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1 IntroductionIn this paper we discuss the computational complexity of some principaltasks from representation theory of �nite dimensional algebras such as test-ing and constructing isomorphisms of modules and decomposing modules asdirect sums of indecomposable submodules. These problems arise naturallyin computations involving several matrices. Holt and Rees [8] presents a ran-domized algorithm (an improvement of the meat-axe method by Parker andNorton [10]) for �nding proper submodules of modules over �nite algebras.Except the case of modules having a very special structure, the algorithm�nds a proper submodule with high probability. Holt and Rees also showhow to apply their procedure to other related tasks, such as a special caseof the module isomorphism problem. It is worth to note that the methodis very e�cient in practice as well. The algorithm is implemented into thecomputer algebra systems GAP and MAGMA. In this paper we allow moregeneral ground �elds, but we are concerned with theoretical complexity andgive polynomial time algorithms. Furthermore, most of our algorithms aredeterministic.Module isomorphism can be translated to the following conjugacy prob-lem. Assume that we are given two collections A1; : : : ; Am and A01; : : : ; A0mof n�n matrices with entries from the �eld K. Our task is to �nd (if exists)a nonsingular matrix X 2 GLn(K) such thatXAiX�1 = A0ifor every i 2 f1; : : : ;mg. A natural approach to this problem is to considerthe set V of n�n matrices X satisfyingXAi = A0iX:This condition is equivalent to a system of homogeneous linear equations inthe entries of the matrix X, whence V is a linear subspace of Matn(K). Ob-viously, the conjugacy problem is equivalent to �nding a nonsingular matrixin the subspace V . Thus, the conjugacy problem can be considered as aspecial case of �nding nonsingular matrices in linear subspaces of Matn(K),which was formulated by Edmonds [6]. Note that if our ground �eld K issu�ciently large then this problem admits an e�cient randomized solution:If there exists a nonsingular matrix in the linear subspace V of Matn(K)2



then a random matrix from V (i.e., a random linear combination of a basis)is nonsingular with high probability ([15, 16]). However, no deterministicpolynomial time method is known to this general problem. In this paper wepresent a deterministic polynomial time algorithm for our particular case,i.e., the conjugacy problem.Module decompositions correspond to common block structures of severalmatrices. Let A1; : : : ; Am be matrices from Matn(K). These matrices actnaturally on the space V = Kn of column vectors of length n. Assumethat 0 = V0 < V1 < : : : < Vr = V is an ascending sequence of subspacesof V invariant with respect to every Ai 2 fA1; : : : ; Amg. After switchingto an appropriate basis (choosing a basis of V1, extending it to a basis ofV2, and iterating this procedure) the matrices A1; : : : ; Am will have blockupper triangular form. The diagonal blocks correspond to the actions of ourmatrices on the factor spaces Vi=Vi�1. A �nest common block triangularform of A1; : : : ; Am corresponds to a composition series of V , that is a �nestascending sequence of invariant subspaces.A special case is where V decomposes as a direct sum V1 � : : : � Vmof common invariant subspaces. In a basis that is a union of bases of thesubspaces Vi and V our matrices have block diagonal forms. A �nest commonblock diagonal structure correspond to decomposition of V as a direct sumof indecomposable invariant subspaces.Obviously, the subspaces invariant w. r. t. A1; : : : ; Am are also invariantwith respect to the entire matrix algebra � � Matn(K) generated by theidentity matrix I and A1; : : : ; Am. This is the linear span of I and productsof the form Ai1 � � �Ais.For the basic notions and facts related to �nite dimensional associativealgebras and modules the reader is referred to the book [11]. In this paperby a K-algebra we mean a �nite dimensional algebra over the �eld K withidentity element. Modules over the algebra � are assumed to be �nite di-mensional, unital left �-modules. (The �-module V is called unital if theidentity element of � acts identically on V .) Note that this is not an essentialrestriction since every module can be decomposed in an obvious way as thedirect sum of a unital submodule and a zero submodule.An algebra � can be described by a collection of structure constants withrespect to a basis. Assume that a1; : : : ; an is a K-basis of the algebra �. Themultiplication of � is determined by the table of multiplication of the basis3



