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IntroductionLet f1; : : : ; fk 2Z[X1; : : : ; Xn] be polynomials. The degreesdegX1;:::;Xn fi < dand the length of every coe�cient of fi is less thanM (it means that the absolutevalue of every coe�cient is less than 2M�1) for all i. We shall suppose withoutloss of generality that f1; : : : ; fk are linearly independent over Q and k � 1.Let Qp be the �eld of p-adic numbers and Zp the ring of p-adic integers.THEOREM 1 For given polynomials f1; : : : ; fk there is an integer� < 2Md2n(1+o(1))such that for every prime p the systemf1 = : : : = fk = 0 (1)has a solution in Znp if and only if it has a solution in (Z=pNZ)n for the leastinteger N such that pN does not divide �, herewith o(1) is an in�nitesimal whenn!1. The integer � can be constructed within the time polynomial in Md2n.The previous result was obtained in the well known paper by B. J. Birch andK. McCann [1] for the case of one polynomial k = 1, f = f1. Let L(f) denotethe maximum of absolute values of coe�cients of f . Then [1] gives� < (2ndL(f))(2d)4nn!i.e. � < 2Md(cn)n :for a constant c � 1. So our result improves the highest level exponent fromn log(cn) to n(1+o(1)). Note also that the in�nitesimal o(1) in the formulationof Theorem 1 can be obtained explicitly from the proof. It is a rational functionof n, logn, log logn.Note also that the analogs of Theorem 1 and Theorem 4, see below, are trueif one consider homogeneous polynomials f1; : : : ; fk 2 Z[X0; : : : ; Xn] and theirnon{zero solutions, i.e. the solutions in Zn+1p n f(0; : : : ; 0)g and (Z=pNZ)n+1 nf(0; : : : ; 0)g respectively. The proofs are similar if we consider projective spacesinstead a�ne spaces. Further, for homogeneous polynomials the existence ofa solution of a system of polynomial equations in Pn(Qp) is equivalent to theexistence of a non{zero solutionZn+1p n f(0; : : : ; 0)g.2



The proof of Theorem 1 is based on the construction which iterates thedecomposition of a given algebraic variety into the union of irreducible com-ponents and taking the proper closed subset containing all singular points ofa component. So the results of [2] is used for the proof. But for recursive es-timations we need to prove basing on [2] also some additional facts related todecomposition of algebraic varieties into irreducible components, see Lemma 2.The construction required for the proof of Theorem 1 is closely related to thesmooth strati�cation of algebraic varieties. So we shall de�ne and consider at�rst the latter.A related problem of deciding existence of a non-zero of a polynomial givenby a black box over p-adics was currently studied in [5].Denote by Z(f1; : : : ; fk) the algebraic variety of all zeroes of the polynomialsf1; : : : ; fk in the a�ne space A n (Q) over the algebraic closure Q of the �eld ofrational numbers Q.DEFINITION 1 Denote V1 = Z(f1; : : : ; fk):Suppose that the closed in A n(Q) algebraic variety Vr is de�ned for some 1 �r � n. If Vr 6= � consider the decompositionVr = [i2IrWiinto the union of irreducible and de�ned over Q algebraic varieties Wi. Denoteby SingWi the set of singular points of Wi and setV 0r+1 = [i2Ir SingWi [ [i;j2Ir; i 6=j(Wi \Wj):Let the closed in A n(Q) algebraic variety Vr+1 be such that Vr � Vr+1 � V 0r+1and Wi n Vr+1 6= � for all i 2 Ir. SetSr = Vr n Vr+1; Ui = Wi n Vr+1:Then the quasiprojective algebraic variety Sr consists of smooth points of di�er-ent dimensions of the algebraic variety Vr , the quasiprojective algebraic varietiesUi are irreducible de�ned over Q and smooth for all i. We have the decomposi-tion Sr = [i2Ir Ui3



