.

Denote V. = Zr(f — eg) N B for 0 < € € R. We shall require

(5a) 0 < €5 < my,
(5b) for every €, 0 < € < €3, V¢ is a smooth manifold,
(5¢) €5 < vy where vy is from the formulation of Lemma 15.

By (2i)-(2iv) there is §” > 0 such that for every v € R"~1 for every z € C*
if [v]> < e and |z — €W (v)|> < 6 then

o for every j € Jy the inequalities y2(Re(z)) < —e¢; and
|X1(2) — X1 (€U ()] < e3/2 hold,
o for every j € Js the inequality |X1(z)| > €1 holds,
o for every j € J3 the inequality |Im(z)| > € holds.
So set §; = min{é”, mg? 1}, apply Lemma 15 and Remark 5. We shall
suppose in what follows that the corresponding families &’(j)(G, v), 1 <34 < po,

and £€U)(v), 1 < j < po, are coordinated by Lemma 15 if 0 < ¢ < €5, |v]? < €a.
We shall require that
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5d) €5 < 85 where 85 corresponds to §; = min{é”, mz%,1} by Lemma 15.
6
Then (5d) implies
(51) for every €, 0 < € < €5, for every j € Jy for every v € R"~! such that
|v]> < €5 the inequality 2 (Re(£U) (e, v))) < —ey,

(5ii) for every ¢, 0 < € < ¢, for every j € J; the inequality | X, (W) (e,0))| <
€3/2 holds,

(5iii) for every ¢, 0 < € < ¢, for every j € Jy for every v € R"™! such that
|v]> < €5 the inequality | X1(£9) (e, v))| > €1 holds,

(5iv) for every ¢, 0 < € < €5, for every j € J3 for every v € R"~! such that
|v|> < €5 the inequality |Tm(£U) (e, v))| > €; holds,

(5v) for every €, 0 < € < €5, for every 1 < j < s for every v € R"~! such that
|v|> < €5 the inequality |¢) (e, v)]? < mo + 1 holds,

(5vi) for every €, 0 < € < €5, for every ps +1 < j < pg for every v € R"~1 such
that |v]? < €5 if 5(()‘7)(6, v) = 1 then the inequality |£U) (e, v)|?> > mg holds.
Note that (51)—(5iv) and (3a) imply
(5vii) for every €, 0 < € < €5, if j € J; U Jy and 'yz(Re(E’(j)(e,O))) < —¢€; then
|X1(€(])(€,0)) — €3| > 63/2,
(5viii) for every ¢, 0 < ¢ < €5, if j € Jo then | X1 (¢ (€,0))] > €3/2,
(5ix) for every €, 0 < ¢ < e5, if j € J3 then |Tm(£U) (¢, 0))] > €5/2.

Now consider the point zy defined in (4i)—(4iv) and (4b). Choose linear
forms Ly,..., Ly € R[Xy,..., X,] such that L; = X; and the intersection

Toovw)yN Zr(L, ..., Ls) = {0}

Then by the implicit function theorem zp is an isolated point of the intersection
V(R)N Zg(L1 — Li(z0), ..., Ls — Ls(20)). The connected component By of the

intersection
{z: f(z) —eg(z) <0}N Zr(L1 — L1(%0),. .-, Ls — Ls(20)) (17)

containing the point zy tends to the point zy when e tends to zero. For all
sufficiently small € > 0 the bound S; = 8By is a smooth compact (n —s — 1)—
dimensional manifold. Since n—s—1 > 0 this manifold is a connected component

of the real algebraic variety

Z]R(f—Eg)ﬂZ]R(Ll —Ll(Zo),...,Ls _LS(ZO)). (18)
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In what follows we shall suppose that the semi—algebraic set B is triangulated,
see [2]. Then this triangulation induces the triangulation of S;. The set By
defines the (n—s)—dimensional chain b; and S defines the (n—s—1)-dimensional

cycle s1 which is the bound of by, i.e. s7 = 0by.

Finally, we shall put forth the following requirements.

(5e) for every €, 0 < € < €5, the bound S; = 9By is a smooth manifold which

is a connected component of a real algebraic variety,

(5f) for every €, 0 < € < €5, for every 2z’ € By the inequality v2(2) > €1 holds.

