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1 IntroductionRecently, there has been a renewed interest in the problem of construction of optimal alphabetic trees[6, 10, 11, 12]. The Hu-Tucker (HT) algorithm [3] is a celebrated classical algorithm for this problem,whose correctness is not widely understood. The Garsia-Wachs (GW) algorithm [1], has a simplerbut still very technical proof based on several formal claims proved simultaneously by induction. Ourproof of correctness of the HT algorithm works by reducing to correctness of a general version ofthe GW algorithm in which any locally minimal pair is processed, not necessarily the rightmost one.This general version is also needed in our parallel implementations (see [11]). A restricted version ofthe GW algorithm (for rightmost minimal pairs) was considered in [5].The aim of this paper is to provide proofs of correctness of both the HT and the GW algorithmsthat are more structural than those in the original papers. The simplicity of the description of bothalgorithms is misleading. The original correctness proofs are very intricate. According to Knuth,\No simple proof is known, and it is quite possible that no simple proof will ever be found!" ([7], page443.) We provide several new facts about the local structure of optimal alphabetic trees, introducingnew local operations on trees, and specify a mutual simulation between both algorithms.Statement of the optimal alphabetic tree problem. Assume we have n weighted items, wherepi is the non-negative weight of the ith item. Write � = p1 : : :pn.The Garsia-Wachs algorithm permutes �. We adopt the convention that the items of � have uniquenames, and that these names are preserved when items are moved. When convenient to do so, wewill assume that those names are the positions of items in the list, namely integers in [1 : : :n].An alphabetic tree over � is an ordered binary tree T with n leaves, where the ith leaf (in left-to-rightorder) corresponds to the ith item of �. Throughout this paper, a binary tree must be full , i.e., eachinternal node must have exactly two sons. We de�ne the cost of any alphabetic tree T as follows:cost(T ) = nXi=1 pilevelT (i)where levelT is the level function of T , i.e., levelT (i) is the level (or depth) of i in T , de�ned to bethe length of the path in T from the root to i. The optimal alphabetic tree problem (OAT problem)is to �nd an alphabetic tree of minimum cost. Both the GW and HT algorithms have two phases.The �rst phase constructs the level function levelT of an optimal alphabetic tree T . The secondphase constructs T from its level function. a relatively trivial procedure that takes linear time. Infact, throughout the rest of the paper, we ignore this second phase, and take the array of values ofthe level function to be the output of any algorithm for the OAT problem.Construction of the optimal alphabetic tree. The alphabetic tree is constructed by reducingthe initial sequence of items to a shorter sequence in a manner similar to that of the Hu�manalgorithm, with one important di�erence. In the Hu�man algorithm, the minimum pair of items arecombined, because it can be shown that they are siblings in the optimal tree. If we could identify2



two adjacent items that are siblings in the optimal alphabetic tree, we could combine them and thenproceed recursively. Unfortunately, there is no known way to identify such a pair. Even a minimalpair may not be siblings. Consider the weight sequence (8 7 7 8). The second and the third items arenot siblings in any optimal alphabetic tree.Instead, the HT and GW algorithms, as well as the algorithms of [6, 10, 11, 12], operate byidentifying a pair of items that have the same level in the optimal tree. These items are thencombined into a single \package," reducing the number of items by one. The details on how thisprocess proceeds di�er in the di�erent algorithms.2 Correctness of the Garsia-Wachs algorithmDe�ne TwoSum(i) = pi + pi+1, the ith two-sum, for 1 � i < n. A pair of adjacent items (i; i+ 1) isa locally minimal pair (or lmp for short) ifTwoSum(i� 1) � TwoSum(i) if i > 1TwoSum(i) < TwoSum(i+ 1) if i � n � 2A locally minimal pair which is currently being processed is called the active pair.The Operator Move. If w is any item in a list � of weighted items, de�ne RightPos(w) to be thepredecessor of the nearest right larger neighbor of w. In this context, \larger" means \greater thanor equal to." If w has no right larger neighbor, de�ne RightPos(w) to be the last item of �. LetMove(w; �) be the operator that changes � by moving w just to