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AbstractThe bandwidth problem is the problem of numbering the vertices of a given graph G suchthat the maximum di�erence between two numbers of adjacent vertices is minimal. The problemis known to be NP-complete [Pa 76] and there are only few algorithms for rather special casesof the problem [HMM 91] [Kr 87] [Sa 80] [Sm 95]. In this paper we present a randomized 3-approximation algorithm for the bandwidth problem restricted to dense graphs and a randomized2-approximation algorithm for the same problem on directed dense graphs.
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1 IntroductionThe bandwidth problem on graphs has a very long and interesting history. It originatedat the Jet Propulsion Laboratory (JPL) at Pasadena in 1962 where single errors in a 6-bit picture code were represented by edge di�erences in a hypercube whose vertices werewords of the code. At the JPL, Harper and Hales sought codes which were minimizingthe maximum absolute error and the average absolute error. In this way the bandwidthand the bandwidth sum [Ha 64] problems were born (at least for a special graph class).Not long after this, Korfhage [Ko 66] began to work on the graph bandwidth problem(see also [Ha 67])Formally the bandwidth minimization problem is de�ned as follows. Let G = (V;E) be asimple graph on n vertices. A numbering of G is a one-to-one mapping f : V ! f1; :::; ng.The bandwidth B(f;G) of this numbering is de�ned byB(f;G) = maxfjf(v)� f(w)j : fv; wg 2 Eg;the greatest distance between adjacent vertices in G corresponding to f . The bandwidthB(G) is then B(G) = minf is a numbering of GfB(f;G)gClearly the bandwidth of G is the greatest bandwidth of its components.
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1Figure 1: A small 1=4-dense graph G. It has 8 vertices and minimum degree 2.The problem of �nding the bandwidth of a graph is NP-complete [Pa 76], even for treeswith maximum degree 3 [GGJK 78]. The general problem is not known to have anysublinear n�-approximation algorithms. There are only few cases where we can �ndthe optimal layout in polynomial time. Saxe [Sa 80] designed an algorithm which decideswhether a given graph has bandwidth at most k in time O(nk) by dynamic programming.Bandwidth two can be checked in linear time [GGJK 78]. Kratsch [Kr 87] introduced anexact O(n2 logn) algorithm for the bandwidth problem in interval graphs. Smithline[Sm 95] proved that the bandwidth of the complete k-ary tree Tk;d with d levels andkd leaves is exactly dk(kd � 1)=(k � 1)(2d)e. Her proof is constructive and containsa polynomial time algorithm, which do this task. For caterpillars [HMM 91] found apolynomial time log n-approximation algorithm. A caterpillar is a special kind of a treeconsisting of a simple chain, the body, with an arbitrary number of simple chains, thehairs, attached to the body by coalescing an endpoint of the added chain with a vertex of2



the body. Although they are almost interval graphs, the bandwidth problem restrictedto caterpillars is NP-complete.In this paper we present the �rst constant approximation ratio algorithm for �-densegraphs. In particular we construct a 3-approximation algorithm. We call a graph G�-dense, if the minimum degree �(G) is at least �n (see e.g. [AKK 95]). To introduceour method, we describe in Section 2 a weaker version of the algorithm - namely a 4-approximation algorithm. It uses as one of its building-blocks the construction of perfectmatchings in bipartite graphs. Furthermore it is easy to paralleliize, since the perfectmatching problem lies in RNC. Recently there has been some success in designingparallel approximation algorithms for some other hard problems [PS 97] [Tr 97] [TX 97].This paper is organized as follows. In Section 2 we outline a 4-approximation algorithm.Section 3 gives a re�nement to a 3-approximation algorithm and section 4 gives a 2-approximation algorithm for dense directed graphs.2 Outline of the 4-Approximation AlgorithmSuppose we have some optimal numbering. Then we can split this layout in n=B(G)boxes, so that there are only edges between neighbored boxes (see �gure 2). It is clearthat a graph with minimum degree k has at least bandwidth k. Therefore the bandwidthof �-dense graphs is at least �n and thus we have at most 1=� 2 O(1) boxes. Withoutloss of generality we may assume that n is divedable by B(G), else we can construct anew graph G0 with the same bandwidth, by adding a chain of clique of size �=2n to Guntil jV (G0)j is dividable by B(G).
1 2 3 4 5 6 7 8Figure 2: An optimum layout of the graph G in �gure 1. It is optimum, because �(G) = 2and the maximum distance of two neighbored vertices is 2.By repeating the algorithm for all the possible values for the bandwidth, we can get forcertain the right value. Note, that there are only O(n) possible values. The algorithmchooses at random O(logn) vertices R � V . For a vertex v 2 V nR we call the neighborsin N(v) \R the roots of v. We have 2 important properties of R:1. R forms with high probability a dominating set (Lemma 1)2. With high probability each of the boxes has at least one representative in R(Lemma 2).Lemma 1 Let G = (V;E) be a �-dense graph. A set ofk = log(n=�)log(1=(1� �)) = O(logn)3