Define the C'*°—function w : R™ — R by the formula
w(Xl, .. ,Xn) = X1 —|— 637“(”)/2()(1, .. ,Xn))

Note also that w(X1, ..., Xp) = X1 + e37(82(X2, ..., Xy)). We claim that for
every €, 0 < € < €5 for every z € V; such that |w(z)| < ¢4 the point z is not a

critical point, see [13], of the function w on the compact smooth manifold V.

Indeed, suppose contrary that z is a critical point of the function w. If
|¥2(%)] > €1 then the gradients of the functions f — eg and w in the point z are
parallel to the vector (1,0,...,0). Hence, z = £ (e,0) for some 1 < j < ppo.
Conditions (bv) and (5vi) imply that 1 < j < ps. Condition (5iv) (or (bix))
implies that j € J; U Jo. Now from the definition of the function w conditions
(4b), (bvii) and (bviii) we get a contradiction.

If |y2(2)| < € then the gradients of the functions f — eg and w in the point

z are parallel to the vector

(1 a7/ (2(5) ), s arral2) 52 (2))
Set
vi:€3r/('yz(z))a£ 2<i<n.

0X;’

Then (3a) implies |v|* < 3. In this case z = €(j)(e,v) for some 1 < j < po.
Conditions (bv) and (5vi) imply that 1 < j < pz. We obtain a contradiction
from the definition of the function w and conditions (5i), (5iii) and (5iv). The

required assertion 1s proved.

Now, see [13], we get that there is a diffeomorphism
a [—eq, el X (Ven{z tw(z) = —ea}) — Ven{z @ |w(z)]| < es} (19)

such that w(a(a,w)) = a for every —e4 < a < egand w € VeN{z : w(z) = —e4}.
Denote V. o = Ve N{z : w(z) = a} for —e4 < a < e4. Denote by iq : V.o —
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Ven{z : |w(z)| < €4} the mappings of the inclusions. Then (19) implies that

the homomorphisms of the groups of singular homologies induced by ¢,
ax * Honcso1(Vea, ZJ2Z) - Hp_s1 (Ve {2 ¢ |w(2)| < ea}, Z/2Z)

have the same image for all —e4 < a@ < €4. Hence the same is true for the

through homomorphisms

Hy oo 1(Veo, Z)2Z) — Hp_oo1(Ve{z : |w(z)| < s}, Z/2Z) —
Hn_s_l(Vﬁ,Z/QZ) — Hn_s_l(R”\E,Z/QZ).

Denote by j(a) : Hn—s—1(Vea, Z/2Z) - Hp_s—1(R"\ E,Z/2Z) this through
homomorphism. Denote j_ = j(—e4) and j1 = j(eq).

We have the commutative diagram of the homology groups induced by the

inclusions of topological spaces

Hosor(Vea, Z)27) —  Hp_y_1(RP\ E) N {2z : w(2) = a}, Z/27)

! !
Hy_o1(Ve,2)27)  —> Hy_o_1(R"\ E,Z/27).

The topological space (R"\ EYN{z : w(z) = e4} is homeomorphic to R™~! since
EN{z : w(z) = ea} = . Hence the homology group H,_;—1((R*\ E)N{z :
w(z) = €4}, 7Z/27) = 0 since n — s — 1 > 0. Therefore, the image Im(j;) = 0.

On the other hand, by (5f) and (5e) the image Im(j_) contains the homo-
logical class of the cycle sy € Z,_s_1(R"\ E,7Z/27Z) defined above. Let us show
that s; is not homological to zero in H,,_;_1(R"\ F,Z/27Z). Indeed, the inter-
section of By N E consists of one point zy and is transversal in this point. So by
the general topological duality theory, see [16], the linking coefficient modulo 2

of cycles e and sy 1s not zero. From here our assertion follows immediately.

Thus, we have 0 # Im(j_) = Im(j4) = 0. Hence, the initial assumption that
E' ¢ {¢U) : 1< j < ps} leads to a contradiction. Therefore, B/ C {¢0) : 1<
§ < p2}. In the similar way E” C {£U) : 1 < j < ps}. The theorem is proved.