the right of RightPos(w). Note thatif RightPos(w) = w, then Move(w; �) does nothing.Similarly, if u, v are adjacent items in �, de�ne RightPos(u; v) to be the predecessor of thenearest item to the right of v whose weight is at least weight(u) + weight(v). If there is no suchitem, de�ne RightPos(u; v) to be the last item of �. Let Move(u; v; �) be the operator that changes� by moving u and v to just to the right of RightPos(u; v). For example, if � = (1; : : :n), and ifRightPos(i; i+ 1) = j, then Move(i; i+ 1; �) changes � to�i;j = (1; : : : ; i� 1; i+ 2; : : : ; j; i; i+ 1; j + 1; : : : ; n)Two binary trees T1 and T2 are said to be level equivalent (we write T1 �= T2) if T1, and T2 havethe same set of leaves (possibly in a di�erent order) and levelT1 = levelT2 .Theorem 2.1 (Correctness of the GW algorithm) Let (i; i+ 1) be a locally minimal pair andRightPos(i; i+ 1) = j, and let T 0 be a tree over the sequence �i;j, optimal among all trees over �i;jin which i, i+ 1 are siblings. Then there is an optimal alphabetic tree T over the original sequence� = (1; : : :n) such that T �= T 0.The signi�cance of Theorem 2.1 is that levelT 0 may be computed by combining i and i + 1 into asingle node, v, and then applying the procedure recursively on the resulting list of length (n � 1).Then levelT (i) = levelT (i+ 1) = levelT 0(v) + 1, while levelT = levelT 0 on all other items.3



The array level is global of size (2n� 1). Its indices are the names of the nodes, i.e., the original nitems and the (n� 1) nodes (\packages") created during execution of the algorithm. The algorithmworks in quadratic time, if implemented in a naive way. Using priority queues, it works in O(n logn)time. Correctness follows directly from Theorem 2.1.procedure GW(�); f� is a sequence of names of itemsgfGeneral version of the Garsia-Wachs algorithmgif � = (v) thenlevel [v] = 0 else begin(�) �nd any locally minimal pair (u; w) of �create a new item v whose weight is pu + pw;replace u by the item v and delete w;(#) Move(v; �);GW(�);level [u] := level [w] := level [v] + 1;end;Denote by OPT(i) the set of all alphabetic trees over the leaf-sequence (1; : : :n) which are optimalamong trees in which i and i+1 are at the same level. Assume the pair (i; i+1) is locally minimal.Let OPTmoved (i) be the set of all alphabetic trees over the leaf-sequence �i;j which are optimalamong all trees in which leaves i and i+ 1 are at the same level, where j = RightPos(i; i+ 1).Two sets of trees OPT and OPT0 are said to be level equivalent , written OPT �= OPT0, if, foreach tree T 2 OPT, there is a tree T 0 2 OPT0 such that T 0 �= T , and vice versa.Theorem 2.2Let (i; i+ 1) be a locally minimal pair. Then(1) OPT(i) �= OPTmoved (i) .(2) OPT(i) contains an optimal alphabetic tree T .(3) OPTmoved (i) contains a tree T 0 with i, i+ 1 as siblings.Theorem 2.2 directly implies Theorem 2.1. Points (2) are (3) are simple. We prove them in thissection for completeness. Point (1) is rather subtle, for if we drop the requirement that i; i+ 1 areat the same level, then this point is false for some weight sequences, e.g., (7 8 13 14 1).Our main contribution is the discovery and a structural proof of Point (1).Description of the shift operations. We introduce two useful local operations, RightShift andLeftShift on trees. Both operations change the shape of an alphabetic tree locally without changingthe order of items (as leaves). We describe in detail only the operation LeftShift, as RightShift issimilar. Assume v1; v2; : : : ; vk are roots of disjoint subtrees T1; T2; : : : ; Tk, for k � 2, and the segmentsof leaves covered by these subtrees are disjoint and cover (left to right) a segment of consecutive leaves.We call such a sequence of nodes (v1; : : : ; vk) a cut .4



Let p(v) denote the father of any node v in T , and p0(v) denote the father of v in T 0, the treeresulting from applying the operation LeftShift to the cut. Create a new node w. Let p0(w) = p(v1).Let p0(v1) = p0(v2) = w. For 2 < t < k, let p0(vt) = p(vt�1). To �nish the description, we considertwo cases. If vk is the right son of p(vk), let p0(vk) = p(p(vk)). Otherwise, let vk+1 be the sibling ofvk, let p0(vk) = p(vk�1) and let p0(vk+1) = p(p(vk)). In both cases, p(vk) is deleted from the tree.For all other nodes, p0(v) = p(v).Proof of point (2) of theorem 2.2. Assume the levels of i and i + 1 are di�erent in someoptimal tree T , hence they are not siblings in T . If levelT (i) < levelT (i + 1) then we can performLeftShift(i; i+ 1), obtaining a new tree T 0. The level of i increases by 1 and the level of i + 1 doesnot