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Abstract

Consider a system of polynomial equations in n variables of degrees
less than d with integer coefficients with the lengths less than M. We show
using the construction close to smooth stratification of algebraic varieties
that an integer

A o g
corresponds to these polynomials such that for every prime p the consid-
ered system has a solution in the ring of p-adic numbers if and only if it
has a solution modulo p~ for the least integer N such that p” does not
divide A. This improves the previously known result by B. J. Birch and
K. McCann.
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Introduction

Let f1,..., fx € Z[X1,...,X,] be polynomials. The degrees

degx, x,fi<d

and the length of every coefficient of f; is less than M (it means that the absolute

value of every coefficient is less than 2% ~1) for all i. We shall suppose without

loss of generality that fi,..., fx are linearly independent over @ and k& > 1.

Let @, be the field of p-adic numbers and Z, the ring of p-adic integers.

THEOREM 1 For given polynomials f1, ..., fi there is an integer

n(140(1))
A < 2ME
such that for every prime p the system
fi=...=fxt=0 (1)

has a solution in Zj if and only if it has a solution in (ZJpNZ)™ for the least
integer N such that p’¥ does not divide A, herewith o(1) is an infinitesimal when

n — oco. The integer A can be constructed within the time polynomial in Md>" .

The previous result was obtained in the well known paper by B. J. Birch and
K. McCann [1] for the case of one polynomial k = 1, f = f1. Let L(f) denote

the maximum of absolute values of coefficients of f. Then [1] gives
A < (2ndL(f))Ca™
le.
A < Md"

for a constant ¢ > 1. So our result improves the highest level exponent from
nlog(en) to n(1+4o0(1)). Note also that the infinitesimal o(1) in the formulation
of Theorem 1 can be obtained explicitly from the proof. It is a rational function

of n, logn, loglogn.

Note also that the analogs of Theorem 1 and Theorem 4, see below, are true
if one consider homogeneous polynomials fi, ..., fx € Z[Xo,..., X,] and their
non-zero solutions, i.e. the solutions in Z2+\ {(0,...,0)} and (Z/pNZ)r L\
{(0,...,0)} respectively. The proofs are similar if we consider projective spaces
instead affine spaces. Further, for homogeneous polynomials the existence of
a solution of a system of polynomial equations in P?((Q,) is equivalent to the

existence of a non-zero solution Z2*'\ {(0,...,0)}.



The proof of Theorem 1 is based on the construction which iterates the
decomposition of a given algebraic variety into the union of irreducible com-
ponents and taking the proper closed subset containing all singular points of
a component. So the results of [2] is used for the proof. But for recursive es-
timations we need to prove basing on [2] also some additional facts related to
decomposition of algebraic varieties into irreducible components, see Lemma 2.
The construction required for the proof of Theorem 1 is closely related to the
smooth stratification of algebraic varieties. So we shall define and consider at
first the latter.

A related problem of deciding existence of a non-zero of a polynomial given

by a black box over p-adics was currently studied in [5].

Denote by Z(f1, ..., fx) the algebraic variety of all zeroes of the polynomials
fi,..., fi in the affine space A" (Q) over the algebraic closure Q of the field of

rational numbers Q.

DEFINITION 1 Denote

Vl :Z(flaafk)

Suppose that the closed in A" (Q) algebraic variety V, is defined for some 1 <
r<n. If V. £ @ consider the decomposition

v, = w
iel,
wnto the union of irreducible and defined over QQ algebraic varieties W;. Denote

by Sing W the set of singular points of W; and set

Y= singwmiu ) mnwy).
iel, t,J€lr i#£]

Let the closed in A" (Q) algebraic variety V.11 be such that V., D Vi.p1 D V),
and Wi\ Vg1 # O foralli € I.. Set

Sp =Vei\Voq1, Ui =Wi\Vip1.

Then the quasiprojective algebraic variety S, consists of smooth points of differ-
ent dimensions of the algebraic variety V., the quasiprojective algebraic varieties
U; are irreducible defined over Q@ and smooth for all :. We have the decomposi-

tion

S=Ju

i€l



wnto the union of irreducible and defined over Q components. We can suppose
without loss of generality that 1., N 1., = @ for all r1 # ra. Denote by ny the
mazimal v for which V., # @. Set I = U <r<pn,Ir. We have the decomposition

Z(fl,...,fk):UUi (2)

i€l

which gives the smooth stratification of Z(f1,..., fx) with smooth stratums U;.