REMARK 6 Slightly modifying the proof of Theorem 3 one can consider also
the case when dimV(R) =n — 1.

REMARK 7 The condition that the image of every simplex ¢(o,,), 1 < j <gq,
is not contained in any hyperplane Zg (>, <, ., ¥iXi — a), a € R implies that
dim B, dimE"” < s and this condition is used only with the aim to prove these

mequalities.

REMARK 8 In the general case under the conditions of Theorem 3 the points
from E' and E'" may belong to many different components of V(R) even in the

case when E is contained in one irreducible component of V(IR).
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3 Proof of Theorem 1

Note that the case s = 0 is known, see [14]. Similarly, by [14] one can de-
cide whether V(R) = (. So we shall assume in what follows that s > 1 and
dimV(R) > 1. We can suppose without loss of generality that n > 3 and
dim V(R) < n — 2 considering if it is necessary the embedding A" — A"*2.

At first consider the case when R = R. Construct using the algorithm from
Section 1 the vector z = (1, z2, . .., z,) with integer coefficients with the lengths
O(nlogd) such that p(za,...,2,) = p. Effecting if necessary a linear transfor-
mation of A" we can suppose without loss of generality that z = (1,0,...,0)

and y; = 1.

Let Vi be the closure in the Zariski topology of the set of all smooth points
of the real algebraic variety V(R). The number of irreducible components of Vj
is bounded from above by P(d") for a polynomial P, see [15].

By Lemma 8 there is an integer a # 0 bounded from above by a polynomial

in d” such that

plac,ac?, ... ac"™ ) = p

for all integers 1 < ¢ < nP(d"”)+1. Construct such an integer a within the time

polynomial in d” and the size of input according to Section 1. Note that any n

vectors of the set
C={(1,ac,ac’ ... ac" ') : 1 <c<nP(d")+1}

are linearly independent. For every simplex oy, of the considered cycle e the
image ¢(0p,) is contained in some irreducible component of V, see [2]. Hence,

there is ¢y € C' such that every ¢(op;) is not contained in any hyperplane
Z(X1 +acoX2 + aciXs+ ...+ acg_an —-b), beR.
Denote ve = (1,ac,ac?... ac®~ 1) for all ¢ and vy = ve,.

By Lemma 8 the equality p(y—+dvg) = p holds for all sufficiently small § > 0.

Besides that, every ¢(op;) is not contained in any hyperplane
Z((I—F(S)Xl —|—(y2 —|—6aCo)X2 +(y3 +6an)X3—|— . +(yn +(5acg_1)Xn —b), beR
for all sufficiently small 6 > 0.

Consider the system of polynomial equations

fE = 0’ (20)
(1+40) 54 — (yi +6ac 1) H= =0, 2<i<n.
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Let the sets Ej§ and Ef correspond to the vector y + dvg similarly as E', E”
correspond to y. Theorem 3 implies that for all sufficiently small § > 0 there
are points z5 € Ej and 2§ € EY which are standard parts of some solutions of
the system (20) with ¢ = ¢p.

The compactness of E implies now that there is a sequence §; > 0,i=1,2,...
which tends to zero such that the points 2§ and zj tend to points 2’ € £ and
Z// E E//.

Now let d be a variable. Consider the set W of all the points which are
standard parts relative to ¢ of solutions of system (20) in (A" x Al)(m)
where A" has coordinates Xi,...,X, and A' has the coordinate 6. Then W
is an algebraic variety and the union of all components of W which are not
contained in Z(1+4) is a curve W, since for every § # 1 system (20) has a finite
number of solutions by Section 1. Further, 2/, 2" € W., N Z(J). So we define

Sy = J (We(R) N 2(3)).

ceC

Note that every curve W, can be constructed within the required time consid-
ering standard parts relative to £ of solutions of system (20) in A? (W)
by [5] and using Newton—Puiseux expansions, cf. [3], [4], [6], [7]. Further in a
similar way one can construct the set Sy. The theorem is now proved for the

case R = R.

In the general case we use the transfer principle, [2]. Tt is sufficient to note
that the fact that the real algebraic variety is semi-algebraically triangulated
can be expressed in the language of the first order theory of real fields. The

theorem is proved.
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