into the union of irreducible and de�ned over Q components. We can supposewithout loss of generality that Ir1 \ Ir2 = � for all r1 6= r2. Denote by n0 themaximal r for which Vr 6= �. Set I = [1�r�n0Ir. We have the decompositionZ(f1; : : : ; fk) = [i2I Ui (2)which gives the smooth strati�cation of Z(f1; : : : ; fk) with smooth stratums Ui.Note that this construction depends on the choice of the varieties Vr+1 � V 0r+1.If we have Vr+1 = V 0r+1 for all r then (2) is uniquely de�ned and we shall call itcanonical smooth strati�cation of Z(f1; : : : ; fk). Note also that the codimensionof every component of Vr is at least r.Denote by V (s)r the union of all irreducible and de�ned over Q componentsof codimensions s of the algebraic variety Vr where r � s � n. Note that V (s)rcan be empty for some s. So we shall suppose that:(a) The degree of the algebraic variety V (s)r is less thanD(s)r for someD(s)r � 1for all r � s � n, 1 � r � n0.(b) Each irreducible and de�ned over Q component Wi of this union V (s)ris given as a set of common zeroes of a family of polynomials hi;� 2Z[X1; : : : ; Xn], � 2 Ai, herewith the number of polynomials#A � P((D(s)r )n) and the lengths of their integer coe�cients are less thanM (s)r for some M (s)r � 1 and a polynomial P.(c) For every smooth point x 2 Wi there are �1; : : : ; �s 2 A such thath�1 ; : : : ; h�s is a system of local local parameters of Wi in the point x(i.e. h�1 ; : : : ; h�s generate the ideal ofWi in the local ring Ox;An (Q) of thepoint x in A n (Q)).DEFINITION 2 Let an algebraic variety Z(f1; : : : ; fk) be given. SetV1 = Z(f1; : : : ; fk):Let an algebraic variety Vi1 ;:::;ik be de�ned for some 1 � k < n, herewith i1 = 1.Let Vi1;:::;ik 6= �. Consider the decompositionVi1;:::;ik = [ik+12Ii1;:::;ik Wi1;:::;ik;ik+1into the union of irreducible and de�ned over Q components Wi1;:::;ik;ik+1 . Leta smooth quasiprojective algebraic variety Ui1;:::;ik;ik+1 be a non{empty open inthe Zariski topology subset of Wi1;:::;ik;ik+1 . SetVi1;:::;ik;ik+1 = Wi1;:::;ik;ik+1 n Ui1;:::;ik;ik+14



for all ik+1 2 Ii1;:::;ik . Let n0 be maximal k such that there exists Vi1;:::;ikwhich is non{empty. Then the family of all Ui1 ;:::;ik+1 for all indices ij with thedescribed structure and all 1 � k � n0 de�nes branched smooth strati�cation ofthe algebraic variety Z(f1; : : : ; fk).So the branched smooth strati�cation depends on the choice of Ui1;:::;ik;ik+1 .If Ui1 ;:::;ik;ik+1 is always the set of all smooth points of Wi1 ;:::;ik;ik+1 then such abranched smooth strati�cation is uniquely de�ned and we shall call it canonicalbranched smooth strati�cation of Z(f1; : : : ; fk).Note that the codimension of every algebraic variety Wi1;:::;ir;ir+1 is at leastr. For every 1 � r � n0, r � s � n denote by V (s)r the union of all the algebraicvarietiesWi1;:::;ir ;ir+1 (for all indices i1; : : : ; ir; ir+1) which have the codimensions. We shall suppose that for branched smooth strati�cation (a){(c) are satis�edif we replace in them Wi by Wi1;:::;ir;ir+1 , and i by i1; : : : ; ir ; ir+1.We shall prove in Section 1 the following resultsTHEOREM 2 For given polynomials f1; : : : ; fk one can construct the canon-ical smooth strati�cation of Z(f1; : : : ; fk) satisfying (a){(c) withD(s)r � (sd)2s�1; M (s)r � (M + n2)P((sd)2s�1)for some polynomial P. The working time of the algorithm for constructingsmooth strati�cation is polynomial in (nd)2n and M .THEOREM 3 For given polynomials f1; : : : ; fk one can construct the canon-ical branched smooth strati�cation of Z(f1; : : : ; fk) described above satisfying(a){(c) (with corresponding changes) and such thatD(s)r � (sd)2s�1; M (s)r � (M + n2)P((sd)2s�1)for some polynomial P. The working time of the algorithm for constructing thisbranched smooth strati�cation is polynomial in (nd)2n and M .Recall that Zp denotes the ring of p-adic integers. DenoteMs = max1�r�n0M (s)r ; Ds = max1�r�n0D(s)rfor all 1 � s � n. We shall deduce Theorem 1 from Theorem 3 and the followingresult which will be proved in Section 2.5



