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Abstract

First we define and study the exponentiation of a cellular algebra by a per-
mutation group which is analogous to the corresponding operation (the wreath
product in primitive action) in permutation group theory. Necessary and suffi-
cient conditions for the resulting cellular algebra to be primitive and Schurian
are given. This enables us to construct infinite series of primitive non-Schurian
algebras. Also we define and study for cellular algebras the notion of a base which
is similar to that for permutation groups. We present an upper bound for the size
of an irredundant base of a primitive cellular algebra in terms of the parameters
of its standard representation. This produces new upper bounds for the order of
the automorphism group of such an algebra and in particular for the order of a
primitive permutation group. Finally we generalize to 2-closed primitive algebras
some classical theorems for primitive groups and show that the hypothesis for a
primitive algebra to be 2-closed is essential.
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1 Introduction

There are at least three mathematical environments carring in a natural way into cellular
(coherent) algebras introduced by Weisfeiler and Lehman and independently by Higman
(see [11], [8]). These are by definition matrix algebras over C closed under the Hadamard
multiplication and the Hermitian conjugation and containing the identity matrix and
the all one matrix. The first environment is permutation group theory where a cellular
algebra arises as the centralizer algebra Z(() of a permutation group G (see chapter 5
of [13]). Another field is algebraic combinatorics, especially the association scheme and
design theories. All objects in this context can be considered as special cases of coherent
configurations and cellular algebras arise as the adjacency algebras of them (see [8]).
Finally, there is a cellular algebra approach to the Graph Isomorphism Problem which
is one of the most well-known unsolved problems in computational complexity theory.
The cornerstone of this approach consists in associating to a graph the smallest cellular
algebra containing its adjacency matrix. There is a canonical polynomial-time procedure
for this which reduces the Graph Isomorphism Problem to the corresponding problem
for cellular algebras (see [11]).

One of the advantages in studying cellular algebras consists in the following observa-
tion: on one hand the axioms defining them are less restrictive than those of groups and
on the other hand they are not so amorphic objects as graphs. In other words, cellular
algebras accumulate algebraic features of groups and combinatorial features of graphs.
To demonstrate this we briefly discuss below three topics concerning them and playing
the central role in this paper: representations, Schurity and primitivity.

Let W be a cellular algebra on a finite set V', i.e. a cellular subalgebra of the full
matrix algebra Maty (the set of all complex matrices whose rows and columns are
indexed by the elements of V). Then from the representation theory point of view W
can be viewed as an algebra equipped with a faithful linear representation

p: W — Maty .

Since W is a semisimple algebra over C, the representation p is completely reducible.
One of our goals here is to present a connection between the structure properties of W
and the representation parameters of p such as its irreducible representation multiplici-
ties and degrees. It should be mentioned that our approach is different from that of [2]
where commutative cellular algebras arising from distance regular graphs have been
studied.

Going over to the following topic let us define the automorphism group Aut(W) of a
cellular algebra W to be the subgroup of the symmetric group Sym(V') consisting of all
permutations the permutation matrices of which commute with all matrices of W. At
the beginning of the development of cellular algebra theory there was a conjecture that
each cellular algebra W is Schurian (see [7] for the explanation of the term), i.e. that

the following equality holds:
W = Z(Aut(W)). (1)

If it was so, then we would have a complete characterization of distance regular graphs
(see [2]) and a polynomial-time algorithm for the Graph Isomorphism Problem (see [11]).
However this is not the case and some examples of non-Schurian cellular algebras can be



found in [13] and [7]. This leads to the following problem (Schurity problem): determine
whether a given cellular algebra is Schurian. The Schurity problem is the second topic
of our paper.

The combinatorial features of cellular algebras are based on the fact that the last
are closed with respect to the Hadamard multiplication. This implies that each cellular
algebra W contains a uniquely determined linear base consisting of {0,1}-matrices sum-
ming up to Jy (the all one matrix of Maty ), which enables us to view it as the adjacency
algebra of a coherent configuration. Using this base we can define homogeneous and
primitive cellular algebras corresponding in the sense explained below to transitive and
primitive permutation groups. Namely, we call W homogeneous if it contains exactly
one diagonal {0,1}-matrix (the identity matrix [y ), and primitive if it contains exactly
two {0,1 }-matrices (Iy and Jy) coinciding with the adjacency matrix of an equivalence
relation on V. These definitions imply that a permutation group G is transitive (resp.
primitive) if and only if its centralizer algebra Z((') is homogeneous (resp. primitive) as
a cellular algebra. Like primitive groups in permutation group theory primitive cellular
algebras are “building blocks” for arbitrary cellular algebras. The study of them is the
third topic of the paper.

The main results of the paper are contained in sections 3, 4 and 5 (section 2 presents
exact definitions and notation concerning cellular algebras).

In section 3 we define a new operation, the exponentiation of a cellular algebra W
by a permutation group K, the result of which is a cellular algebra W 1 K. It is similar
to the corresponding operation for permutation groups (see [7]). It is known that the
exponentiation G' T K of permutation groups GG and K is primitive iff (¢ is primitive and
nonregular and K is transitive. We generalize this result by showing (theorem 3.4) that
the algebra W 1 K is primitive iff W is primitive and nonregular and K is transitive.
We also show that given an arbitrary permutation group A, the cellular algebra W 1 K
is Schurian iff so is W (theorem 3.3). These theorems enable us to construct infinite
series of non-Schurian primitive algebras (see the end of subsection 3.3).

In section 4 we define for cellular algebras the notion of a base which is similar to that
for permutation groups. It is closely related to the Schurity problem: according to [4]
an m-closed cellular algebra having a base of size m — 1 is Schurian (as to the discussion
of higher closed algebras see below). The main result of this section (theorem 4.3)
shows that the size of each irredundant base of a primitive cellular algebra W does not
exceed any ratio mp/np where mp (resp. np) is the multiplicity (resp. degree) of a
nonprincipal primitive central idempotent P of W. Using this upper bound (see also
theorem 4.10) we present two upper bounds for the order of Aut(W) in terms of the
relation degrees of W and the above ratios (corollary 4.12). Note that each of these
results gives rise to the corresponding result for primitive permutation groups.