Note that this construction depends on the choice of the varieties V.41 D Vr/+1~
If we have V.11 = V}/y; for all » then (2) is uniquely defined and we shall call it
canonical smooth stratification of Z(f1,..., fi). Note also that the codimension

of every component of V. is at least r.

Denote by Vr(s) the union of all irreducible and defined over Q components
(s)

of codimensions s of the algebraic variety V, where r < s < n. Note that V,

can be empty for some s. So we shall suppose that:

(a) The degree of the algebraic variety Vr(s) 1s less than Df«s) for some Df«s) >1
forall r <s<mn,1<r<ng.

(b) Each irreducible and defined over @@ component W; of this union Vr(s)
is given as a set of common zeroes of a family of polynomials h; , €
Z[X1,..., X,], « € A;, herewith the number of polynomials
#AL P((Df«s))”) and the lengths of their integer coefficients are less than
M;s) for some M;s) > 1 and a polynomial P.

(c) For every smooth point # € W; there are ay,...,a, € A such that
Ragy-- oy ha, 18 a system of local local parameters of W; in the point z
(i.e. hgy,- .., ha, generate the ideal of W; in the local ring O, un @) of the

point z in A" (Q)).

DEFINITION 2 Let an algebraic variety Z(f1, ..., fx) be given. Set

Vl :Z(flaafk)

Let an algebraic variety Vi, . ;, be defined for some 1 < k < n, herewithi; = 1.

Let Vi, i, #@. Consider the decomposition

‘/ily~~~yik = U mly~~~yik7ik+1

1y

Let

be a non—empty open in

into the union of wrreducible and defined over Q components Wi, iy it -

a smooth quasiprojective algebraic variety Uy, . 4, ivis

the Zariski topology subset of Wi, | i iy, Set

%1,~~~,ik,ik+1 11, lk, Tkl \ Ui17~~~yik7ik+1



for all i1 € I;; 5. Let ng be mammal k such that there ewists Vi, . i,
which 1s non—empty. Then the family of all Uy, ., for all indices iy with the
described structure and all 1 < k < ng defines branched smooth stratification of

the algebraic variety Z(f1,..., fx).

So the branched smooth stratification depends on the choice of Uy,
If Lgly~~ﬂk7ik+1
branched smooth stratification is uniquely defined and we shall call it canonical
branched smooth stratification of Z(f1, ..., fx).

bk, kg1

is always the set of all smooth points of W;, then such a

RN I PR

Note that the codimension of every algebraic variety W, is at least

colrytr4a

r. For every 1 < r < ng, r < s < n denote by %(s) the union of all the algebraic

varieties W; for all indices i1, ..., ¢r, 4r41) which have the codimension

1ylrytr4a (

s. We shall suppose that for branched smooth stratification (a)—(c) are satisfied
if we replace in them Wi by Wy, i i, and i by 41, ... 6, 041,

We shall prove in Section 1 the following results

THEOREM 2 For given polynomials f1, ..., fx one can construct the canon-
ical smooth stratification of Z(f1, ..., fx) satisfying (a)—(¢c) with

D) < (sd)zs_l’ Mr(s) < (M—i— nZ)P((Sd)ZS—l)

r

for some polynomial P. The working time of the algorithm for constructing

smooth stratification is polynomial in (nd)?>" and M.

THEOREM 3 For given polynomials f1, ..., fx one can construct the canon-
ical branched smooth stratification of Z(f1,..., fs) described above satisfying
(a)—(¢) (with corresponding changes) and such that

DY) < (sd)” ' M < (M +n?)P((sd)” )

for some polynomial P. The working time of the algorithm for constructing this

branched smooth stratification is polynomial in (nd)zn and M.

Recall that Z, denotes the ring of p-adic integers. Denote

M, = max M), D,= max D
1<r<ng 1<r<ng

for all 1 < s < n. We shall deduce Theorem 1 from Theorem 3 and the following

result which will be proved in Section 2.