THEOREM 4 Let polynomials f1; : : : ; fk be given with the set of zeroes V1.Let a branched smooth strati�cation of V1 be given with corresponding Ds andMs. Then there is an integer� < 2MP(dn2 )+P1�s�n MsP((sDs)n2 )Q0�t<s(tDt)n(for a polynomial P) such that for every prime p the systemf1 = : : : = fk = 0has a solution in Znp if and only if it has a solution in (Z=pNZ)n for the leastinteger N > 0 such that pN does not divide �. The integer � can be constructedwithin the time polynomial in nn2, M , Ms, dn2, Dn2s , 1 � s � n.1 Construction of the smooth strati�cation andbranched smooth strati�cation of an algebraicvarietyOur aim now is to prove Theorem 2 and Theorem 3 for the described canonicalsmooth strati�cation and branched smooth strati�cation of Z(f1; : : : ; fk).Let ui;j, i = 0; s; s + 1; : : : ; n, 0 � j � n be algebraically independentelements over Q. Denote for brevity the familyU = fui;jgi=0;s;s+1;:::;n;0�j�n:Set Ui =P0�j�nui;jXj . Let V � Pn(Q) be an irreducible projective algebraicvariety de�ned over Q of dimension n � s, 1 � s � n. Then there is a unique(up to a factor �1) irreducible polynomialH 2Z[U ;Z0; Zs; : : : ; Zn]homogeneous relative to the variables Z0; Zs; : : : ; Zn such thatH(U ; U0; Us; : : : ; Un) is vanishing on V considered as a subvariety of Pn(Q(U)).The polynomial H has the degrees degui;0;:::;ui;n H = deg V for every i anddegZ0;Zs;:::;Zn H = degV , c.f. [4], [2].Let V be an irreducible component of the algebraic variety Z(f1; : : : ; fk).Let us show that the lengths of integer coe�cients of the polynomial H arebounded from above by (M + n2)P(ds) for a polynomial P. Indeed, considerthe resultant RH = ResZ0(H0Z0;H) 2Z[U ;Zs; : : : ; Zn] (3)6



of the polynomialH relative to Z0.There are �nite sets of integers Ai;j, i = 0; s; s+1; : : : ; n, 0 � j � n such that#Ai;j = deg V +1 � ds, the length of every element of Ai;j is O(n2 log(deg V +1)) for all i; j and if D = (di;j) 2 Yi=0;s;s+1;:::;n;0�j�nAi;jthen RH(D; Zs; : : : ; Zn) 6= 0: (4)The construction of system of polynomial equations for the components of analgebraic variety from [2] and (4) imply that the lengths of integer coe�cients ofthe polynomialH(D; Z0; Zs; : : : ; Zn) are bounded from above by (M+n2)P(ds).Using multiple interpolation by all D we get that the lengths of integer coe�-cients of the polynomialH are bounded from above by (M + n2)P(ds) and therequired assertion is proved.Let us show that one can construct the polynomialH within the time poly-nomial in M , ds, (deg V + 1)n2. Indeed, it is su�cient using [2] to construct ageneric point of V within the time polynomial in M , ds and n. Then substitut-ing the values of Ui=U0 (obtained from this generic point) in H, constructingand solving a linear system relative to the integer coe�cients of H we get thesecoe�cients. The required assertion is proved.RepresentH(U ; U0; Us; : : : ; Un) = Xe=(ei;j)2Z(n�s+2)(n+1) Yi=0;s;s+1;:::;n;0�j�nuei;ji;j He (5)where He 2Z[X0; : : : ; Xn] are homogeneous polynomials. Note that if He 6= 0then Pj ei;j � 2 deg V for all i. Denote E0 = fe : He 6= 0g. Then #E0 �P((deg V +1)n2) for a polynomialP. Choose a maximal subset E � E0 such thatthe polynomials He, e 2 E are linearly independent. So #E � P((deg V +1)n)for a polynomial P.We have, c.f. the construction of the system of polynomial equations for thecomponents of an algebraic variety from [2], Z(He; e 2 E) = V . Thus, if thepolynomialH is known then one can construct within the polynomial time thesystem of homogeneous polynomial equations giving V .DEFINITION 3 We shall say that the algebraic variety V is given by thegeneric projection if the corresponding polynomial H is given. The system He =0, e 2 E for the algebraic variety V will be called system of polynomial equationscorresponding to the generic projection of the algebraic variety V . So this systemdepends on the choice of E. 7