increase. On the other hand the level of i+ 2 decreases at least by one. Hence (since pi+2 � piand pi+1 � 0) cost(T 0) � cost(T ), i and i+ 1 are siblings in T 0 and their levels are equal, and thusT 0 2 OPT(i). If levelT (i) > levelT (i+ 1) the proof is similar; use RightShift(i; i+ 1).Proof of point (3) of theorem 2.2. Consider a tree T 2 OPTmoved (i). If i, i+1 are not siblingsthen 1 < i < n � 1. After applying LeftShift(i; i+ 1) they become siblings. Both of them go downbut item j + 1 goes one level up. Since pi + pi+1 � pj+1 � 0 the resulting tree T 0 is still optimal.3 The structural theoremThis section is devoted to the proof of Point (1) of theorem 2.2.Informal overview of the proof of point (1) of correctness theorem. The crucial point isto show that the certain parts of trees in OPT(i) and OPTmoved (i) which are active with respectto the pair (i; i+1) are \well-shaped" (in the sense de�ned below) and that this guarantees that thepair (i; i+ 1) can be moved to the other side of such a part without a�ecting the level function. Thepoint (1) of the correctness theorem is broken into the proof of the movability lemma and that of thestructural theorem. The movability lemma is rather obvious. The structural theorem is proved byconsidering conditions of well-shaped segments and several cases. The proofs are by contradictions:if a certain condition is not satis�ed for the optimal tree then using shift operations the tree istransformed into a tree of a smaller cost. This contradicts the optimality of the original tree. Point(1) of Theorem 2.2, and correctness of the GW algorithm, follow directly from Theorem 3.2 andLemma 3.1.De�nition of well-shaped segment. Let LCAT (u; w) denote the lowest common ancestor ofnodes u and w in T .We say that a set S of leaves of T is h-isolated if1. For any u 2 S, levelT (u) � h.2. For any u 2 S and w 62 S, levelT (LCA(u; w)) � h.5



We say that a segment [i : : :j] of consecutive items (leaves) is left well-shaped at level h in T iffi; : : :jg is h-isolated and levelT (i) = levelT (i+1) = h+1. We de�ne right well-shaped similarly (inthis case levelT (j � 1) = levelT (j) = h+ 1).The leaves in the segment [i : : :j] and all their ancestors at level at least h is called the activewindow . Note that the active window is a forest.The window is said to be well-shaped i� the sequence of its leaves is left or right well-shaped.The introduction of windows is useful in visualizing local properties and rearrangements, as theserearrangements occur inside such windows. Trees in OPT(i) and OPTmoved (i) are illustrated inFigure 1 for i = 3 and for the weight sequence(80 12 10 11 13 3 4 5 9 8 7 25)The windows in trees T and T 0 are indicated by dotted lines. A window is also illustrated in Figure 2.Lemma 3.1 (Movability lemma) If the segment [i : : :j] is left well-shaped, then the active pairof items (i; i+1) can be moved to the other side of the segment by locally rearranging subtrees in theactive window without changing the relative order of the other items and without changing the levelfunction of the tree.Proof. The proof is straightforward. Let h = level(i) � 1. There are four cases, depending onwhether i and i+ 1 are siblings, and on whether LCA(j; j+ 1) = h. Figure 2 illustrates the proof inone case. We omit the details.If v is a node in a given alphabetic tree then we write pv for the total weight of the leaves of thesubtree rooted at v.Theorem 3.2 (Structural theorem)Assume (i; i + 1) is an lmp, j = RightPos(i; i+ 1), T 2 OPT(i); and T 0 2 OPTmoved (i). Then(i) the segment [i + 2; : : : ; j; i; i+ 1] is right well-shaped in T 0, and (ii) the segment [i : : : j] is leftwell-shaped in T .Proof. We shall initially assume that all weights are positive.If j = i+ 1, the theorem is trivial. Thus, without loss of generality, j > i+ 1.Let h = levelT (i)� 1 = levelT (i+ 1)� 1 and h0 = levelT 0(i)� 1 = levelT 0(i+ 1)� 1.Claim A: : For any u 2 [i+ 2 : : : j] we have(1) levelT (u) � h and (2) levelT 0(u) � h0.Proof of Claim A. We show only the proof of point (1), as (2) has a very similar proof. The proofis by contradiction. Suppose the claim is false. Let k be the leftmost item such that levelT (k) < h.Let T 00 2 OPT(i) be the tree obtained from T by applying RightShift(i; i+ 1; v1; : : : ; vr; k), wherev2; : : : ; vr are at level h and v1 is at level h if i and i+ 1 are siblings in T , level h+ 1 otherwise. If i6