elements. We have aiaj = nXh=1 
hijah; (i; j 2 f1; : : : ; ng)for some elements 
hij 2 K, called the structure constants. Modules can berepresented in a similar way. Let V be a �-module with basis v1; : : : ; vd. Theaction of � on V is determined by the elements �hij 2 K, given asaivj = dXh=1 �hijvh; (i 2 f1; : : : ; ng; j 2 f1; : : : ; dg):An alternative way to de�ne an algebra together with a module would beto give a (�nite) set S of linear transformations on the vector space V . Thealgebra � is the subalgebra of Endk(V ) generated by the set S [ fIdg. Theaction of � on V is de�ned in the natural way. This representation is slightlyrestrictive, since V is a faithful �-module. On the other hand, a basis of �together with multiplication tables can be computed in polynomial time (atleast over most of the interesting ground �elds). In this paper we assumethat algebras and modules are given by structure constants over K.We intend to use methods based on computing structural invariants ofalgebras [7, 13, 5] to the module problems outlined above. Unfortunately,�nding a nontrivial proper left ideal of � is already di�cult (essentially ashard as factoring integers), even when � is a non-commutative simple algebraover Q of dimension four [12]. Even worse, it is not known in general whetherminimal left ideals of polynomial size exists in non-commutative simple alge-bras. To get around this di�culty, we restrict our attention to decompositionover �nite �elds and over the real or algebraic closure of number �elds.Assume that E is an extension �eld of K. We can consider the E-algebra�E = E 
K �. This corresponds to the situation where an E-algebra �0is given by a basis such that the structure constants fall in the sub�eld K.Then the K-span of the basis is a K-algebra � and �0 �= E 
K �. In thissituation we say that �0 has a K-structure, � or �0 is de�ned over the �eldK. Let L be an intermediate �eld: K � L � E. Then the L-span �L ofthe basis is an L-algebra isomorphic to L 
K �. The elements of �0 whichbelong to �L are said to be de�ned over L. The K{subspace (subalgebra,ideal, etc.) W 0 of �0 is said to be de�ned over L if W 0 = K 
L W for some4



L{subspace (subalgebra, ideal, etc.) W of �L. The notion of (sub)modulesde�ned over L can be introduced in a similar way.We are interested in the cases when E is one of the following.� E = C 0, the �eld of the algebraic numbers;� E = R0, the �eld of the real algebraic numbers.In both cases we assume that our input is de�ned over an algebraic num-ber �eld K. The �eld K is assumed to be given by a minimal polynomialf(x) of a primitive element � over the prime �eld. In addition, we assumethat an isolating rectangle (interval) is also given that distinguishes � fromother (real) roots of f(x). This is necessary to �x the embedding K � E.Since K is a perfect �eld, the radical of algebras and modules can bede�ned over K. In general, there is no small common intermediate �eld ofde�nition of the simple components of semisimple algebras over E [5]. There-fore we have to allow di�erent constituents of the output of decompositionalgorithms to be de�ned over di�erent intermediate �elds.Note that algebras over the ground �eld Fp, the algebraic closure of the�nite �eld Fp could be also of interest. However, results over Fp are ratherstraightforward applications of the algorithms for algebras and modules over�nite �elds. We leave the details to the reader.Elements of �nite �elds and number �elds are represented as polynomi-als in the de�ning primitive element over the prime �eld. Of course, thepolynomial is assumed to be reduced modulo the minimal polynomial of theprimitive element. We use the customary representations of the elements ofthe various prime �elds. Substructures such as submodules, subalgebras, etc.are assumed to be represented by bases. The size of a (possibly compound)object is the total number of the bits representing the object.Below we state the main results of the paper. We keep ourselves to theconvention that the term K-algebra is reserved for �nite dimensional K-algebras with identity element. Similarly, the term module is reserved for�nite dimensional unital modules.Recall that a �-module V is cyclic if V is generated by a single element,i.e, there exists an element v 2 V such that �v = V . Note that V is a cyclicmodule if and only if there exists an epimorphism �� ! V . (By �� wedenote the regular �-module. This is the space � where the elements of �5