It should be underlined that each index e 2 E in this de�nition has the forme = (ei;j) described above.LEMMA 1 Let V � Pn(Q) be an irreducible projective algebraic variety ofdegree degV = D and dimension n � s where 1 � s � n. Let V be givenby the generic projection and He = 0, e 2 E, be the corresponding system ofpolynomial equations. Let x 2 V be a smooth point. Let L 2 Q[X0; : : : ; Xn]be a linear form such that L(x) 6= 0. Then there are e1; : : : ; es 2 E such thatHe1=LD; : : :, Hes=LD is a system of local parameters of V in the point x.PROOF Let Y0; : : : ; Yn be linearly independent linear forms with integercoe�cients. Consider the projections� : V n Z(Y0; Ys+1; : : : ; Yn)! Pn�s(Q); (X0 : : : : : Xn) 7! (Y0 : Ys+1 : : : : : Yn);and �i : V n Z(Y0; Yi; Ys+1; : : : ; Yn)! Pn�s+1(Q);(X0 : : : : : Xn) 7! (Y0 : Yi : Ys+1 : : : : : Yn); 1 � i � s:There are linear forms Y0; : : : ; Yn such that Y0(x) 6= 0 and(i) the projection � is �nite, i.e. V \ Z(Y0; Ys+1; : : : ; Yn) = �,(ii) ��1(�(x)) consists of deg V di�erent points,(iii) #(Yi=Y0)(��1(�(x))) = #��1(�(x)) for every 1 � i � s.By (ii) the di�erential dx� in the point x of the projection � is an isomorphism.The projection �i is also �nite for every 1 � i � s. Hence the set �i(V ) isclosed in the Zariski topology and �i(V ) is a set of zeroes of a homogeneouspolynomial hi 2 Z[Y0; Yi; Ys+1; : : : ; Yn] of the degree deghi = deg V by (iii).By the Zariski main theorem the point �i(x) is smooth on �i(V ). The implicitfunction theorem implies now h1=LD; : : :hs=LD is a system of local parametersof V in the point x. But h1; : : :hs are linear combinations of polynomials He,e 2 E. Therefore, the required system of local parameters can be chosen amongpolynomials He=LD, e 2 E. The lemma is proved.LEMMA 2 Let V � Pn(Q) be an irreducible and de�ned over Q projective al-gebraic variety of dimension n�s, 1 � s � n. Let V be given by the generic pro-jection and H = HV be the corresponding polynomial. Let the degree deg V < D0and lengths of integer coe�cients of HV be less than M 0. Let F 2 Q[X0; : : : ; Xn]be a homogeneous polynomial of the degree D00, D00 � 1, and lengths of integer8



coe�cients less than M 00. Suppose that F is not vanishing on V . Let W1 bean arbitrary irreducible and de�ned over Q component of the algebraic varietyV \ Z(F ). Let the degree degW1 = D000. Then the degree of the intersectionV \Z(F ) is less than D0D00 and the component W1 can be given by the genericprojection. The corresponding polynomial HW1 has integer coe�cients with thelengths less than (M 0 +M 00 + n2)P(D0D00) (6)for a polynomial P. These polynomials HW1 giving all the components W1 canbe constructed within the time polynomial in (D0D00)n2 , M 0, M 00.PROOF Set W = V \ Z(F ). Denote H = HV .Let U0; Us; : : : ; Un be generic linear forms such as above. Denote for brevityU 0 = fui;jgi=0;s+1;:::;n;0�j�nand the �elds K = Q(U 0), K1 = Q(U 0; Z0; Zs+1; : : : ; Zn)Set R(1)H = ResZs(H 0Zs ;H) 2 K1[us;0; : : : ; us;n]and R(2)H = Y0�i 6=j�n(us;i � us;j) Y1�i�n+2R(1)(uis;0; : : : ; uis;n)There are integers u0; us+1; : : : ; un with lengths O(log(nD0)) such thatR(2)H (u0; us+1; : : : ; un) 6= 0:Set Y = P0�j�nujXj and Li = P0�j�nui+2j Xj , 0 � i � n. Note thatX0; : : : ; Xn are linear combinations of L0; : : : ; Ln with rational coe�cients withlengths of numerators and denominators O(n log(nD0)).Denote by � 2 Z[U 0; Z0; Z; Zs+1; : : : ; Zn] (here Z is a new variable) thehomogeneous relative to Z0; Z; Zs+1; : : : ; Zn polynomial�(U 0; Z0; Z; Zs+1; : : : ; Zn) = H(U ; Z0; Z; Zs+1; : : : ; Zn)jus;j=uj; 0�j�n(one should substitute here the coe�cients uj instead of generic coe�cients us;j,0 � j � n). Similarly denote by �i 2Z[U 0; Z0; Z; Zs+1; : : : ; Zn], 0 � i � n, thehomogeneous relative to Z0; Z; Zs+1; : : : ; Zn polynomial�i(U 0; Z0; Z; Zs+1; : : : ; Zn) = H(U ; Z0; Z; Zs+1; : : : ; Zn)jus;j=ui+2j ;0�j�n:Denote by R = ResZs(�0Zs;�) and Ri = ResZs((�i)0Zs ;�i), 0 � i � n, thediscriminants of the polynomials � and �i respectively. SoR = (R(1)H )jus;j=uj ; 0�j�n; Ri = (R(1)H )jus;j=ui+2j ; 0�j�n; 0 � i � n:9