randomly chosen vertices R forms with probability at least (1� �) a dominating set.Proof: The probability, that one particular vertex v will be dominated by one ran-domly chosen vertex, is at least �. If we choose k vertices independently, then the prob-ability that it is not dominated, is at most (1 � �)k. Thus the expected number of notdominated vertices is at most �, because(1� �)kn � �n=� � (1=(1� �))klog(n=�)log(1=(1� �)) � kBy Markov`s inequality we get the lemma.Lemma 2 Let V be a �nite set and V = V1 _[V2 _[::: _[Vc with jVij = dn=ce. Chooseindependently k logn vertices v 2R V at random, forming a set R. Then we have withhigh probability for each Vi a representative in R.Proof: The probability that there is no representative in R for a particular Vi, is� c�1c �k logn. Thus the expected number of Vi which do not have any representative in Ris c �c�1c �k logn. By Markov`s inequality we get, that the probability, that a Vi has not arepresentative is at most 2cnk log((c�1)=c) = o(1).Suppose we know to which box each root belongs to. In fact we can �nd the rightassignment of the roots to the boxes by exhaustive search in polynomial time. Observethat we have only a constant number of boxes and that the size of R is in the order oflogn. So there are only O(1)O(logn) = nO(1) possibilities. For any vertex which is not aroot we have now at most 3 possible boxes where it belongs to, because it has at leastone root (Lemma 1).
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��Figure 3: The vertices f1; 4; 5; 7g are the randomly chosen roots. In the �gure we seethe right assignment of these vertices to the boxes. For all the neighbors of the specialvertices we know the area of at most 3 boxes, where they belong to.4



Now we construct an auxiliary-graph GA in which each vertex of the input-graph isconnected to the possible places in the boxes. Clearly a perfect matching in this graphgives us a layout (see �gure 3). We have to describe the construction in more detail.The easiest method would be to build for each non-root vertex v the intersection Bv ofthe 3 surrounding boxes of all its roots. If there is some empty intersection, then theassignment of the roots to the boxes was wrong and we have to choose another one. Nowwe connect v to all the places in the boxes in Bv . If v is a root Bv is just the box where vwas assigned to. It is easy to see that there is some assignment of the roots to the boxes,so that the perfect matching will give us a layout f with B(f;G) � 6B(G).
1 4 5 7 863 2Figure 4: After running the perfect matching algorithm, we get a layout with maximumdistance at most 3 � 2B(G).To get a better approximation, we have to be more careful with the construction of Bv :For each non-root vertex v 2 V and each root rv of v we construct again a set of boxesand intersect them for all roots of v. Let rv be assigned to box i. For each non-rootneighbor w of v there are 4 possibilities (up to direction):1. There is a root rw of w in box i+ 3. Thus we know, that v has to be in box i+ 1(and w in i + 2). Otherwise v and w would be farer away than the bandwidth inany layout given by the perfect matching algorithm.