THEOREM 4 Let polynomials f1, ..., fi be giwen with the set of zeroes V7.
Let a branched smooth stratification of V1 be given with corresponding D and

M. Then there is an integer
A< 2M7>(dn2)+21$$n MSP((sDS)"2)HDSt<S(tDt)"
(for a polynomial P) such that for every prime p the system

Ji=...=f=0

has a solution in Z7 if and only if it has a solution in (ZJpNZ)™ for the least
integer N > 0 such that p” does not divide A. The integer A can be constructed
within the time polynomual in n”2, M, My, d”2, D?2, 1<s<n.

1 Construction of the smooth stratification and
branched smooth stratification of an algebraic

variety

Our aim now is to prove Theorem 2 and Theorem 3 for the described canonical
smooth stratification and branched smooth stratification of Z(f1,..., fx).

Let w;;, ¢ = 0,5,s+1,...,n, 0 < j < n be algebraically independent

elements over Q. Denote for brevity the family

U = {uij}izo,s,541,...,n,0<<n-

Set U; = Zo<j<n u; jX;. Let V. C P™(Q) be an irreducible projective algebraic
variety defined over (@ of dimension n — s, 1 < s < n. Then there 1s a unique

(up to a factor +1) irreducible polynomial
He Z[uaZOaZsa .. aZn]

homogeneous relative to the variables 7y, 75, ..., Z, such that
HU,Uy,Us,...,Upy) is vanishing on V considered as a subvariety of ]P”(M)
The polynomial H has the degrees deguhuwvum H = degV for every z and
degy, 7.z, H =degV, cf. [4], [2].

Let V be an irreducible component of the algebraic variety Z(f1,..., fx).
Let us show that the lengths of integer coefficients of the polynomial H are
bounded from above by (M + n?)P(d®) for a polynomial P. Indeed, consider
the resultant

Ry = Resy, (Hy,, H) € ZU, Zs, . . ., 7] (3)



of the polynomial H relative to Zj.

There are finite sets of integers A; ;,¢ = 0,s,54+1,...,n,0 < j < nsuch that
#A; ; =degV +1 < d, the length of every element of A; ; is O(n?log(deg V +
1)) for all 4, j and if

D = (di;) € H A 5
1=0,s,s+1,...n,0<j<n
then
Ry(D,Zs,...,7Z,) # 0. (4)

The construction of system of polynomial equations for the components of an
algebraic variety from [2] and (4) imply that the lengths of integer coefficients of
the polynomial H (D, Zg, Zs, . . ., Zy) are bounded from above by (M +n?)P(d*).
Using multiple interpolation by all D we get that the lengths of integer coeffi-
cients of the polynomial H are bounded from above by (M + n?)P(d*) and the

required assertion 1s proved.

Let us show that one can construct the polynomial H within the time poly-
nomial in M, d*, (degV + 1)”2. Indeed, it is sufficient using [2] to construct a
generic point of V' within the time polynomial in M, d* and n. Then substitut-
ing the values of U; /Uy (obtained from this generic point) in H, constructing
and solving a linear system relative to the integer coefficients of H we get these

coefficients. The required assertion is proved.

Represent

HU, Uy, U, ..., U,) = > II uiHe  (5)
e=(e; ;)T (n—s+D(n+D) i=0,5,541,...,n,0<j<n

where H, € Z[Xo, ..., X,] are homogeneous polynomials. Note that if H, # 0

then > .¢;; < 2degV for all i. Denote E = {e : Hc # 0}. Then #E’ <

P((deg V+1)”2) for a polynomial P. Choose a maximal subset £ C E’ such that

the polynomials H., e € E are linearly independent. So #F < P((deg V +1)")

for a polynomial P.

We have, c.f. the construction of the system of polynomial equations for the
components of an algebraic variety from [2], Z(H., e € E) = V. Thus, if the
polynomial H is known then one can construct within the polynomial time the

system of homogeneous polynomial equations giving V.

DEFINITION 3 We shall say that the algebraic variety V s given by the
generic projection if the corresponding polynomial H s given. The system H, =
0, e € E for the algebraic variety V' will be called system of polynomial equations
corresponding to the generic projection of the algebraic variety V. So this system

depends on the choice of F.



It should be underlined that each index e € F in this definition has the form

e = (e; ;) described above.

LEMMA 1 Let V. C P™Q) be an irreducible projective algebraic variety of
degree degV = D and dimension n — s where 1 < s < n. Let V be given
by the generic projection and H, = 0, e € E, be the corresponding system of
polynomial equations. Let x € V be a smooth point. Let L € Q[Xo,..., X,]
be a linear form such that L(xz) # 0. Then there are ey, ...,e5; € E such that
H. /LY, ..., H. |LP is a system of local parameters of V in the point x.