act by multiplication from the left. The submodules of �� are left ideals of�.)Theorem 1 Let K be either a �nite �eld or an algebraic number �eld, �be a K-algebra and V be a �-module. Given � and V , one can decide by adeterministic polynomial time algorithm, whether the module V is cyclic. Ifthis is the case the algorithm returns a generator of V .As an application, we have the following result on a generalized conjugacyproblem.Theorem 2 Let � be a K-algebra, where K is a �nite �eld or an alge-braic number �eld. Assume that we are given two collections a1; : : : ; am anda01; : : : ; a0m of elements from �. We can decide in deterministic polynomialtime whether there exists an element x 2 �� such that xaix�1 = a0i for everyi = 1; : : : ;m, and exhibit such an element if one exists.A standard argument shows that the module isomorphism problem isequivalent to the conjugacy problem in the full matrix algebra Matn(K).Corollary 3 Let � be a K-algebra, where K is a �nite �eld or an algebraicnumber �eld. Assume that we are given two �-modules V and W . One candecide in deterministic polynomial time whether V and W are isomorphic,and if it is the case then construct an isomorphism between these two modules.We prove Theorems 1, 2, and Corollary 3 in Section 2. We remark thatthe analogous theorems hold if we are interested in �nding generators, conju-gating elements, and a module isomorphism over the algebraic or real closureE of a number �eld K. The results will be de�ned over the ground �eld K.We leave the details to the reader.In Section 3 we present an e�cient algorithm for a variant of the conjugacyproblem. We proveTheorem 4 Let K be a real algebraic number �eld. Assume that we aregiven two families a1; : : : ; as and a01; : : : ; a0s of matrices from Matn(K). Onecan decide in polynomial time whether there exists an orthogonal matrix x 2On(R0) such that xaix�1 = a0i for every i 2 f1; : : : ; sg, and exhibit such amatrix x 2 On(R0) if one exists. (Here, parts of the output x are allowed tobe de�ned over di�erent real extensions of K).6



Section 4 is devoted to decomposition of modules into direct sums ofirreducibles. We proveTheorem 5 Let K be a �nite �eld of characteristic p, � be a K-algebra,and V be a �-module. There is a Las Vegas polynomial time algorithm that�nds indecomposable submodules V1; : : : ; Vm such that V = V1�: : :�Vm. Thesame task can be done by a deterministic method running in time (input size+p)O(1).Over the (real) algebraic number we haveTheorem 6 Let K be an algebraic number �eld, and E be the algebraicor real closure of K. In the latter case we require K to be a real �eld.Assume that � is a K-algebra, and V is a �-module. One can construct indeterministic polynomial time indecomposable submodules V1; : : : ; Vm of V Esuch that V E = V1� : : :� Vm. The submodules Vi are de�ned over the (real)algebraic number �elds Li which are extensions of K.2 Isomorphism of modules and the conjugacyproblemWe prove Theorem 1 �rst for semisimple modules (Sec. 2.1). Then, in Sec-tion 2.2, we "lift" the result from the factor by the radical. Finally we showhow Theorem 1 applies to the generalized conjugacy problem (Sec. 2.3) andto the module isomorphism problem (Sec. 2.4).2.1 Finding free submodules over semisimple algebrasIn this subsection � is a semisimple algebra over the �eld K and V is a�-module.For every v 2 V we consider the module homomorphism �v : �� ! Vgiven as �(x) = xv. We de�ne the rank rk v of v 2 V as the rank of thelinear transformation �v : �! V .Recall that the annihilator Ann�(v) of an element v 2 V in � is a leftideal of � given as fx 2 �jxv = 0g. This is the kernel of the �-modulehomomorphism �v : x 7! xv, whence �v �= ��=Ann�(v). We have rk v =dim im�v = dim�v = dim�� dimAnn�(v).7