i+1ii-1 i+2 i+3 i+4

v wThe perfect matching can give us a layout f , in which v is on the left side of boxi+ 1 and w on the right side of box i+ 2. Thus B(f;G) � 2B(G).5



2. w has its roots in the boxes i+ 1 and i+ 2. So v has to be in box i or i+ 1 (and win i+ 1 or i+ 2).
i+1ii-1 i+2 i+3 i+4

v wSo the perfect matching will give us a layout f with B(f;G) � 3B(G).3. w has its roots only in i+ 1. v can be put into the boxes i� 1 to i+ 1 (and w intoi to i+ 2).
i+1ii-1 i+2 i+3 i+4

v wThe worst-case arises in this case: The two non-roots v and w are adjacent. Thedominating roots rv and rw lie in neighbored boxes i and i+1. The perfect matchingalgorithm assigns now u to the very left side of box i�1 and v to the very right sideof box i+ 2.4. All the roots of w are in box i. v can be put into the boxes i � 1 to i + 1 (and winto i to i+ 1).
i+1ii-1 i+2 i+3 i+4

v wHere we have for any layout B(f;G) � 3B(G).We can summarize the above discussion in the following algorithm.6



Algorithm DENSE BANDWIDTH (G)f G is �-dense gfor boxsize = �n to n=2 dobeginf We have d1=blocksizee boxes, being parts of a layoutgchoose at random and independently a subset R � V of size O(log n);for each possible assignment of the vertices of R to the boxes dobeginfbuild a bipartite auxiliary-graph GAof which one color-class consists of the places in the boxesand the other class of the vertices of Ggfor each vertex v 2 V dobeginConstruct BvConnect v to all the places in the boxes of BvendIf there is a perfect matching in GA, return one of themf Note that a perfect matching M also de�nes a layout fMgendendend DENSE BANDWIDTHAt least one of the polynomial number of assignments is correct and gives us a layout,which is not so far away from the optimum. Furthermore we can �nd a perfect matchingin O(jV jjEj) time by the standard s-t-ow techniques [LP 86]. There are also somebetter methods [FM 91] [KR 97]. However this algorithm seems to be far away frombeing practical and the running time PM(G) of the perfect matching algorithm will bedominated by the rest. We summarize our analysis in the following theorem:Theorem 3 There is a randomized algorithm which �nds in O(jV j � jEj � PM(G) �#(Assignments of the roots to the boxes)) bounded time for a �-dense graph G a layoutf , such that B(f;G) � 4B(G).We can �nd the perfect matchings also in RNC [MVV 87] [KR 97]. It is easy, to constructthe graph GA in NC. So we have, by doing all the for-loops in parallel, the followingtheorem.Theorem 4 There is a RNC-algorithm which �nds for a �-dense graph G a layout f ,so that B(f;G) � 4B(G).3 Subdivisions for 3-ApproximationsWe can achieve a better approximation ratio by not using boxes of size B(G), but aconstant fraction of B(G). We construct the bipartite auxiliary-graph GA like in section2. Our input graph G has minimum degree �n. Therefore B(G) � �n. In our improvedalgorithm we use boxes of size smaller than �=2n, which is a constant fraction of B(G).Thus we have again a constant number of boxes and Lemma 2 remains true. We havemuch more boxes, so that the running time increases, but remains still polynomial forconstant �.If the boxes have size �=2n, you can use an argument similar to the one used in Lemma 2to show, that each vertex has in at least two di�erent boxes of size �=2n roots. Therefore7



we can isolate at most 2B(G) locations in the layout, where this vertex belongs to (see�gure 5).
v

δ/2n

B(G)Figure 5: How to locate the 2B(G) locations in the layout.If we have the area for a vertex v, we know that its neighbors must not be farer awaythen B(G). That means that they are at most in the next B(G) locations surroundingthe area of v (see �gure 6). We call the union of these areas the green area of v.
v w