In section 5 we continue the investigation of the m-closure of a cellular algebra
introduced in [4] (the exact definition of m-closure can also be found in this section).
It can be considered as an approximation of a cellular algebra W on V' to the Schurian

closure Sch(W) = Z(Aut(W)) of it (see [4]):
W=wW < . <WM =Sch(W)

where W™ is the m-closure of W and n is the cardinality of V. Assuming a primitive
cellular algebra to be 2-closed (i.e. coinciding with its 2-closure) we generalize to it



some classical theorems holding for a primitive permutation group. For example, we
characterize 2-closed primitive algebras W as homogeneous ones for which any algebra
W,, v € V (the analog of a one-point stabilizer in permutation group case) is a mini-
mal overalgebra of W (theorem 5.5). In particular, this implies that such a W equals
W, N W, for any two different points u and v of V' unless it is regular of prime degree
(theorem 5.6). We also generalize to these algebras a well-known theorem saying that
each 3/2-transitive group is either primitive or a Frobenius group (theorem 5.9). Finally,
we give an example showing that all the theorems are not true if the hypothesis for a
primitive algebra to be 2-closed is omitted (see the end of subsection 5.3).

Notation. As usual by C we denote the complex field.

Throughout the paper V' denotes a finite set with n = |V| elements. By relations
on V me mean subsets of V x V. For a relation R on V weset RT = {(u,v): (v,u) € R}
and R(v) = {u: (v,u) € R} where v € V. If E is an equivalence (i.e. reflexive, sym-
metric and transitive relation) on V', then V/E denotes the set of all classes modulo FE.

The algebra of all complex matrices whose rows and columns are indexed by the
elements of V' is denoted by Maty, its unity element (the identity matrix) by Iy and
the all one matrix by Jy. For U C V the algebra Maty is in a natural way identified
with a subalgebra of Maty .

For U,U" C V we denote by Jy s the {0,1}-matrix with 1’s exactly at the places
belonging to U x U'. If A € Maty, then AT denotes the transpose and A* the Hermitian
conjugate matrix.

If ¢ : V= V' is a bijection, then A¥ denotes the image of a matrix A with respect
to the natural algebra isomorphism from Maty to Maty: induced by ¢.

The group of all permutations of V' is denoted by Sym(V).

For integers {,m with [ < m by [[, m] we denote the set {{,{+1,...,m}.

2 Cellular algebras

All undefined below terms concerning cellular algebras and permutation groups can be
found in [11] and [13] respectively.

2.1 By a cellular algebra on V we mean a subalgebra W of Maty for which the
following conditions are satisfied:

(Cl) Iy, Jv € W;
(C2) VAeW: A eW;
(C3) VA, BeW: AoBeW,

where A o B is the Hadamard (componentwise) product of the matrices A and B. It
follows from (C2) that W is a semisimple algebra over C.

FEach cellular algebra W has a uniquely determined linear basis R = R(W) (the
standard basis of W) consisting of {0,1}-matrices such that

STR=Jy and RER & R cR. (2)

ReR



Set CelW)={U CV: Iy € R} and Cel'(W) ={U C V : Iy € W}. Each element
of Cel(W) is called a cell of W. It is easy to see that

v= J U (disjoint union).

UeCel(W)

The algebra W is called homogeneous if | Cel(W)| = 1.
For U,U" € Cel*(W) set Ry ={R € R: Ro Jyy = R}. Then

R = U Ruu (disjoint union).

U,U'eCel(W)

Moreover, for two cells U, U’ the number of 1’s in the uth row (resp. vth column) of the
matrix R € Ry does not depend on the choice of u € U (resp. v € U’). This number
is denoted by dyu:(R) (resp. din(R)). If W is homogeneous, then d,:(R) = d;(R) for
all R € R and we use the notation d(R) for this number and call it the degree of R. In

this case we have
S d(R) = |V (3)
ReR
For each cell U € Cel(W) we view the subalgebra IyW Iy of W as a cellular algebra
on U. It is denoted by Wy and called the homogeneous component of W corresponding
to U. The basis matrices of Wy are in 1-1 correspondence to the matrices of Ry .
Each matrix R € R being a {0,1}-matrix is the adjacency matrix of some relation
on V called a basis relation of W. By (2) the set of all of them form a partition of V' x V
which can be interpreted as a coherent configuration on V' (see [8]). We often use for
this set the same notation R and save for basis relations all the notations introduced
for basis matrices.
2.2 A large class of cellular algebras comes from permutation groups as follows
(see [11]). Let G < Sym(V) be a permutation group and

Z(G)={AeMaty : A=A, g€ G}

be its centralizer algebra. Then Z(() is a cellular algebra on V. Its basis relations are
exactly the 2-orbits of GG. In particular, Cel(Z(G)) = Orb(G) where Orb(() is the set
of G-orbits.

A cellular algebra W is called semiregular if d;,(R) = dy(R) = 1 for all R € R(W).
A homogeneous semiregular algebra is called regular. It is easy to see that semiregular
(regular) algebras are exactly the centralizer algebras of semiregular (regular) permuta-
tion groups.

Two cellular algebras W and W’ on V and V' are called isomorphic (W = W') if
W =W’ (as sets) for some bijection ¢ : V' — V"’ called an isomorphism from W to W".
Clearly, ¢ induces a bijection between the sets R(W) and R(W’). The group of all
isomorphisms from W to itself contains a normal subgroup

Aut(W)={p € Sym(V): A" =A, Aec W}

called the automorphism group of W. If W = Z(Aut(W)), then W is called Schurian. It

is easy to see that W is Schurian iff the set of its basis relations coincides with the set of
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2-orbits of Aut(W). We note that semiregular cellular algebras are Schurian. It follows
from [13] that there exist cellular algebras which are not Schurian (see also [7]). The
smallest example of a non-Schurian cellular algebra which we know is the commutative
algebra T'(15) on 15 points corresponding to the skew Hadamard matrix of order 16
(see [7] for the explicit description). This algebra has three basis relations whose degrees
are 1, 7, 7 and is primitive in the sense of subsection 2.3.