PROOF Let Yy,...,Y, be linearly independent linear forms with integer

coefficients. Consider the projections
T VN Z(Yo,Yegt, -, Yn) = PP5(Q), (Xo : ..t X)) > (Yo : Vi1t 1Y),
and

mo VA Z(Yo,Y:, Yegt, ..., Yn) = PP5HH(Q),
(Xo:oo o Xn) = (Yo 1Y :Ysq1:...0Y,), 1<i<s,

There are linear forms Yy, ..., Y, such that Y(z) # 0 and

(i) the projection 7 is finite, i.e. VN Z(Yy, Ysg1,...,Yn) = O,
(ii) 7=1(m(x)) consists of deg V' different points,

(i) #(Y;/Yo)(m=H(m(z))) = #r~Y(m(z)) for every 1 < i < s.

By (ii) the differential d, in the point # of the projection 7 is an isomorphism.
The projection m; is also finite for every 1 < ¢ < s. Hence the set m;(V) is
closed in the Zariski topology and m;(V') is a set of zeroes of a homogeneous
polynomial h; € Z[Yy,Yi, Ysq1,...,Yn] of the degree degh; = degV by (iii).
By the Zariski main theorem the point m;(z) is smooth on m; (V). The implicit
function theorem implies now hy/LP ... h,/L" is a system of local parameters
of V in the point . But hq,...h, are linear combinations of polynomials H.,
e € E. Therefore, the required system of local parameters can be chosen among

polynomials H./L” e € E. The lemma is proved.

LEMMA 2 Let V C P*(Q) be an irreducible and defined over Q projective al-
gebraic variety of dimensionn—s, 1 < s <n. Let V be given by the generic pro-
jection and H = Hy be the corresponding polynomial. Let the degree deg V' < D’
and lengths of integer coefficients of Hy be less than M’. Let F € Q[Xo, ..., X,]
be a homogeneous polynomial of the degree D", D" > 1, and lengths of integer



coefficients less than M". Suppose that F is not vanishing on V. Let Wy be
an arbitrary wrreducible and defined over QQ component of the algebraic variety
VN Z(F). Let the degree degWy = D'"'. Then the degree of the intersection
VNZ(F) is less than D'D" and the component Wy can be given by the generic
projection. The corresponding polynomial Hyy, has integer coefficients with the
lengths less than

(M/ + M + nZ)P(D/D//) (6)

for a polynomial P. These polynomials Hw, giving all the components Wi can
be constructed within the time polynomial in (D’D”)”Q, M, M.

PROOF Set W=V N Z(F). Denote H = Hy.

Let Uy, Us, ..., U, be generic linear forms such as above. Denote for brevity

U = {u;j}izo,s41,..n,0<j<n
and the fields K = QU"), K1 = QU’, Zo, Zs41, - -, Zn)
Set
R} = Resy, (Hy,, H) € Kilusp, ..., ts ]

and

Rg) = H (Usyi_us,j) H R(l)(ui,Oa'”aui,n)

0<i#j<n 1<i<n+2

There are integers ug, Usy1, .. ., 4, with lengths O(log(nD')) such that

Rg)(UOaUs-H, coo ) # 0.

Set Y = ZOSan u;X; and L; = ZOSan u§+2Xj, 0 < i < n. Note that
Xo,..., X, are linear combinations of Ly, ..., L, with rational coefficients with

lengths of numerators and denominators O(nlog(nD")).

Denote by & € Z[U', 7y, Z, Zs41,. .., 7] (here Z is a new variable) the

homogeneous relative to Zy, 2, Z;41, . .., Z, polynomial

SU' 20,0, Zsy1,. . Zn) = HU, Zo, Z, Zsi1, ..., Zn)

us,j=u;z, 0<j<n

(one should substitute here the coefficients u; instead of generic coefficients u, ;,
0 < j < n). Similarly denote by &; € Z[U', 7o, Z, Zs41, ..., Zn], 0 < i < n, the

homogeneous relative to Zy, 2, Z;41, . .., Z, polynomial

O, (U, Zo, 7y Zosqry o Zn) = HU, Z0, 2, Zsi1y . Zn)

u, =ult? 0<j<n.