The polynomials � and �i are non{zero separable and, therefore, irreduciblesince V is irreducible. Hence all the elements � = Y=U0 and Li=U0, 0 � i � nare primitive elements of the extensionK(V ) � K(Us+1=U0; : : : ; Un=U0):For every 0 � i � n factor using the algorithm from [2] the polynomial �iover the �eld K(Us+1=U0; : : : ; Un=U0)[�] and construct the generic point�i = (Li=U0)jV 2 K(Us+1=U0; : : : ; Un=U0)[�]; 0 � i � n (7)�i = X0�j<degY ��i;j�j ; �i;j 2 K(Us+1=U0; : : : ; Un=U0) (8)of the algebraic variety V over the �eld K. So we can write�i;j = �i;j(U0; Us+1; : : : ; Un):According to the algorithm for factoring polynomials from [2] the degrees ofnumerators and denominators (they belong to Z[U 0; U0; Us+1; : : : ; Un]) of all�i;j relative to every Ui, i = 0; s + 1; : : : ; n, and every ui;j, i = 0; s + 1; : : : ; n,0 � j � n are bounded from above by a polynomial inD0. The lengths of integercoe�cients of these numerators and denominators are bounded from above by(M 0 + n2)P(D0) for a polynomial P.Denote by R = ResZ(�0Z;�) 2 Z[U 0; Z0; Zs+1; : : : ; Zn] the discriminant of� relative to Z. Similarly de�ne the discriminants Ri for the polynomials �i,0 � i � n.Now we haveZai;j0 RRi�i;j(Z0; Zs+1; : : : ; Zn) 2 K[Z0; Zs+1; : : : ; Zn]for some integers ai;j sinceRi(1; Us+1=U0; : : : ; Un=U0)�i is integral over K[Us+1=U0; : : : ; Un=U0] and theintegral closure ofK[Us+1=U0 ; : : : ; Un=U0] inK(Us+1=U0; : : : ; Un=U0)[�] is con-tained in(1=R(1; Us+1=U0; : : : ; Un=U0)) X0�j<degY �K[Us+1=U0; : : : ; Un=U0]�j:Let " > 0 be an in�nitesimal relative to the �eld K. Then the mapping ofstandard part st : Pn(K("))! Pn(K)10



is de�ned, see [3] (the standard part of the element z 2 Pn(K(")) is an elementz1 2 Pn(K) which is in�nitesimal close to z). Consider the algebraic varietyW" = V \ Z(F � "UD000 ) � Pn(K(")):Let W2 be an irreducible and de�ned over K(") component of W". Then wehave st(W") = W and st(W2) is a union of some irreducible and de�ned overK components of W , c.f. [3]. Further, the dimension of every component W2of W" is n � s � 1. Choose and �x W2 such that st(W2) � W1. So thereexists a uniquely de�ned irreducible polynomial from Z[U 0; "; Z0; Zs+1; : : : ; Zn]homogeneous relative to Z0; Zs+1; : : : ; Zn which is vanishing on W2.Let us show that R is not vanishing on W2. Indeed, if R(W2) = f0g thenW2 � V \ Z(R). But all the components of V \ Z(R) are de�ned over Kand have the dimension n � s � 1 since � is separable. Therefore, W2 is alsode�ned over K. Hence, the polynomials F and U0 are vanishing on W2 whichcontradicts to the fact that no components of W lie in Z(U0).Similarly one can prove that Ri is not vanishing on W2 for every 0 � i � n.Now the polynomial H1 = HW1 can be obtained from the following con-struction. Denote byN� : K("; Us+1=U0; : : : ; Un=U0)[�]! K("; Us+1=U0; : : : ; Un=U0)the mapping of the norm of the extension of �elds. Denote by eF the polyno-mial with rational coe�cients in n + 1 variables such that eF (L0; : : : ; Ln) = F .Consider the rational functionF1("; U0; Us+1; : : : ; Un) = N�( eF (�0; : : : ; �n)� ") 2 K("; Us+1=U0; : : : ; Un=U0):RepresentF1("; U0; Us+1; : : : ; Un) = F2("; U0; Us+1; : : : ; Un)=F3("; U0; Us+1; : : : ; Un)where F2; F3 2 K["; Z0; Zs+1; : : : ; Zn] are homogeneous relative to Z0, Zs+1,: : : ; Zn polynomials and GCD(F2; F3) = 1. Note that the denominator F3divides (Z0RQ0�i�nRi)a for some integer a � 1. So the rational functionF2("; U0; Us+1; : : : ; Un)=F3("; U0; Us+1; : : : ; Un)is de�ned on the component W2 and the polynomial F2("; U0; Us+1; : : : ; Un)is vanishing on W2. Since W1 is a component of st(W2) the polynomial H1coincides with an irreducible factor of F2(0; Z0; Zs+1; : : : ; Zn).>From the described construction using [2] and the ascertained estimationsfor degrees and lengths of integer coe�cients of �i;j we get immediately (6).The lemma is proved. 11