Along with the notion of an isomorphism we consider for cellular algebras that of a
weak one. Namely, cellular algebras W on V and W’ on V' are called weakly isomorphic
if there exists an algebra isomorphism f : W — W’ such that f(A*) = f(A)* and
f(AoB) = f(A)of(B)forall A, B € W. In this case |V| = |V'|, f(R(W)) = R(W') and
f induces a bijection from Cel(W) on Cel(W’). Any such f is called a weak isomorphism
from W to W’'. Note that each isomorphism from W to W’ induces in a natural way a
weak isomorphism between these algebras.

2.3 Let W be a cellular algebra on V' and E be an equivalence on V. We say that
E is an equivalence of W if it is the union of basis relations of W. The equivalences
of W with the adjacency matrices [y and Jy are called trivial. Suppose now that W is
homogeneous. We call W imprimitive if it has a nontrivial equivalence. Otherwise it is
called primitive unless |V| = 1. We stress that a cellular algebra on a one-point set is
neither imprimitive nor primitive according to this definition.

Lemma 2.1 ([11]) Let W be a primitive cellular algebra having a nonreflexive basis
relation of degree 1. Then W = Z(Z,) where Z, is a reqular permutation group on p
points, p being a prime.m

If W is primitive, then according to [11] each nonreflexive basis relation of W is
strongly connected (in the corresponding graph any two vertices are connected by a
directed path). In other words, given a basis matrix R of W, R # [y, each basis matrix
S of W enters R's for some positive integer ig, i.e. S o RS # 0. If W is not regular,
then 75 can be chosen the same for all S by lemma 2.1.

2.4 The set of all cellular algebras on V' is put in order by inclusion. The greatest
and the least elements of the set are respectively the full matrix algebra Maty and the
simplex S(V) = Z(Sym(V)), i.e. the algebra with the linear base {Iy, Jy }. For cellular
algebras W and W' we write W < W' if W is a subalgebra of W'.

Given a subset X of Maty, we denote by [X] the cellular closure of X, i.e. the
smallest cellular algebra containing X. If W is a cellular algebra on V, then W[X]
denotes [WUX]. If X = {I;,3 : u € U} where U is a subset of V, we use notation Wiy,
instead of W[X] and set Wy, v, = Wige,..wy for vg,... 0, € V.

.....

3 The exponentiation of cellular algebras

3.1 Let W < Maty be a cellular algebra with R as the standard basis and ® be a group
of weak isomorphisms from W to itself. For R € R we set

1
e _ - ®
i _|(I)R|ZR

ped



where &p = {p € & : R? = R} (we use notation R? instead of ¢(R)). Then clearly
R?® is a {0,1}-matrix and two such matrices either coincide or orthogonal with respect
to the Hadamard multiplication. It is easy to see that

S A=Jy and ATeR® & AeR® (4)

AER?®
where R® = {R®: R e R}. Set W® = [R?] < Maty.
Lemma 3.1 The set R® is the standard basis of the cellular algebra W*®.

Proof. To prove the statement it suffices by (4) to verify that the product of two matrices
belonging to R?® is a linear combination of matrices from R®. Let us denote by Cg,s the
structure constants of the algebra W with respect to R. Then

1 1 /
R*S*=— Y ReS'=— 3 (RSV) == Ly v ChsnT? =
M, yea Mg yed Mo yed TeR
= Z Z Cst’(Z Tw) = Z Z Cst’|(I)T|T
w’ECD TeER peD ¢’€<I> TeER

where m = |®p||®s|. This proves the required statement.m
Let W < Maty be a cellular algebra and let K be a permutation group on a set X.
Defining the action of the group K on V* by

({Ul’}xEX)k = {ka—l}xeX, v, EV.ke K

we can view K as a subgroup of the group of weak isomorphisms of W to itself where
WX =W ---oW (X times). By lemma 3.1 this defines a cellular algebra on X
denoted by W 1 K and called the exponentiation of W by K.

The following properties of the exponentiation are straightforward from the defini-
tion.

Proposition 3.2 The following canonical isomorphisms take place:
(1) W (K1 Ky)=(W T K)o (W T K,);
(2) WH (K 1K) 2 (W T Ky) T K
(3) (W@ W) 1 K = (Wi 1 K) & (Wa 1 K)

where W, Wy, Wy are cellular algebras, Ky, Ky, K are permutation groups and & (resp. 1)
denotes the direct sum (resp. the wreath product in imprimitive action) of permutation
groups.m

3.2 The above operation is closely related to the exponentiation of permutation
groups called also the wreath product in primitive action (see for instance [7]). The
exponentiation ¢ T K of a permutation group G < Sym(V') by a permutation group
K < Sym(X) is by definition the group consisting of permutations ({g;zex, k) with
g» € G,k € K acting on the set VX by

{v bk = 70y



The following inclusions are valid
Aut(W) T K < Aut(W T K) < Aut(W) 1 KM (5)

where KM is the I-closure of K, i.e. the product of the symmetric groups acting on
the orbits of A'. The first inclusion is straightforward. To check the second one we
note that Aut(S(V) 1T Sym(X)) = Sym(V) T Sym(X) (the both groups clearly have
the same 2-orbits and the second one is 2-closed, see [7]). Then each permutation from
Aut(W 1 K) is of the form o = ({g.}, k), 9. € Sym(V), k € K. Moreover, g, € Aut(W)
and k € K, which follows from considering the action of ¢ on the basis relations of
W 1 K having the form RX and RC x S¥\° where R, S are different basis relations
of W and O is an orbit of K.