An element v 2 V is of maximal rank if rkw � rk v for every w 2 V .The following lemma suggests a method for testing whether v is of maximalrank.Lemma 7 Let V be a module over the semisimple K-algebra �. The elementv 2 V is of maximal rank if and only if Ann�(v)V � �v.Proof: Let V1; : : : ; Vs be representatives of the isomorphism classes of thesimple �-modules. Assume that �� �= V �11 �: : :�V �ss and V �= V �11 �: : :�V �ss .It is easy to see that the �-module U is cyclic if and only if U �= V �11 �: : :�V �ss ,where �1 � �1; : : : ; �s � �s. It follows that v is of maximal rank in V if andonly if the submodule �v is isomorphic to V minf�1;�1g1 � : : :� V minf�1;�1gs .Assume that v is not of maximal rank. Then there exists a simple�-module, say V1, such that the multiplicity �1 of V1 in �V is less thanminf�1; �1g. Assume further that Ann�(v)V � �v, in other words, Ann�(v)annihilates the factor module V=�v. The multiplicity of V1 in that factormodule is �1 � �1 > 0, therefore Ann�(v) annihilates the module V1 as well.But Ann�(V1) is the ideal of � complementary to the ideal generated bythe minimal left ideals isomorphic to V1. This is a contradiction since themultiplicity of V1 in Ann�(v) is �1 � �1 > 0. The "if" part is proved.We give a proof of the "only if" part that will be useful in algorithms.Since � is semisimple there exist a left ideal L in � complementary toAnn�(v): �� = L � Ann�(v). Similarly, there exists a submodule V 0 ofV complementary to �v. The map �v induces an isomorphism L �= �v.Assume that we have bases of � and V , respectively, that re
ect the decom-positions described above. By this we mean that the basis of � is a union ofbases of L and Ann�(v), while the basis of V is a union of bases of �v andV 0. For every w 2 V we consider the block structure of the matrix of �w. Wesee that the matrix of �v is a regular matrix on the block corresponding toL��v, and zero outside that block. Assume that there exists elementw 2 Vsuch that Ann�(v)w is not a subset of �v. Decompose w as w = cv + w0,where c 2 � and w0 2 V 0. Since Ann�(v)cv � �v, Ann�(v)w0 6� �v. Observethat both blocks of the matrix of �v0 corresponding to �v are zeros. It followsthat the matrix of �v+w0 is a block triangular matrix (both �v and �w0 arezeros in the block corresponding to Ann�(v) � �v), whence the sum of theranks of the diagonal blocks is a lower bound for rk (v + w0). In particular,rk (v + w0) > rk (v). We have proved the lemma. 28



The argument above also suggests a test of rank maximality as well asa method for incrementing the rank if it is possible. Indeed, let v 2 Vand let v1; : : : ; vr be a basis of V . Obviously, Ann�(v)V � �v if and onlyAnn�(v)w � �v for every w 2 fv1; : : : ; vrg. We can compute the annihilatorAnn�(v) and test whether Ann�(v)w 2 �v for every w 2 fv1; : : : ; vrg viasolving systems of linear equations. This procedure terminates either withthe conclusion that v is of maximal rank or with the �rst element w 2fv1; : : : ; vrg such that Ann�(v)w 6� �v. We can compute a projection � 2End�(V ) such that im� = �v and �(v) = v via solving a system of linearequations. We take w0 = w��(w). The argument of the proof of the lemmashows that rk (v + w0) > rk (v).This method could serve as a basic step of iteration in a procedure for �nd-ing an element v 2 V of maximal rank. In fact, the procedure performs poly-nomially many �eld operations. Unfortunately, over in�nite ground �elds, wesolve systems of linear equations that depend on the previous intermediatevector v, therefore we do not have any good control over the sizes of thevectors that occur during the iteration. Over su�ciently large �elds we havethe following generalization of [1], Lemma 5.2.Lemma 8 Let V be an r-dimensional module over the semisimple K-algebra� and v1; : : : ; vr be a K-basis of V . Assume that v 2 V is an element of non-maximal rank. Let 
 be a subset of K� consisting of at least rk v+1 elements.Then there exists a scalar ! 2 
 and a basis element u 2 fv1; : : : ; vrg suchthat rk (v + !u) > rk�v, i.e., dimK �(v + !u) > dimK �v.Proof: We use an argument similar to the proof of Lemma 5.2. in [1].Let w 2 fv1; : : : ; vrg such thatAnn�(v)w 6� �v. As in the proof of the preceding lemma, we considerdecompositions �� = L � Ann�(v) and V = �v � V 0 as well as the relatedblock structure of matrices of �v and �w. Let l = rk (v). By choosing basesappropriately, we can achieve the situation where the matrix of �v is zeroexcept the l � l principal minor, and the entry in position (l + 1; l + 1) ofthe matrix of �w is nonzero. We also know that the l � l principal minor of�v has rank l. Let x be an indeterminate and d(x) be the determinant ofthe (l + 1) � (l + 1) minor of the matrix of �v+xw = �v + x�w. Obviously,d(x) 2 K[x] is of degree at most l+1. Expanding the determinant at the lastrow one sees that the coe�cient of the linear term in d(x) is the determinant9