Now our aim is to prove Theorem 2. In what follows when it is requiredto construct a system of polynomial equations for any a�ne algebraic varietyU � A n (Q) we shall construct system of homogeneous polynomial equationscorresponding to the generic projection of its closure in U � Pn(Q) by Lemma 2and [2]. This will gives a system for U . The condition (c) when it is requiredwill be satis�ed by Lemma 1.Compute using [2] all the irreducible and de�ned over Q components Wi ofthe algebraic variety Z(f1; : : : ; fk) = V1. Then according to [2] the estimationsof Theorem 2 for D(s)1 and M (s)1 are ful�lled for the components of V (s)1 , 1 �s � n.Let 1 � r < n and suppose that we have constructed recursively all thecomponents Wi, i 2 Ir of the algebraic variety Vr. Further, suppose that (a){(c) hold and the required estimations for D(s)r and M (s)r are ful�lled for thecomponents of V (s)r , r � s � n.Let us show how to construct all the components of V (s)r+1 for all s such thatr + 1 � s � n. Let Wi and Wj be irreducible and de�ned over Q componentsof Vr of codimensions si and sj and degrees Di and Dj respectively, herewithsi � sj . Denote by B0i = As � f1; : : : ; ngs. For every� = ((�1; : : : ; �s); (j1 : : : ; js)) 2 B0icompute the Jacobian J� = det�@h�u@Xjv �1�u;v�s :Compute a maximal subset Bi � B0i such that all the Jacobians J�, � 2 Bi arelinearly independent. We have by (c)SingWi = Wi \ Z(fJ�g�2Bi );Further, deg J� � si(Di � 1) < siDi and the degree of the union of all thecomponents of codimension si + w of SingWi is less than Di(siDi)w. So ifs > si then the degree of the union of all the components of codimension s ofSingWi is less than Di(siDi)s�si . Similarly if s > si then the degree of theunion of all the components of codimension s of the intersection Wi \Wj is lessthan DiDs�rij . Note that Xfi:si=ugDi � (ud)2u�1for every r � u � n. Therefore, the degree of V (s)r+1 is less thanXfi:s>sigDi(siDi)s�si + Xf(i;j):s>si�sjgDiDs�sij �12



X1�u�s�1 Xfi:si=ugDi(uDi)s�u + X1�u�s�1 X1�v�u Xf(i;j):si=u;sj=vgDiDs�uj �X1�u�s�1(ud)(2u�1)(s�u+1)us�u + X1�u�s�1 X1�v�u(ud)2u�1(vd)(2v�1)(s�u) �d2s�1( X1�u�s�1u2u�1(u2u(s�u) + X1�v�u v(2v�1)(s�u))) �d2s�1 X1�u�s�1u2u�1(2u2u(s�u)) � d2s�1 X1�u�s�12u2u(s�u+1)�1 �d2s�1s2s�1 X1�u�s�12(u2u(s�u+1)�1=s2s�1) � (sd)2s�12(s � 1)(1� 1=s)2s�1 �(sd)2s�1Thus, we have proved the required estimations of Theorem 2 for D(s)r+1.Now to complete the proof it is su�cient to prove the estimation for M (s)r+1.Each component of V (s)r+1 is a component of SingWi or Wi \Wj where Wi andWj are components of Vr, see above.Suppose that W is a component of SingWi. Then there are polynomialsFu+1; : : : ; Fs which are linear combinations of J�, � 2 Bi, with integer coe�-cients of the lengths O(n log(siDi)) satisfying the following property. There isa sequence of irreducible and de�ned over Q algebraic varietiesW (u) = Wi; W (u+1); : : : ; W (s) = Wsuch that W (j+1) is a component of W (j) \ Z(Fj+1) for every u � j < s.Similarly in the case when W is a component of Wi \Wj there are analogoussequences of polynomials and irreducible and de�ned over Q algebraic varieties(for estimations one should take si � sj).In the both cases the estimation forM (s)r+1 can be obtained now by subsequentapplying Lemma 2 using the ascertained inequalities forM (a)r . One should onlytake the degree of the polynomialP from Theorem 2 su�ciently great relative tothe degree of the polynomials from Lemma 2. It is convenient also for recursiveestimations to write the statement of Theorem 2 in the formM (s)r � 3s(M + n2)P((sd)2s�1)which allows easily to take into account the addition M 0 + M 00 + n2 whenLemma 2 is applied. The theorem is proved.The proof of Theorem 3 is completely analogous to the one of Theorem 2and even easier since one should not consider the intersections of di�erent com-ponents but only the sets of singular points of the components. Theorem 3 isalso proved. 13