2 B(G)

green area of vFigure 6: The green area of v.If all neighbors of v located in this green area, then they are at most 3B(G) away fromv. In order to compute Bv we build the intersection of v`s area with the green areas ofall its neighbors. This gives usTheorem 5 There is a randomized algorithm which �nds in nO(1=�) time with high prob-ability for a �-dense graph G a layout f , so that B(f;G) � 3B(G).8



As before we can parallize this algorithm.Theorem 6 There is a RNC-algorithm which �nds for a �-dense graph G a layout f ,so that B(f;G) � 3B(G).4 The Bandwidth Problem in Directed GraphsIn this section we will present a 2-approximation algorithm for the directed �-dense band-width problem. We call a directed graph G �-dense, if each vertex has in-degree at least�n.The bandwidth problem in this case is similar to the undirected case, except for therestriction that all incoming edges of a vertex v has to lie on the left hand side of v inany valid layout. Thus we can only �nd a valid layout for acyclic graphs.Like in Section 3 we use boxes of size �=2n. Like before R will build a dominating set(each non-root vertex v has an incoming edge with one endpoint in R), such that v hasroots in di�erent boxes. If v has a root in box i and j (i < j) (of size �=2n) v can onlybe connected to the places of the boxes which are B(G) on the right of j including j (see�gure 7).
nδ/2 nδ/2

v

i j

B(G)Figure 7: Possible placement for v.For v we know now that all its neighbors are only allowed to be assigned to the 2B(G)places on the left of box j. This area is again called the green area. If we �nd a layout fin which all the neighbors of each vertex are assigned to their green areas, then we haveB(f;G) � 2B(G)We build GA like in section 3 and get since we have still a constant number of boxes thefollowing results. 9



Theorem 7 There is a randomized algorithm which �nds in nO(1=�) time with high prob-ability for a �-dense directed acyclic graph G a layout f , so that B(f;G) � 2B(G).As before we can parallize this algorithm.Theorem 8 There is a RNC-algorithm which �nds for a �-dense directed acyclic graphG a layout f , so that B(f;G) � 2B(G).5 The Superdense CaseFurther densi�cation leads to polynomial approximation scheme for the bandwidth min-imization problem. We call a simple graph G superdense, if the minimum degree of G isat least n� o(n�). The notion of superdenseness has been introduced in [KZ 97].If G is superdense, B(G) is at least n � o(n�) and therefore any layout f will su�ce tobe a good approximation:B(f;G) � n� (1 + �)n � o(n�) for any � 2 O(1)� (1 + �)(n� o(n�))� (1 + �)B(G)6 Further Research and Open ProblemsThere remains still an important open problem of designing polynomial time approxi-mation algorithms with approximation ratio less then three for the bandwidth problemon dense graphs. More strongly, can we hope that a PTAS exists for this problem or isthe problem MAX-SNP-hard (see [PY 88])? At the moment we do not know whetherthe general bandwidth problem is MAX-SNP-hard nor whether the bandwidth for densegraphs is in fact NP-hard.We were not able to prove any constant ratio approximation of the bandwidth for densein average graphs (see [AKK 95]) having �(n2) edges. For this case however we were ableto prove NP-hardness.AcknowledgmentWe thank Sanjeev Arora and Haim Kaplan for helpful discussions.References[AKK 95] Arora, S., Karger, D., Karpinski, M., Polynomial Time ApproximationSchemes for Dense Instances of NP-Hard Problems, Proc. 36th ACM STOC(1995), pp. 284{293.[FM 91] Feder, T., Motwani, R., Clique Partitions, Graph Compression and Speeding-up Algorithms, Proc. 23rd ACM STOC (1991), pp. 122{133.[GGJK 78] Garey, M., Graham, R., Johnson, D., Knuth, D., Complexity Results ForBandwidth Minimization, SIAM J. Appl. Math. 34 (1978), pp. 477{495.10
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