of the l� l principal minor of �v. In particular, d(x) is a nonzero polynomialof degree at most l + 1. Since 
 [ f0g > l + 1, there exists ! 2 
 such thatd(!) 6= 0. This implies that for such a scalar ! rk (v + !w) � l + 1. 2This lemma suggests another iterative method for �nding an elementv 2 V of maximal rank, provided that our ground �eld K is su�cientlylarge. Let v1; : : : ; vr be a basis of V and 
 be a subset of K� of cardinalityr. Initially we take v = 0. In each round, we compute the ranks rk (v+!w),(w 2 fv1; : : : ; vrg; ! 2 
). We replace v with the �rst element v + !w suchthat rk (v + !w) > rk (v). We stop if no such element exists. The procedureterminates in at most r iterations and the intermediate element v after trounds is in the form !1w1+ : : :+ !twt, where !i 2 
 and wi 2 fv1; : : : ; vng.If K is an algebraic number �eld, we take 
 = f1; : : : ; rg. This gives apolynomial bound on the size of the vectors we compute with. We haveproved the following.Theorem 9 Let V be a module over the semisimple K-algebra �, where K isa �nite �eld or an algebraic number �eld. There is a deterministic polynomialtime algorithm that �nds an element v 2 V of maximal rank. 2We also have a straightforward generalization of the procedure �ndfree ofthe paper [1].Theorem 10 Let V be a module over the semisimple K-algebra �, where Kis a �nite �eld or an algebraic number �eld. There is a deterministic polyno-mial time algorithm that �nds (free generators of) a maximal free submoduleof V . 22.2 Finding a single generatorIn this subsection we return to the general case where V is a module overthe (not necessarily semisimple) K-algebra � and prove Theorem 1.We compute the radical Rad� by the methods of [7] (number �eld case)or [13] (�nite �eld case). Using Rad�, we can compute RadV = (Rad�)V .We consider the action of the factor-algebra � = �=Rad� on V = V=RadV .Let v 2 V be an arbitrary vector and v = v + RadV . It is obvious that�v = V implies �v = V . We claim that converse also holds. The proofrelies on the well known fact that elements of RadV can be omitted from10



any system of �-module generators. Assume that v is a generator of the�-module V . This means that �v+RadV = V . Assume that �v is a propersubmodule of V . Let M be a maximal proper submodule of V containing�v. Since RadV �M , we have �V +RadV �M < V , a contradiction. Wehave proved the claim.V is a unital module over the semisimple algebra �. Using the method ofTheorem 9 we compute an element v 2 V of maximal rank. If rk v < dimK V ,i.e, v is not a generator then neither V nor V is cyclic. On the other hand,if v is a generator of V then we can return any element v 2 v as a generatorof V . This �nishes the proof of Theorem 1. 22.3 The general conjugacy problemThis subsection is devoted to the proof of Theorem 2.We consider the linear subspace V of � given asV = fv 2 � j vai = a0iv (i = 1; : : : ;m)g:The task is equivalent to �nding a unit in V . Let �0 be the centralizer of theelements a1; : : : ; am:�0 = fx 2 � jxa0i = a0ix (i = 1; : : : ;m)g:�0 is a subalgebra of � containing 1� and V is closed under multiplicationby elements from �0 from the left, i.e., V is a left �0-module. Let v be anarbitrary element from V . We use the linear map �v : �0 ! V mapping xto xv. We claim that if �� \ V 6= ; then V is a cyclic �-module and everygenerator v of � is a unit in �. Indeed, let y 2 �� \ V . the map �y isa �0 module isomorphism between �0 and V : the inverse of �y is the mapw 7! wy�1. In particular, V is cyclic. Let x be an arbitrary generator. Thenxy�1 is a generator of �0�0, therefore xy�1 is a unit in �0, whence xy�1 2 ��,and y 2 ��. The claim is proved.We compute V and �0 as the solution spaces of systems of linear equations.We attempt to �nd a generator of V by the method of Theorem 1. If V isnot cyclic then the conjugacy problem admits no solution. If V is cyclic thenthe method of Theorem 1 also returns a generator x of V . Again, if x isnot a unit then there exist no units in V at all. Otherwise we can return x.Theorem 2 is proved. 2 11