2 Solvability of systems over p-adics andbranched smooth strati�cationOur aim is to prove Theorem 4. Let a 6= 0 be an integer. Set ordp(a) = b 2Zif and only if a=pb 2Zbut a=pb+1 62Z. If z 2 R then set [z] to be the maximalinteger z0 such that z0 � z and de�ne [z]+ = maxf[z]; 1g.It is convenient also to introduce the algebraic variety W1 = A n(Q) and setM0 = M , D0 = d. So the codimension codimW1 = 0, the degree degW1 = 1and W1 is given by an empty system of equations. Let Wi1;:::;ir 6= � andVi1;:::;ir = � for some 1 � r � n0 + 1. Then set Wi1;:::;ir;ir+1 = � whereir+1 2 Ii1;:::;ir and Ii1;:::;ir is an one element set. Set also degWi1;:::;ir;ir+1 = 0,codimWi1 ;:::;ir;ir+1 = n + 1 if Vi1;:::;ir = �. In this case the algebraic varietyWi1;:::;ir;ir+1 is given by one equation 1 = 0.We shall construct integers c(s), 0 � s � n, which are less thanMsP(((s+1)Ds)n2) for a polynomialP and satisfy the property described below.Set � = Y0�s�n(c(s))2sQ0�t�s((t+1)Dt)n :Let x 2Zn be a point such that fi(x) = 0 mod pN , 1 � i � k. Set N0 = Nand Nu = [ Xu�s�n2s�u ordp(c(s)) Yu�t�s((t + 1)Dt)n]+:So N0 = N and 1 � Nu 2Zfor all 0 � u � n+1. If Nu = 1 then ordp(c(s)) = 0and Ns = 1 for all s � u. Recall that h� = 0, � 2 Ai1;:::;ir is the system ofpolynomial equations of the algebraic variety Wi1;:::;ir , 1 � r � n0 + 2, fromthe described construction of branched smooth strati�cation (and the previousremark).The property of the integers c(s) is the following one. Let 1 � r � n0+1 andthere is an algebraic variety Wi1;:::;ir with the codimension codimWi1;:::;ir = u,0 � u � n such that h�(x) = 0 mod pNu : (9)Then the similar statement holds for r + 1 or r � 2 and there is a point inWi1;:::;ir with coordinates fromZp.Let us show that it is su�cient to construct c(s) and prove this propertyto �nish the proof of the theorem. Indeed, suppose that c(s) are constructedand this property is proved. Suppose that there are no points with coordinatesfromZp in any Wi1;:::;ir with r � 2. Then (9) is valid for some empty Wi1;:::;ir ,14



1 � r � n0 + 2. We get a contradiction 1 = 0 mod pNu which proves ourassertion.Thus, suppose that 0 � r � n0 + 1 and we have proved by induction thatthere is an algebraic variety Wi1;:::;ir with the codimension codimWi1;:::;ir = u,0 � u � n such that (9) holds for all �. Our aim will be to prove the similarstatement for r + 1 or if r � 2 to show that there is a point in Wi1;:::;ir withcoordinates from Zp (more precisely, in the latter case we shall show how toconstruct such a point).If r � 2 then the degrees of the Jacobians J�, � 2 B, (from the consideredconstruction) de�ning the set of singular points of the algebraic varietyWi1;:::;irare less than uDu and lengths of integer coe�cients of these Jacobians are lessthan (M + n2)P1(uDu) for a polynomial P1. Set N 0u = Nu=2 if Nu is even andN 0u = (Nu + 1)=2 if Nu is odd. IfJ�(x) 6= 0 mod pN 0u ; (10)then the standard Hensel lemma (one should �x the variables to which thereare no partial derivatives in the Jacobian matrix) shows that there is a point inWi1;:::;ir with coordinates fromZp. Note that [Nu=2]+ � N 0u since 1 � Nu 2Z.So we shall suppose without loss of generality thatJ�(x) = 0 mod p[Nu=2]+ ;for all �. Recall that if r � 2 thenVi1;:::;ir = Wi1;:::;ir \ Z(fJ�g�2B):Denote by G� = 0, � 2 R, the system of polynomial equations de�ning thealgebraic variety Vi1;:::;ir in our construction. In the case when r � 2 this systemconsists of all equations h� = 0 and J� = 0. When r = 1 the polynomials G�coincide with the initial polynomials f1; : : : ; fk.Set � = (uDu)n, � = Mu � = [Nu=2]+ if r � 2 and � = dn, � = M , � = N0if r = 1. Note that #Ii1;:::;ir � � by the B�ezout inequality.Let ir+1 2 Ii1;:::;ir . Consider the vector space Sir+1 over the �eld Q of allpolynomials of degrees at most degWi1;:::;ir ;ir+1 vanishing onWi1;:::;ir;ir+1 . Notethat degWi1;:::;ir;ir+1 � �:Let the dimension dimSir+1 = wir+1 . Note that wir+1 � �n. Setw = maxir+12Ii1;:::;ir wir+1 :15