The Schurity problem for the exponentiation is solved by the following statement.
Theorem 3.3 The cellular algebra W 1 K is Schurian iff so is W.

Proof. Let K < Sym(X). If W is Schurian, then clearly so is W*. This implies by
the definition of the exponentiation, that the basis relations of W 1 K are of the form
OF = UperOF where O is a 2-orbit of Aut(W?). Since Aut(W) 1 K acts transitively
on OF the sufficiency follows from the left side inclusion of (5).

Conversely, let R be an arbitrary basis relation of W. Then the Schurity of W 1 K
implies that the group Aut(W 1 K') acts transitively on the basis relation RX of W 1 K.
On the other hand, by the right side inclusion of (5) each permutation from Aut(W 1 K)
is of the form ({g.}, k) with g, € Aut(W) for all @ € X. So the group [ cx Aut(W)
acts transitively on the set of pairs ({u}sex,{v}zex) where (u,v) € R. Thus R is a
2-orbit of Aut(W) and so W is Schurian.m

3.3 If W is homogeneous, then W 1 K is a cellular subalgebra of the homogeneous
algebra W, So it is homogeneous too. On the other hand, if U is a cell of W, then
clearly UX € Cel(W 1 K). Thus the algebra W 1 K is homogeneous if and only if so

is W. The following statement characterizes the case of primitive exponentiation.

Theorem 3.4 Let W < Maty be a cellular algebra and K < Sym(X) be a permutation
group. Then W 1 K s primitive iff K ts transitive and W is primitive and nonregular.

Proof. Let W T K be a primitive cellular algebra. Then |V| > 1. If O € Orb(K),
then the equivalence on VX the classes of which are defined by the equality of coordi-
nates outside of O is a nontrivial equivalence of W 1 K. So K is a transitive group.
Analogously, an equivalence F of W produces the equivalence of W 1 K the classes of
which are [],cx Uy, U, € V/E. This shows that W is primitive. Finally, W can not be
a regular algebra for otherwise the relation with the adjacency matrix Y. per BY where
R = R(W) would be a nontrivial equivalence of W 1 K.

Conversely, let us consider the adjacency matrix £ of some equivalence of W 1 K.
Suppose that E # [yx and set

S={RcRW*): RoE=R}.

Then each matrix R € § can be written in the form R = ®,cx R, where R, € R for
all . Let us choose a matrix R from § such that the numberng = {x € X : R, = Iy }|
be as small as possible. It follows from the choice of F that R # [yx and so np < | X].
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We will show that ngp = 0. Indeed, let R, # Iy and R, = Iy for some z,y € X. By the
transitivity of K there exists a permutation k& € K such that z*¥ = y. Since E* = E,
we conclude that R* € S. So all the basis matrices of W¥ entering RR* also belong
to §. On the other hand, since the cellular algebra W is primitive and nonregular, the
product of two its basis matrices is a multiple of [y iff both of them equal [y. Let us
apply this argument to matrices R, and R, 2 € X. Then since R,R,.» = R, R, = R, is
not a multiple of Iy, there exists a matrix S € S entering RR* with ng < ng. However
this contradicts the choice of R.

Since R, # Iy, x € X, and W is primitive and nonregular, each basis matrix of W
enters R’z for some positive integer 7, (see subsection 2.3). So any basis matrix of W
enters R' for some 7 (for instance we can take 7 to be the product of i, over all z € X).
Since R o E = R', it means that F = Jyx. So W 1 K has only trivial equivalences and
hence is primitive. m

By theorems 3.3 and 3.4 the non-Schurian primitive algebra W = T'(15) (see sub-
section 2.2) generates a series of non-Schurian primitive cellular algebras W 1 K where
K runs over all transitive groups. The smallest such an algebra not coinciding with W
(on 225 points) arises for K = Zs.

4 Representations, bases, groups

4.1 Let W be a cellular algebra on V. Since W is semisimple over C, it is isomorphic
to the direct product of full matrix algebras:

w= ]I wp= [ Maiy,, (6)
PeSpec(W) PeSpec(W)
where Spec(W) is the set of all primitive central idempotents of W. It follows that
dimg(W)= Y b 7
PeSpec(W)
Since Iv = Y pespecw) s we have the direct decomposition

cV= > prch. (8)

PeSpec(W)

where CV is the linear space over C with base V. For each P the W-module PC" is
the direct sum of irreducible W-modules of dimension np over C isomorphic to each
other. Let us denote their number by mp. Then decomposition (8) implies that

n = Z mpnp. (9)
PeSpec(W)
The numbers m, and np are called below the multiplicity of P and the degree of P
respectively.
Let now W be a homogeneous cellular algebra. As it was shown in [6] the following
inequality holds:
np < mp, P € Spec(W). (10)

Moreover, np = mp for all P iff W is regular.
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Lemma 4.1 Let W < Maty be a homogeneous cellular algebra. Then
dim(W Pv) = n%
for all P € Spec(W) andv € V.
Proof. If P € Spec(W), then WP = Maty, ,,] and so the dimension of the algebra W P

over C equals n%. This implies the inequality
dim(W Pv) < np, velV. (11)

On the other hand, the set X, = {Rv: R € R(W)} is obviously a linearly independent
subset of CV for v € V. Since W is homogeneous, we have | X,| = [R(W)]|. So by (7)

dim(Wv) = |X,| = [R(W)| =dim(W) = > nj. (12)
PeSpec(W)

It follows from (8) that dim(Wv) = ¥ pegpecwy dim(W Pv). Thus (12) and (11) imply
that dim(W Pv) = n%, for all P.m

We complete the subsection by remarking that given a homogeneous cellular algebra
W < Maty, the matrix Jy /n is its primitive central idempotent of multiplicity and
degree 1. It is called the principal idempotent of W.