2.4 Module isomorphismThere is a rather obvious correspondence between the conjugacy problem infull matrix rings and the module isomorphism problem. Here we only showa reduction from the module isomorphism to the conjugacy problem. Let Vand W be two unital �-modules. Let x1; : : : ; xs be a set of algebra generatorsof �, e.g., a K-basis. For every i = 1; : : : ; s let ai 2 EndK(V ) be the action ofxi on V : ai : v 7! xiv. We de�ne the linear transformations bi 2 EndK(W )similarly. Obviously, if V �= W then dimV = dimW , therefore we mayassume that dimV = dimW and we can �x a K-isomorphism  : V ! W .For example, if V , resp. W are given by bases v1; : : : ; vn and w1; : : : ; wn then : vi 7! wi (i = 1; : : : ; n) is a natural choice. For every i = 1; : : : ; s, leta0i =  �1�bi� : EndK(V ). Using the particular  above, the matrix of a0i (interms of v1; : : : ; vn) is same as the matrix of bi in terms of w1; : : : ; wn. A linearmap � 2 HomK(V;W ) is a K-module isomorphism if and only if the lineartransformation � = � �  2 EndK(V ) is a unit in EndK(V ) and ��1ai� = a0ifor every i = 1; : : : ; s. In other words, � is a solution of a conjugacy problemin the algebra EndK(V ). This �nishes the proof of Corollary 3.3 Conjugacy over the orthogonal groupIn this section we prove Theorem 4.Let a1; : : : ; as and a01; : : : ; a0s be n�n matrices from Matn(K). We wouldlike to decide whether there exists an orthogonal matrix x 2 On(R0) suchthat xaix�1 = a0i.Let us denote the transpose of a matrix a 2 Matn(R0) by aT .We claim that there exists an orthogonal matrix x 2 On(R0) such thatxaix�1 = a0i if and only if there is a regular matrix y 2 GL(R0) such that(�) yaiy�1 = a0i and yaTi y�1 = a0iT ; i = 1; : : : ; s:It is straightforward to see that any orthogonal solution x to the originalconjugacy problem satis�es (�) as well. To prove the "if" part of the claim,assume that y 2 GL(R0) is a solution to (�). We consider the matrix z = yyT .This is a positive de�nite symmetric matrix. It follows that z is similar (overR0) to a diagonal matrix with positive entries, therefore there exists a matrixw in the subalgebra of Matn(R0) generated by Id and z such that z = w2.12



Note that z is also a symmetric matrix. For every i 2 f1; : : : ; sg we haveza0i = yyTa0i = y(a0iTy)T = y(yaiT )T = yaiyT = a0iyyT = aiz, i.e., z commuteswith the matrix a0i. Since the matrixw is a polynomial of z, the same holds forthe matrix w. Now we take x = w�1y. Since w commutes with the matricesai, we have xaix�1 = w�1yaiy�1w = w�1a0iw = a0i (i = 1; : : : ; s). On theother hand, xxT = w�1yyTw�1 = w�1w2w�1 = Id, therefore x 2 On(R0).The claim is proved.Since (�) is a conjugacy problem with two lists, each consisting of 2mmatrices, we can use Theorem 2 for �nding a solution y 2 GL(K). If there isno such y, there is no one even in GL(R0), therefore the conjugacy problemadmits no orthogonal solution.The only serious algorithmic problem is constructing a \square root" wof the matrix z = yyT . Let f(t) 2 K[t] be the characteristic polynomial of z.Let �1; : : : ; �s be the roots of f(t). We know that �1; : : : ; �s are positive realalgebraic numbers, therefore we can consider their (positive) square rootsp�1; : : : ;p�s. These are the positive roots of the polynomial f(t2). Isolatingintervals and minimal polynomials (over Q) of the real algebraic numbersp�1; : : : ;p�s can be e�ciently found by the method of [9], based on factoringthe polynomial f(t2). Let V1; : : : ; Vs be the eigenspaces of the matrix z. Forevery i 2 f1; : : : ; sg, the eigenspace Vi is de�ned over K[p�i] and can bee�ciently computed as Vi = fv 2 R0njzv = �vg. In fact R0n is a directsum of these subspaces. We de�ne the matrix on subspaces Vi separately:Let yi 2 HomR0(Vi; V ) be the restriction of y to Vi (i = 1; : : : ; s). Theny = y1 � : : : � yr. For every i 2 f1; : : : ; sg we set xi 2 HomR0(Vi; V ) asxi = p�i�1yi. The argument used in the claim shows that x = x1 � : : :� xris an orthogonal matrix satisfying (�). This �nishes the proof of Theorem 4.2 We remark that the problem of simultaneous conjugacy over the unitarygroup U(C 0) can be treated in a similar way.4 Decomposition of modulesLet V be a module over the algebra �. Recall that V is decomposable ifV = W1 � : : : �Wm for some submodules 0 < W1; : : : ;Wm < V , and inde-composable otherwise. V decomposes as a direct sum of indecomposable sub-modules V1; : : : ; Vr. By the Krull-Schmidt theorem, the isomorphism classes13