Denote by R = Resz (97 ,®) and R; = Resz, ((®:)%,, i), 0 < i < n, the

discriminants of the polynomials ® and ®; respectively. So

R= (Ryp .=y 085¢n Ri = (Ryy)

us,=uit? 0gj<no



The polynomials ® and ®; are non—zero separable and, therefore, irreducible
since V' is irreducible. Hence all the elements § = Y/Uy and L; /Uy, 0 < i < n

are primitive elements of the extension

K(V) D K(Ugy1/Us, ..., Un/Up).

For every 0 < i < n factor using the algorithm from [2] the polynomial ®;
over the field K(Usy1 /Uy, ..., Upn/Up)[0] and construct the generic point

Xi = (Li/Uo)lv € K(Usy1/Us, ..., UnJUo)[0], 0 <i<m (7)
Xi= > Xigt, xij € K(Uss1/Us, ..., Un/Uo) (8)
0<j<degy

of the algebraic variety V' over the field K. So we can write

Xij = Xij(Uo, Usq1, ..., Up).

According to the algorithm for factoring polynomials from [2] the degrees of
numerators and denominators (they belong to Z[U’, Uy, Usqq,...,Uy]) of all
Xi,; relative to every U;, 1 = 0,s4+1,...,n, and every w; ;, ¢ = 0,5+ 1,...,n,
0 < j < n are bounded from above by a polynomialin D’. The lengths of integer
coefficients of these numerators and denominators are bounded from above by
(M’ + n*)P(D’) for a polynomial P.

Denote by R = Resz (9%, ®) € Z|U', Zo, Zs41, . .., %] the discriminant of
® relative to Z. Similarly define the discriminants R; for the polynomials ®;,
0<e<n.

Now we have
2y RRixi j(Zo, Zsq1s .- Zn) € K[ Z0, Zss1, ..., Zn)

for some integers a; ; since
Ri(1,Us41/Uq, ..., Uy /Ug)x; is integral over K[Usq1/Uy, ..., U, /U] and the
integral closure of K[Us41/Up ..., Up/Uolin K(Usq1/Us, ..., Un/Uy)[f] is con-

tained 1n

(R, Uspr/Uor o UafUS)) S KlUegs/Un,. .. Un/ToJ0.
0<j<degy @

Let € > 0 be an infinitesimal relative to the field K. Then the mapping of
standard part

st : P(K(2)) — P'(EK)

10



is defined, see [3] (the standard part of the element z € P?(K(¢)) is an element

z1 € P*(K) which is infinitesimal close to z). Consider the algebraic variety
W. =V Z(F—eUP"y c P(K(e)).

Let Wa be an irreducible and defined over K (g) component of W,. Then we
have st(WW,) = W and st(12) is a union of some irreducible and defined over
K components of W, c.f. [3]. Further, the dimension of every component Wy
of W is n — s — 1. Choose and fix W5 such that st(Ws2) D Wj. So there
exists a uniquely defined irreducible polynomial from Z[U' e, Zo, Zs11, - . -, Zn)

homogeneous relative to Zy, Zs41, ..., Zyn which is vanishing on Wha.

Let us show that R is not vanishing on Wa. Indeed, if R(W3) = {0} then
Wy C VN Z(R). But all the components of V N Z(R) are defined over K
and have the dimension n — s — 1 since @ is separable. Therefore, W, is also
defined over K. Hence, the polynomials F' and Uy are vanishing on W> which

contradicts to the fact that no components of W lie in Z(Up).
Similarly one can prove that R; is not vanishing on W5 for every 0 < ¢ < n.

Now the polynomial H; = Hw, can be obtained from the following con-

struction. Denote by
Ny - [((E,US_H/UQ,...,Un/Uo)[g] — [((6,U5+1/U0,...,UH/U0)

the mapping of the norm of the extension of fields. Denote by F the polyno-
mial with rational coefficients in n + 1 variables such that ﬁ(Lo, oo Lp) =F.