4.2 The following notion is inspired by that of a base for permutation groups (see
for instance [10]).

Definition 4.2 A tuple (vy,...,v;) € V? is called a base (ordered) of a cellular algebra
W < Maty if W, ..., = Maty. We call this base irredundant if {v;} ¢ Cel(Wy, ... .vi_,)
for all v € [1,b]. Otherwise it is called redundant. A subset B of V' is called a base of W
Zf W[B] == Matv.

In this section the term “base” always means ordered base. The minimum size of a
base of W is denoted by b(W). It is easy to see that 0 < b(W) <n —1 for all W on V.
The lower and upper bounds are attained exactly for the full matrix algebra Maty and
the simplex S(V') respectively. Given a permutation group G < Sym(V') and a cellular
algebra W < Maty, the following inequalities hold:

b(Aut(W)) < b(W),  b(G) < b(2(()) (13)

where b((7) is the minimum size of a base of (G. The first follows from the equalities
Aut(W),, ., = Aut(W,, . ,,) and Aut(Maty) = {1}. The second is the consequence
of the first and the obvious fact that b(G) < b(G') for G < G

We do not develop the theory of cellular algebra bases in detail here but several
remarks should be done. Using the notions of a base and a higher closure (see section 5)
we can give a sufficient condition for a cellular algebra to be Schurian. Namely, it was
proved in [4] that (b + 1)-closure of a cellular algebra W is Schurian where b = b(W).
(In fact, the split number of W defined in that paper coincides with b.) We also mention
the upper bound b < O(y/nlog n) for a primitive cellular algebra W not coinciding with
the simplex S(V) proved in [1]. Finally, for cellular algebras arising from Hadamard
matrices a logarithmic upper bound b < O(logn) follows from [9].

4.3 It is easy to see (cf. (10) and below) that b(W) < 1 = mp/np for a regular
cellular algebra W and each P € Spec(W). This observation can be generalized as
follows.
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Theorem 4.3 Let W < Maty be a primitive cellular algebra. Then

Bl < Z£
np

for each irredundant base B of W and each nonprincipal idempotent P € Spec(W). In
particular, b(W) < minp(mp/np) where P runs over the set of all such idempotents.

Remark 4.4 The estimate of the theorem is sharp. The equality is attained, for in-
stance, if W is a simplex or a reqular algebra.

Remark 4.5 The primitivity of W is essential. Indeed, let W = Z(G') where G is the
permutation group on 21 points defined by the action of the group PSL(3,2) on flags.
Then W has an irredundant base of size 4 whereas mp/np = 3 for its idempotent P of
degree 2 and multiplicity 6.

Proof. We start with two lemmas proved in [5]. To make the paper selfcontained we
give the complete proofs of them.

Lemma 4.6 Let W be a cellular algebra on V. For A € Maty set
Eq(A) = {(u,v) € V x V| Au= Av # 0}.

Then A € W implies that the adjacency matriz of the relation Eq(A) belongs to W.
Proof. Let R be the standard basis of W. Since

Bq( X a(f)h) = U(W)Eq(z olR)k)= U B 3 &)

ReR UeCel ReRv,y UeCel(W) a#0 ReRv y,a(R)=a

it suffices to prove the lemma for a nonzero A = Y_p R where R runs over a subset of
basis matrices of W contained in Ry for some U € Cel(W). But for such an A we
have

AT A = d;,(A)A + B,
where d;,(A) = Y pdin(R), A is the adjacency matrix of Eq(A) and B = (B,,) is a
matrix with 0 < B, , < d;,(A) for all u,v € V and Bo A = 0. It follows that A € W .m
Lemma 4.7 Let W be a cellular algebra on V and A € W be a matriz with pairwise

.....

UV, V.., 0 €V

Proof. Let Av belong to -F , Wv; and B € Maty be defined by

Bu:{AU’ ifuée {v,...,o};

Au, otherwise.

Then it is easy to see that B € W,, ... By lemma 4.6 we obtain that Eq(B) is
an equivalence of W, ., . It follows from the hypothesis on A that £ > 1 and the
equivalence class modulo Eq(B) containing vy coincides with the set {vy,..., v, v}.
Denote by U the cell of W,, ., containing v. Then {v;} x U is a basis relation of the
algebra W,, ... Thus U C {v1,..., v, v}, whence U = {v}.m

.....
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Let us turn into the theorem’s proof. Let B = {vy,...,v;) be an irredundant base
of W and P € Spec(W) be a nonprincipal idempotent. We will prove that the sum

k
i=1
is direct for k € [0,b]. It suffices to verify that W Pv, N Ly_y = {0} for all k € [1,b].
Let Avy € Ly_y for some A € W P. Then the choice of B guarantees by lemma 4.7 that
the relation Eq(A) is different from the diagonal of V' x V. Hence either A has a zero
column or Eq(A) is an equivalence of W by lemma 4.6. In both cases A = 0. In the first
case this is the consequence of the homogeneity of W. In the second one the primitivity
of W implies that Eq(A) = V x V. This means that A is a multiple of Jy and so A =0
by the choice of P.
It follows from lemma 4.1 that dim(W Pv;) = n% for all i. On the other hand,
L, ¢ PCY and dim(PCV) = mpnp. Thus the direct decomposition (14) with & = b
gives the inequality
bn?; < mpnp,

which completes the proof.m

According to [12] the enveloping algebra Env((') of a permutation group G coincides
with the commutator algebra of Z((G') and vice versa. Moreover, Spec(Env(G)) =
Spec(Z(()). Besides, the degree n, (multiplicity m,) of an irreducible representation
of G entering its permutation representation corresponding to an idempotent P coincides
with mp (respectively, np). Thus theorem 4.3 implies by (13) the following statement.