(counted with multiplicities) of these indecomposable components are unique.There is a well known correspondence between decompositions of the�-module V and decompositions of the identity element of the centralizeralgebra End�(V ) as direct sums of pairwise orthogonal idempotents. Indeed,assume that V = W1 � : : : � Wm, where 0 < W1; : : : ;Wm � V . For i =1; : : : ; n, let �i denote the projection onto the component Wi with kernelPj 6=iWj. It is straightforward to see that the �i are pairwise orthogonalidempotents in End�(V ) with Pmi=1 �i = IdV . On the other hand, assumethat IdV = �1 + : : : + �m be a decomposition of IdV as a sum of pairwiseorthogonal idempotents from End�(V ). Then V decomposes as the directsum of the subspaces W1 = im�1; : : : ;Wm = im�m. A component Wi ofa decomposition of V is indecomposable if and only if the correspondingprojection �i is a primitive idempotent in End�(V ).Thus, �nding decompositions of modules is related to the problem of�nding orthogonal systems of idempotents in algebras. We show a moredirect connection in the case where our module is the regular �-module ��.Assume that � is a direct sum of the left ideals L1; : : : ; Lm. Then we can write1� = e1+: : :+em with ei 2 Li. It is straightforward to see that e1; : : : ; em arepairwise orthogonal idempotents. On the other hand, if 1� decomposes as asum of pairwise orthogonal idempotents e1; : : : ; em then � is a direct sum ofthe left ideals L1 = �e1; : : : ; Lm = �em. Again, indecomposable summandsof �� correspond to primitive idempotents. The (isomorphism classes of)the indecomposable summands of �� are called the principal indecomposable�-modules.Thus, decomposition of algebras as direct sums of left idealsor, equiva-lently, �nding orthogonal systems of idempotentsplays a key role in moduledecompositions.4.1 Decomposition of semisimple algebrasIn this subsection we recall some known algorithms for decomposing semisim-ple algebras.By [7] and [13], a complete system of primitive idempotents in a semisim-ple algebra � over the �nite �eld K can be found in Las Vegas polynomialtime. We remark that there are deterministic versions of these algorithmswhich run in time (input size + p)O(1), where p is the characteristic of theground �eld. 14



As for the algebraically or real closed case, we summarize the results ofEberly [5], adapted to our needs. The algorithm proposed by Eberly wasoriginally a Las Vegas method. The deterministic version is due to R�onyai,[14]. Let � be a semisimple algebra over the algebraic number �eld K, whereK is assumed to be real. Then a complete orthogonal system of primitiveidempotents e1; : : : ; em of �E can be found by a deterministic polynomial timealgorithm. Every idempotents ei is de�ned over a number �eld K � Li < Ewith dimK Li � ( �dimK �2 � (E = R0);dimK � (E = C 0):The �elds Li generally di�er for di�erent indices i. Note however, that wecould take some restrictions. For example, the �eld of de�nition of the primi-tive idempotents ei can be required to depend only on the simple component�E containing ei.4.2 Decomposing arbitrary algebrasIn order to �nd idempotents in an arbitrary K-algebra � we use a generalprocedure that lifts the semisimple part. First of all, we compute the radicalRad�. Over algebraic number �elds, the standard method by Dickson isavailable. Over �nite �elds we use the method of [13]. By the PrincipalTheorem of Wedderburn and Malcev, (c.f. [11]) there exists a subalegebra �of � isomorphic to the semisimple part �=Rad�. In [4], a polynomial timealgorithm is presented for �nding such a subalgebra, where the ground �eldK is either a �nite �eld or an algebraic number �eld. Since every primitiveidempotent of � is a primitive idempotent in � (and a similar statement holdsfor idempotents in �E), we can apply the methods available for semisimplealgebras. We obtain the following results.Proposition 11 Let � be a K-algebra, where K is a �nite �eld. There is aLas Vegas polynomial time algorithm that �nds a complete orthogonal systemof primitive idempotents in �. The same task can be done by a determisiticmethod running in time (input size + p)O(1). 2Proposition 12 Let � be a K-algebra, where K is a algebraic number �eld.Let E be the algebraic or real closure of K. In the latter case we require K to15
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