Consider the rational function

Fl(E,UQ,Us+1, .. ,Un) = NQ(F(XQ, .. .,Xn) — 6) & [((6,U5+1/U0, .. ,Un/Uo)
Represent
F1(6,U0,U5+1, .. aUn) — FZ(EaUOaUs-I—la .. 'aUn)/FS(EaUOaUs+1a .. aUn)

where Fs, F3 € Kle, Zo, Zs41, ..., Zn] are homogeneous relative to Zy, Zs41,
..., Zn polynomials and GCD (Fy, F5) = 1. Note that the denominator Fs
divides (ZoR [[y<;c,, Ri)® for some integer a > 1. So the rational function

FZ(EaUOaUs-I—la .. 'aUn)/FS(EaUOaUs+1a .. aUn)

is defined on the component Wy and the polynomial Fy(e, Uy, Usqq, ..., Up)
is vanishing on Ws. Since Wj is a component of st(Ws) the polynomial Iy
coincides with an irreducible factor of F5(0, Zo, Zs41, ..., Zn).

iFrom the described construction using [2] and the ascertained estimations
for degrees and lengths of integer coefficients of x; ; we get immediately (6).

The lemma is proved.

11



Now our aim is to prove Theorem 2. In what follows when 1t 1s required
to construct a system of polynomial equations for any affine algebraic variety
U C A"(Q) we shall construct system of homogeneous polynomial equations
corresponding to the generic projection of its closure in U C P”(@) by Lemma 2
and [2]. This will gives a system for U. The condition (c) when it is required

will be satisfied by Lemma 1.

Compute using [2] all the irreducible and defined over @@ components W; of
the algebraic variety Z(f1,..., fi) = V1. Then according to [2] the estimations
of Theorem 2 for Dgs) and Ml(s) are fulfilled for the components of Vl(s), 1<

s < n.

Let 1 < r < n and suppose that we have constructed recursively all the
components W;, ¢ € I of the algebraic variety V;.. Further, suppose that (a)-
(c) hold and the required estimations for Df«s) and M;s) are fulfilled for the

(s)

components of V77, r < s < n.

Let us show how to construct all the components of %(i)l for all s such that
r+1 < s <n. Let W; and W; be irreducible and defined over Q components
of V. of codimensions s; and s; and degrees I); and D; respectively, herewith
s; > s;. Denote by Bl = A® x {1,...,n}*. For every

6:((al,...,as),(jl...,js))EBZ/»

compute the Jacobian

ha
J@ = det (a u) .
anv 1<u,v<s

Compute a maximal subset B; C B} such that all the Jacobians Js, § € B; are
linearly independent. We have by (c)

Sing W; = Wi N Z({Js}sen,),

Further, degJs < s;(D; — 1) < s;D; and the degree of the union of all the
components of codimension s; + w of SingW; is less than D;(s;D;)". So if
s > s; then the degree of the union of all the components of codimension s of
Sing W; is less than D;(s; D;)°~%i. Similarly if s > s; then the degree of the
union of all the components of codimension s of the intersection W; N Wj is less
than DiDj_“. Note that

> D < (ud)” !
{i:s;=u}

for every r < u < n. Therefore, the degree of %(i)l 1s less than

Z DZ'(SZ'DZ')S_S’ + Z Dz’D;_Sl <

{izs>s:} {(,0):s>5:25)

12



SN piwnyrrr > YD > DD <

1<u<s—1 {i:s;=u} 1<u<s—11<v<u {(i,j):s=u,s;=v}
Z (ud)(Z”—l)(s—u+1)us—u+ Z Z (ud)zu_l(vd)(zv—l)(s_“) <
1<u<s—1 1<u<s—11<v<u
dzs—1( Z uZ”—l(UZ”(s—u)+ Z v(2”—1)(s—u)))§
1<u<s—1 1<v<u
dzs_1 Z uz“—1(2u2“(s—u)) Sdzs_l Z 2u2”(s—u+1)—1 <
1<u<s—1 1<u<s—1
42 15271 Z 2(u2u(s—u+1)—1/825—1) < (5d)28_12(5—1)(1— 1/5)25—1 <
1<u<s—1
(sd)zs_l

(s)

Thus, we have proved the required estimations of Theorem 2 for Drj_l.

Now to complete the proof it is sufficient to prove the estimation for Mr(j-)r
Each component of %(i)l is a component of Sing W; or W; N W; where W; and

W; are components of V;., see above.

Suppose that W is a component of Sing W;. Then there are polynomials
Fut1, ..., Fs which are linear combinations of Jg, § € B;, with integer coeffi-
cients of the lengths O(nlog(s; D;)) satisfying the following property. There is

a sequence of irreducible and defined over (Q algebraic varieties
w = w;, weth o owe) = w

such that WU+ is a component of WU N Z(Fj41) for every u < j < s.
Similarly in the case when W is a component of W; N W, there are analogous
sequences of polynomials and irreducible and defined over (Y algebraic varieties

(for estimations one should take s; > s;).