Corollary 4.8 [If GG is a primitive permutation group, then
b(G) < ngrin(nw/mw)

where m runs over all nonprincipal irreducible representations of G entering its permu-
tation representation.m

To formulate corollaries 4.9 and 4.12 let us define for a homogeneous cellular algebra
W < Maty the average degree d,, and the weighted average ratio r,, by

dyy = dy(W) = 3 d(R)/(IR| - 1), rau:rau(W)z(;rpn%)/(;n%) (15)

ReR\{Iv}

where R = R(W) is the standard basis of W, rp = mp/np and P runs over all
nonprincipal idempotents from Spec(W). Due to (3), (9) and (7) we have

de(t —1) = Z dR)=n—-1= Z mpnp = rq(t — 1)
R#Iy P#Jy /n

where ¢t = |R(W)| = dim(W). Thus
dow(W) = rou(W) (16)

Theorem 4.3 implies by (16) the following statement.
Corollary 4.9 If W is a primitive cellular algebra, then (W) < dy,(W).m
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4.4 There is an obvious upper bound
| Aut(W)] < nbV)
for the order of the automorphism group of a cellular algebra W. The following state-
ment gives another estimate for it in primitive case.

Theorem 4.10 Let W be a primitive cellular algebra on V. Then for each non-reflexive
basis relation R of it there exists an irredundant base B of W such that

| Aut(W)| < nd"™
where d = d(R) is the degree of R and b = |B| is the size of B.

Remark 4.11 The statement of the theorem is still valid of W is an arbitrary cellular
algebra, R is a connected relation on V' being the union of basis relations S of W and

d= mgx{dm(S), dout(S)}.

Proof. Let R be a nonreflexive basis relation of W. It follows from the primitivity of W
that it is strongly connected. Therefore

Yoy, ..., € Voo Wy 0 #Maty = Jue X, : Ru) X,

where X; = {v € V: {v} € Cel(W,,,....,)}. Thisimplies that there exists an irredundant
base B = (v1,...,v;) such that v;y; € V\ X; and RT (v;41) N X; # 0 for all 7 € [1,b—1].
It follows that

.....

[G'Ul ~~~~~ Uy : G’Ul ..... ’U,‘+1] S d7 Z - [1,6 - 1]
where G = Aut(W). Since [G : G| < n, the theorem follows.m

Theorems 4.3 and 4.10 enable us due to (16) to estimate the order of the automor-
phism group of a primitive cellular algebra in terms of the ratios rp = mp/np and the

degrees d(R).
Corollary 4.12 Let W < Maty be a primitive cellular algebra. Then
| Aut(W)] < n(dmin)™ ™", [ Aut(W)] < nfra,)™ !

where dp, (resp. dyy) is the minimum (resp. average) degree of a nonreflexive basis
relation of W and v (resp. rq) is the minimum (resp. weighted average) ratio of a
nonprincipal idempotent P € Spec(W) (see (15)).m

A famous Sims conjecture proved in [3] under the classification of finite simple groups
(CFSG) states that |G| < nf(d) where G < Sym(V) is a primitive permutation group
and d is the minimum subdegree of (¢ (coinciding with d,,;, of Z(G)). The first inequality
of corollary 4.12 with W = Z(() provides a weaker upper bound for |G/|. It would be
interesting to estimate d,, by a function of d,,;,, which would give a new proof of the
Sims conjecture without assuming the CFSG.

We complete the section by mentioning that according to theorem 4.2 of [6] the
inequality d,,:, < 2°0"P) holds uniformly for all nonprincipal idempotent P € Spec(W)
of a primitive cellular algebra W. By theorems 4.10 and 4.3 this shows that

| Aut(W)| < n - 2007%/70)

still uniformly for all such P.
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5 Two-closed primitive cellular algebras

5.1 The notion of a m-closed cellular algebra was inroduced in [4] in connection with
the Schurity problem. It goes back to [11] where a similar notion was defined in an
algorithmic way. We start with the main definitions concerning higher closed cellular
algebras.

Let W be a cellular algebra on V. For each positive integer m we set

W=Wm=[We- oW, Z(SymV),V")]

with Sym(V') acting on V™ coordinate-wise. We call the cellular algebra W < Matym
the m-dimension extended algebra of W. The group Aut(W) acts faithfully on its in-
variant set A = {(v,...,v): v € V}. Moreover, the mapping £ : v — (v,...,v) induces
a permutation group isomorphism between Aut(W) and the constituent of Aut(W)
on AL

The important feature of the cellular algebra W is the following possibility to
extend the algebra W without changing its automorphism group. Set

wim — ((W(m))A)é‘l‘

We call W™ the m-closure of W and say that W is m-closed if W = W™, Each
cellular algebra is certainly 1-closed. However it is not the case for m > 2 (see [4]).
The following proposition describes the relationship between the m-closures and the

Schurian closure Sch(W) = Z(Aut(W)) of a cellular algebra W.
Proposition 5.1 ([4]) For each cellular algebra W on V' the following statements hold:

(1) Aut(W™) = Aut(W) for all m > 1;
(2) W=WwWh <. ... <W® = =Sch(W);
(3) (WD =W for all | € [1,m].m

Thus in a sense W) can be viewed as an approximation to Sch(W).

5.2 Below we restrict ourselves to the case m = 2. As we will see in the next
subsection even in this case the properties of m-closed cellular algebras are different from
those of general ones (at least in primitive case). We need a statement on the structure
of 2-extended algebras which is a consequence of proposition 3.6 and lemmas 2.5 and 3.1

of [4].
Lemma 5.2 Let W be a cellular algebra on V. Then
(1) A subset R of V x V is a basis relation of W® iff it is a cell of we.

(2) Foreachv €V the set Wi = IyW Iy where U = U, = {v}xV and W=w® can
naturally be viewed as a cellular algebra on the set U. Moreover, (W,)V < Wy
where the bijection (y : V — U is defined by uv = (v, u).