According to [2] the set of zeroes of the polynomials from Sir+1 coincides withWi1;:::;ir;ir+1 and there is a basis s0; : : : ; s� 2Z[X1; : : : ; Xn] of Sir+1 consistingof polynomials with the lengths of integer coe�cients less than �P2(�n) for apolynomial P2. We shall suppose without loss of generality that all the polyno-mials h�, � 2 Ai1;:::;ir+1 are linearly independent and are contained in the basiss0; : : : ; s�.Consider the polynomials Gir+1;
 =Pj 
jsj where 0 < 
 2Z. So the set ofzeroes of the familyGir+1;
 , 1 � 
 � �i1;:::;ir = w�, coincides with Wi1;:::;ir ;ir+1 ,any w0 � wir+1 of polynomials Gir+1;
 are linearly independent over Q and thelengths of their integer coe�cients are less than �P3(�n) for a polynomial P3.By the e�cient Hilbert Nullstellensatz [6] we haveci1;:::;ir;
(Yir+1Gir+1;
)� =X�2RG�q�;
 (11)where ci1;:::;ir ;
 2 Z, q�;
 2 Z[X1; : : : ; Xn] are polynomials for all �; 
. Thecoe�cients of polynomials q�;
 can be estimated from solving a linear system.This gives also an estimation for ci1;:::;ir ;
 . So we get jci1;:::;ir ;
 j � 2�P4(�n) fora polynomial P4. Construct ci1;:::;ir;
 solving linear system (11). Construct alsothe setCu = f(i1; : : : ; i�; 
) : codimWi1;:::;i� = u; 0 � � � n0 + 1; 1 � 
 � w�g:De�ne the integersc(u)1 = Y1�i1<i2�w�(i2 � i1); c(u)2 = Q(i1;:::;i�;
)2Cu ci1;:::;i�;
 ; c(u) = c(u)1 c(u)2 :for 0 � u � n. We have by our construction #Cu � (Du)n0w� � (Du)n�n+1and jc(u)j � 2�P5(�n) for a polynomialP5. Hence, jc(u)j � 2MuP5(((u+1)Du)n2 ) fora polynomial P. Compute �. We get now� � 2MP(dn2 )+P1�s�n MsP((sDs)n2 )Q0�t<s(tDt)nfor a polynomial P.Let Vi1;:::;ir 6= �. Denote ordp(c(u)2 ) = m00u and ordp(c(u)) = mu. Since wechose �i1;:::;ir = w� there exists ir+1 such thatGir+1;
j (x) = 0 mod p[(��ordp(ci1;:::;ir;
))=�]+for w di�erent indices 
j , 1 � j � w. Hence,Gir+1;
j (x) = 0 mod p[(��m00u)=�]+16



for w di�erent indices 
j , 1 � j � w. The set of zeroes of these polynomialsGir+1;
j coincides with Wi1;:::;ir ;ir+1 . Since every polynomial h�, � 2 Ai1;:::;ir+1is a linear combination of Gir+1;
j we have also by the de�nition of c(u)h�(x) = 0 mod p[(��mu)=�)]+ : (12)Let the codimension of Wi1;:::;ir ;ir+1 is v. Since v > u we get immediately from(12) that h�(x) = 0 mod pNv :for all � 2 Ai1;:::;ir+1 . The theorem is proved.REMARK 1 It is not necessary to use the result from [6] to prove Theorem 1.For the proof of Theorem 1 it is su�cient to take in (11), e.g. �2n instead of �.

17



References[1] Birch B. J., McCann K.:\A criterion for p-adic solubility of Diophantineequations", Quart. J. Math. Oxford 18 # 2 (1967), pp. 59{63.[2] Chistov A. L.: \Polynomial complexity algorithm for factoring polynomi-als and constructing components of a variety in subexponential time", Zap.Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 137 (1984),pp. 124{188 (Russian) [English transl.: J. Sov. Math. 34 (4) (1986)].[3] Chistov A. L.: \Polynomial{time computation of the dimensions of com-ponents of algebraic varieties in zero{characteristic", Journal of Pure andApplied Algebra, 117 & 118 (1997) pp. 145{175.[4] Hodge W. V. D., Pedoe D. \Methods of algebraic geometry", v. 2,Cambridge 1952.[5] Karpinski M., van der Poorten, Shparlinski I.: \Zero testing ofp-adic and Modular Polynomials", Research Report No. 85175-CS, Univ.Bonn, 1997.[6] Kollar J.: \Sharp e�ective Nullstellensatz", J.A.M.S. 1 (1988), pp. 963{975.

18