In the both cases the estimation for Mr(j_)l can be obtained now by subsequent
applying Lemma 2 using the ascertained inequalities for Mr(a). One should only
take the degree of the polynomial P from Theorem 2 sufficiently great relative to
the degree of the polynomials from Lemma 2. It is convenient also for recursive

estimations to write the statement of Theorem 2 1n the form
M) <30 (M 4 n?)P((sd)* 1)

which allows easily to take into account the addition M’ + M" + n? when

Lemma 2 1s applied. The theorem 1s proved.

The proof of Theorem 3 is completely analogous to the one of Theorem 2
and even easier since one should not consider the intersections of different com-
ponents but only the sets of singular points of the components. Theorem 3 is

also proved.
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2 Solvability of systems over p-adics and

branched smooth stratification

Our aim is to prove Theorem 4. Let a # 0 be an integer. Set ord,(a) = b € Z
if and only if a/p® € Z but a/p**t! ¢ Z. If z € IR then set [z] to be the maximal
integer zo such that zp < z and define [2]; = max{[z], 1}.

It is convenient also to introduce the algebraic variety Wy = A™ (Q) and set
My = M, Dy = d. So the codimension codimW; = 0, the degree degW; =1
and Wi is given by an empty system of equations. Let W, = ; # © and
Vie, i, = O for some 1 < r < ng+ 1. Then set W, = ¢ where

and I;, ., is an one element set. Set also deg W;, ;. ;... =0,

1.
i
eyl €1,
codim W;

Wi, irirg, 18 glven by one equation 1 = 0.

r

=n+1if Vi, ;. = . In this case the algebraic variety

1yoontrylr4

We shall construct integers ¢(*), 0 < s < n, which are less than
MsP(((s+1)D; )”2) for a polynomial P and satisfy the property described below.

Set

Let € Z" be a point such that f;(z) = 0 mod p™, 1 <i < k. Set Ny = N

and
Ne=[ Y 2 ord, () TT (¢ +1)D0)")s
u<s<n u<t<s

SoNg=Nand 1 <N, € Zforall 0 <u <n+1. If N, =1 then ordp(c(s)) =0
and N, = 1 for all s > u. Recall that h, = 0, o € A;,, . ; 1is the system of
polynomial equations of the algebraic variety Wy, ; , 1 < < ng+ 2, from
the described construction of branched smooth stratification (and the previous

remark).

The property of the integers ¢{*) is the following one. Let 1 < 7 < ng+1 and
there is an algebraic variety W;,  ;
0 < u < n such that

with the codimension codim W;, . ;

.

:U,

r

ho(x) = 0 mod p™«. (9)

Then the similar statement holds for » 4+ 1 or » > 2 and there is a point in

Wi, ... s, with coordinates from Z,,.

Let us show that it is sufficient to construct ¢(*) and prove this property
to finish the proof of the theorem. Indeed, suppose that ¢(*) are constructed
and this property is proved. Suppose that there are no points with coordinates

r)

from Z, in any W;, ;. with r > 2. Then (9) is valid for some empty W;,

14



1 < r < ng+2 We get a contradiction 1 = 0 mod p+ which proves our

assertion.

Thus, suppose that 0 < r < ng + 1 and we have proved by induction that
there is an algebraic variety W;,  ; with the codimension codim W;, . ; = u,
0 < u < n such that (9) holds for all @. Our aim will be to prove the similar
statement for r + 1 or if r > 2 to show that there is a point in W;,  ; with
coordinates from Z, (more precisely, in the latter case we shall show how to

construct such a point).

If » > 2 then the degrees of the Jacobians Jg, 8 € B, (from the considered
construction) defining the set of singular points of the algebraic variety W;, ;.
are less than uD, and lengths of integer coeflicients of these Jacobians are less
than (M + n?)Py(uD,) for a polynomial P;. Set N = N, /2 if N, is even and
N/ = (Ny +1)/2if Ny is odd. If

Ja(z) # Omode’IJ, (10)

then the standard Hensel lemma (one should fix the variables to which there
are no partial derivatives in the Jacobian matrix) shows that there is a point in
Wi,,..s, with coordinates from Z,. Note that [N, /2]; < N/ since 1 < N, € Z.