LTt can be proved that in fact W = We- - -@W, Il
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(3) Given two poinls v, v’ belonging to the same cell of W there exists a weak iso-
morphism [ : Wy — Wy with U = U, and U' = Uy, such that T wwy) = L
and f(ASU) = A% forall A€ Wam

If GG is a permutation group on V/, then obviously Cel(Z(G,)) = Orb(G,), v € V, and

Z(Gy) = Z(Gy) for v, v’ belonging to the same G-orbit (since G, = G, as permutation
groups). The following statement generalizes these facts to 2-closed cellular algebras.

Lemma 5.3 Let W be a 2-closed cellular algebra on V. Then

(1) Cel(W,) ={R(v): R € R} wherev €V and R is the set of basis relations of W.

(2) Given two points v,v' belonging to the same cell of W there exists a weak iso-
morphism ¢ = @y, @ W, — Wy such that o(1,) = I, and p(A) = A for all
AeW.

Proof. Let v € V. Then V = Ugper R(v). So to prove (1) it suffices to check that R(v)
is a cell of W, for all R. Let R € R. It follows from statement (1) of lemma 5.2 that
R e Cel(W) where W = W . On the other hand, by the first part of statement (2) of
lemma 5.2 we see that WU = [UW[U is a cellular algebra on the set /' = U,. Hence the
set U N R is a cell of Wy. So by the second part of statement (2) of lemma 5.2 there
exists a cell X € Cel(W,) such that X¢ D U N R where ¢ = (. Since (R(v))*=UNR
we conclude that X D R(v). However R(v) € Cel*(W,). Thus X = R(v) and so R(v)
is a cell of W. N N
To prove (2) set in the notation of lemma 5.2 W = (WU)C51 and W' = (WU/)CZ;’

Then by statement (2) of that lemma W and W' are cellular algebras on V' containing
W, and W, respectively. Statement (3) of the same lemma implies then that the map

o W = W', p(A) = (f(AY)S,

is a weak isomorphism from W to W’. The algebra W, (resp. W,/ ) is the smallest cellular
subalgebra of W (resp. W’) containing W and I, (resp. I,). Thus o(W,) = W, by
statement (3) of lemma 5.2.m

The lemma we proved has an interesting consequence concerning cellular algebras
with nonreflexive basis relations of degree 1.

Corollary 5.4 Let W be a 2-closed homogeneous cellular algebra on V' and FE be an
equivalence of W being a union of basis relations of W of degree 1. Then U € Cel(W[Iy])
for each class U € V/E.

Proof. It follows from the hypothesis on E that W, = W, = W for all u,v € U.
Therefore the set {¢,, : u,v € U} is contained in the group of all weak isomorphisms
from the algebra W to itself. So by statement (2) of lemma 5.3 this set is contained in
the subgroup ® preserving the standard basis of W. Hence the group ® acts transitively
on the set {I, : u € U}. This implies that U is a cell of the cellular algebra W? (see
lemma 3.1). To complete the proof we note that we > WIy], since the last algebra is
the smallest cellular overalgebra of W containing [;;.m

5.3 In this subsection we present the properties of 2-closed primitive cellular algebras
which generalize those of primitive permutation groups. In each case a "permutation
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group theorem” can be deduced from the corresponding ”cellular algebra theorem” by
using the simplest reasons such as: given a primitive permutation group G the cellular
algebra Z(() is also primitive, Aut(Z(()), = G, and so on. At the end of the subsection
we give an example which shows that the hypothesis for a primitive algebra to be 2-
closed is essential. We begin with the following characterization of 2-closed primitive

algebras (cf. theorem 8.2 of [13]).

Theorem 5.5 Let W be a 2-closed homogeneous cellular algebra on V. Then W is
primitive iff the algebra W, is a minimal cellular overalgebra of W for all v € V.

Proof. Let W be primitive and W’ be a cellular algebra on V' for which W, > W' > W.
Denote by U the cell of W’ containing the point v. Then U # {v} for otherwise W’ > W,.
Thus there exists a nonreflexive basis relation R of W such that R(v) N U # 0. On the
other hand, by statement (1) of lemma 5.3 we conclude that R(v) € Cel(W,). This
implies that R(v) is contained in some cell of W’. By the choice of R this cell coincides
with U, i.e. R(v) C U. Taking into account that the set RN (U x U) is the union of
basis relations of the homogeneous component W/, of the algebra W’  we conclude that
R(u) C U for all w € U. Since R is strongly connected (here we use the primitivity
of W), it follows that U/ = V. Applying statement (1) of lemma 5.3 to W, = W we see
that each basis relation of W is also a basis relation of W’. Thus W’ = W.

Conversely, let E be an equivalence of W, F £ V x V, and U be a class of E. Then
we have the inclusion W[ly] < W, for all v € U. Since W[ly] # W (the choice of F),
the minimality of W, implies that W[l;] = W, for all v € U. By lemma 5.3 it follows
that d(R) = 1 for all basis relation R of W such that R C F. Thus the equivalence £
satisfies the hypothesis of corollary 5.4. So U € Cel(W[[y]) which implies that |U| = 1.
This shows that the equivalence F is trivial. m

Another statement generalizes proposition 8.7 of [13].

Theorem 5.6 Let W be a 2-closed primitive cellular algebra on V' and u,v be different
points of V.. Then W =W, N W, unless W = Z(Z,) for a prime p.

Proof. By theorem 5.5 we conclude that the cellular algebra W, N W, coincides with
either W or W,. In the last case we also have W,, = W,. Since W is 2-closed, it follows
from lemma 5.3 that the basis relation R of W for which v € R(u) is of degree 1. So
W = Z(Z,) by lemma 2.1. =

The following theorem generalizes theorem 17.6 of [13] on the faithful constituents
of a one-point stabilizer of a primitive permutation group.

Theorem 5.7 Let W be a 2-closed primitive cellular algebra on V. Let v € V and

B € Cel"(W,), B # {v} be a nonempty subset of V' containing the union of all cells U
of W, such that the homogeneous component of W, corresponding to U is imprimitive.