So we shall suppose without loss of generality that

1y

Ja(z) = 0 mod ptNu/ 2+
for all 5. Recall that if » > 2 then

Viv o in=Wi, 5, N Z({Js}ser).

Denote by G, = 0, p € R, the system of polynomial equations defining the
algebraic variety Vi, . ; in our construction. In the case when r > 2 this system
consists of all equations h, = 0 and Jg = 0. When r = 1 the polynomials G,

coincide with the initial polynomials fi, ..., fx.

Set § = (uDy)", p=My v=[Ny/2]4ifr>2andd =d", p=M,v =Ny
if r = 1. Note that #1;, i <J by the Bézout inequality.

over the field Q@ of all
Note

Let 4,11 € Iy, . 4,.. Consider the vector space S;, .,

polynomials of degrees at most deg W;, | vanishing on Wi,

that

colrytr4a colryirgac

deg Wi, <d.

yoetrytr4a

Let the dimension dim S;,, = w;,,. Note that w; ., <J". Set

w=_ max Wy,



According to [2] the set of zeroes of the polynomials from S; ., coincides with
Wi, iriry, and there is a basis so,...,sc € Z[X1,..., X,] of S,

of polynomials with the lengths of integer coefficients less than pP(6") for a

consisting

polynomial P,. We shall suppose without loss of generality that all the polyno-
mials by, o € Ay, . ;.. are linearly independent and are contained in the basis

S0y...y8g4-

Consider the polynomials G;, ., = Zj v/ s; where 0 < v € Z. So the set of

zeroes of the family Gy, 4, 1 <y <y, i = wé, coincides with W,

yeotrytr41)

any w' < ws,,, of polynomials G;_,, , are linearly independent over Q and the

lengths of their integer coefficients are less than pPs(d") for a polynomial Ps.

By the efficient Hilbert Nullstellensatz [6] we have

Cil,...,imv(H Gir+1,v)6 = Z Golo (11)

Trg1 PER

where ¢, i~ € Z, 4, € Z[X1,...,X,] are polynomials for all p,v. The
coefficients of polynomials ¢, ~ can be estimated from solving a linear system.
This gives also an estimation for ¢;, ;. ~. So we get |e;;, i ]| < 21F(8") for
a polynomial Py. Construct ¢;, ;. - solving linear system (11). Construct also
the set

Cy=1{(l1,...,1g,7) : codimW;,

bl 'VZK

=u,0<k<no+ 1,1 <y <wd}.

Define the integers

(w) _ ; ; (w) _ o u) _ (u) (u)
6= H (o —i1), ¢ = H(il,...,im'y)ECu Civyoin,ys ) = €1 76y
1<iy<ig<ws

for 0 < u < n. We have by our construction #C,, < (Dy)"°wdé < (D,)"d"+1
and |¢(®)] < 2#850") for a polynomial Ps. Hence, |¢(®)| < 2MuPs(((v+1)Du)™) for

a polynomial P. Compute A. We get now

A< 2M7’(dn2)+zlsssnMSP((SDS)n2)HDSt<S(tDt)n

for a polynomial P.

Let V;, i, # ©. Denote ordp(c(zu)) = m} and ordp(c(“)) = m,. Since we

chose I';; . ;, = wd there exists 4,41 such that

1y

G (l‘) = 0 mod p[(u—ord,,(c,l ~~~~~ i,y )/ 0]+

trg1,75

for w different indices v;, 1 < j < w. Hence,

G (z) = 0 mod pltv=m)/1+

brg1,Ys
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for w different indices 7;, 1 < j < w. The set of zeroes of these polynomials
G, 41,; coincides with Wy, . 4 4., . Since every polynomial by, oo € Ay 4,0,

is a linear combination of ¢ we have also by the definition of ¢(*)

Irg1,%5
ho(z) = 0 mod plr=mu)/9)ly (12)
Let the codimension of Wy, . ; ;. ., is v. Since v > u we get immediately from

(12) that
he(x) = 0 mod p.

for all « € A The theorem is proved.

21, tr41

REMARK 1 [t is not necessary to use the result from [6] to prove Theorem 1.
For the proof of Theorem 1 it is sufficient to take in (11), e.g. 82" instead of 5.
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