Then B is a base of W.
Proof. Denote by R and R, the sets of basis relations of W and W, respectively.

Lemma 5.8 Let W be a 2-closed primitive nonregular cellular algebra on V andv € V.
Then there exists a nonreflexive basis relation R of W such that

VSeR: Sw)xRw)eR, & S=A
where A = Ay = {(v,v): v €V} is the diagonal of V x V.

16



Proof. Choose R € R to be a nonreflexive basis relation of maximal degree. Suppose
that S(v) x R(v) € R, for some S € R. By lemma 5.3 the sets S(v) and R(v) are cells
of W,. So there exists T' € R such that T' D S(v) x R(v). Clearly, T'(u) D R(v) for all
u € S(v). So

T(u)=R(v), ué€S(w) (17)

by the choice of R. The equivalence on V defined by v ~ w iff T(v) = T'(w) coincides
with A by the primitivity of W and lemma 4.6 (applied to the adjacency matrix of the
relation T'). So d(S) = |S(v)| =1 due to (17)). Thus S = A, for otherwise W is regular
by lemma 2.1. Since the converse implication follows from lemma 5.3, we are done.m

Let us turn into the theorem’s proof. Without loss of generality we assume that W
is not regular and check first that B is a base of W,. For two cells U, U’ of W, we define
the equivalence E(U,U’) on U by

EU,U"Y = {(u1,uz) € U x U : S(uy) = S(uz) forall S e R,, SCU xU'}.
Then it is easy to see that
EWUUY= Ay = W,(U,U") = Maty (18)

where W, (U, U’) is the restriction of (W, ) to U. Choose R as in lemma 5.8 and set
X = R(v). By lemma 5.3 the set X is a cell of W,. Suppose first that X C B. Then it
follows from theorem’s hypothesis that (U, X) is either U x U or Ay for all cell U ¢ B.
But if U # {v} the first case is impossible by lemma 5.8 and so the statement follows
from (18). Suppose now that X ¢ B and hence the homogeneous component of W,
corresponding to X is primitive. Then the above argument shows that E£(X,U’) = Ay
for all cell U" C B. So by (18) we can assume that X C B which returns us to the
previous case.

To complete the proof we note that B is in fact a base of W. Otherwise, the cell U
of Wip) containing v is not a singleton. Since R(u) = R(v) for all v € U and any basis
relation R of W with R(v) C B, the above argument shows that W has a nontrivial
equivalence, which contradicts the primitivity of W.m

To see that the hypothesis for W to be 2-closed is essential let us consider the non-
Schurian primitive cellular algebra W = T'(15) on V' = [1,15] defined in subsection 2.2.
A straightforward computation shows then that there exists a point vg € V such that

(1) W,, has three cells: two cells of size 7 and one cell of size 1;
(2) if v # vo, then W, has seven cells: four cells of size 3 and three cells of size 1;
(3) Wy, > W,,, if v # v.

Choose an arbitrary point v € V different from vy. Then it is easy to see that state-
ments (1) and (2) of lemma 5.3 do not hold for the point v and the pair (vq, v) respec-
tively. So W can not be 2-closed. (In fact, W) = Sch(W)). On the other hand, the
conclusion of theorem 5.5 is not true since W, is not a minimal overalgebra of W by
property (3). It can be shown in a similar way that for the algebra W the conclusions
of theorems 5.6 and 5.7 are also false.
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5.4 It is well-known that each 3/2-transitive permutation group is either primitive or
a Frobenius group (see theorem 10.4 in [13]). The following statement is a generalization
of this result to cellular algebras (see also [11]).

Theorem 5.9 Let W be a 2-closed homogeneous cellular algebra on V. Suppose that
d(R) = d(S) for all nonreflexive basis relations R,S of W. Then either W is primitive

or each irredundant base of W is of size at most 2.

Remark 5.10 [t follows from theorem 1.3 of [4] that in the second case the algebra W
is Schurian provided that it is 3-closed.

Proof. Let W be an imprimitive cellular algebra with R as the set of basis relations,
FE be an equivalence of W and U € V/FE. Then

U= Y dR)=da—1)+1

RER,RCE

where d is the degree of any nonreflexive basis relation of W and «a is the cardinality of
the set under the sum. So

GCD(d, |U]) = 1. (19)

For v € Vset S = S(v,U) = {S € R: S(w)NnU # 0}. Then the sets S(v,U) for
different U either coincide or disjoint (see [11]). So the set UgesS(v) is the union of
classes of I/ and hence
48] = X d(s) = U]l
Ses
for some positive integer [. It follows from (19) that |U] divides S. Since |S| < |U], we
conclude that |S| = |U|. Thus

Rw)NU| <1, U€EV/E, veV\U (20)

for all R € R.

Let us show that W, , = Maty for distinct w,v € V. Denote by U the class of £
containing w. Then it suffices to prove that d;,(R) = dyu(R) = 1 for all R € R,
contained in (V \ {u}) x (V \ {u}) where R, is the set of basis relations of W,. Since
W, > W]ly], we see that for each cell X € Cel(W,) either X C U or X NU = (.
Let X and X' be cells of W, such that X C U\ {u} and X' NU = 0. Then by (20)
for an arbitrary v € X’ the pairs (v,w) and (v,w’) with distinct w,w” € X belong to
distinct basis relations of W. Therefore the number of basis relations of W, contained
in X’ x X equals |X|. On the other hand, since W is 2-closed, we have by lemma 5.3
that | X| = |X'| = d. So we conclude that

VRER,: RC(U\{u})x (V\U) = din(R) = dos(R) = 1.

To complete the proof we note that each basis matrix of W, with support in (U \ {u}) x
(U\N{u})or (V\U)x (V\U) can be written as the product of two basis matrices of W,
with support in (U \ {u}) x (V\U) and (V\U) x (U\ {u})m
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