and i+ 1 are siblings in T , i and i+ 1 go up and only k goes down (see Figure 3). Otherwise, i� 1and i + 2 go up and only k goes down. Since pk < pi + pi+1 < pi�1 + pi+2, T 00 has lower cost thanT , a contradiction.Claim B: : If j < n, then levelT (LCAT (j; j + 1) � h.Proof of Claim B. The proof is by contradiction. Suppose the claim is false. Let w be the ancestorof j and j + 1 at level h + 1. Let w1 and w2 be the sons of w.Case 1: There exists a leaf k at level � h in the segment. Pick the rightmost such k. Let T 00 2 OPT(i)be the tree obtained from T by applying LeftShift(k; v1; : : : ; vr; w1; w2), where v1; : : : ; vr are nodes atlevel h+ 1. This case is illustrated in Figure 4, where w1 = v6. Since j + 1 goes up and only k goesdown, and pk < pj+1, T 00 has smaller weight than T 0, a contradiction.Case 2: There is no leaf at level � h in the segment. Consider the cut (i; i+ 1; v1; : : : ; vr; w1; w2)where v1; : : : ; vr are nodes at level h+ 1. Let T 00 2 OPT(i) be the tree obtained from T by applyingLeftShift(i; i+ 1; v1; : : : ; vr; w1; w2). Only i and i+ 1 go down, and j + 1 and all the leaves of w1 goup. Since pi + pi+1 � pj+1 < pw1 + pj+1, T 00 has smaller weight than T 0, a contradiction. This caseis illustrated in Figure 5, where w1 = v6. This completes the proof of Claim B.Claim C: : If i > 1, then levelT 0LCAT 0(i� 1; i+ 2) � h0.Proof of Claim C. The proof is by contradiction. Suppose the claim is false. This implies thatthere is a node w which is the ancestor of i�1 and i+2 at level h0+1. Let w1 and w2 be the sons of w.Let u be the parent of i and i+1. Let k be the leftmost node in the cut (i+3; : : :j; u) which is at levelh0. Let T 00 2 OPTmoved (i) be the tree obtained from T 0 by applying RightShift(w1; w2; v1; : : : ; vr; k),where v1; : : : ; vr are nodes at level h0 + 1. Since i � 1 and i + 2 go up and only k goes down, andpk � pi + pi+1 < pi�1 + pi+2, T 00 has smaller weight than T 0, a contradiction.By Claims A, B, and C, the corresponding segments are well shaped in T and T 0. This completesthe proof in the case that all weights are positive.We now consider, for completeness, the case where weights may be zero. If pi = pi+1 = 0, thenj = i+1, and the result is trivial. If pi+ pi+1 > 0, the proof is valid except for one problem, namelythat in the proof of Claim B, we must consider the possibility that pw1 = 0. Then r > 0, sinceotherwise pi+2 = 0 , contradicting the fact that (i; i+1) is an lmp. Let k be the rightmost leaf of vr,and let T 00 2 OPT(i) be the tree obtained from T by applying LeftShift(k; w1; w2). Since only k andleaves of zero weight go down, while j + 1 goes up, and since pk < pi + pi+1 � pj+1, T 00 has smallerweight than T 0, a contradiction.
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4 Correctness of the Hu-Tucker algorithm: a simulationThe main idea of the Hu-Tucker algorithm is similar to that of the GW algorithm: combine twoitems which are very close and whose total weight is small. These items form an active pair which islater combined. However, now, a single item v representing the combined active pair is not moved.Instead, v becomes transparent. The original items are opaque. The algorithm keeps a workingsequence of names of items, together with their types (opaque or transparent) and weights. A pairof items (u; w) is said to be compatible if they are visible to each other, i.e., there is no opaque itembetween u and w in the current working sequence �. Denote by pos(u) the position of the item u inthe leaf-sequence (from left to right).De�nition of a minimal compatible pair. A pair (u; w) of compatible items is a minimal com-patible pair (mcp, for short) if the total weight of (u; w) is minimal. If there are several pairs (u; w)with the same minimal total weight, the pair (pos(u); pos(w)) is de�ned to be the lexically smallestone. The last condition is called the tie-breaking rule of the Hu-Tucker algorithm.Description of the HT algorithm. The HT algorithm works in the almost same way as theGW algorithm. Let � be the working sequence, which is initially the original list of items. In thestatement (�) in GW, we replace locally minimal pair by minimal compatible pair and the operationMove in the statement (#) by the statement \make v transparent."Fix an input sequence of items of length n. Henceforth in this section we assume that there areno ties. This means that no two items in the working sequence � ever have the same weights. Thecase of ties will be handled in Section 5.Denote by GW0 the deterministic version of the GW algorithm in which we choose each time theglobally minimal lmp, which we call the gmp. instead of an arbitrary lmp. Observe that such a pairis not necessarily the rightmost locally minimal pair. This is one of the reasons why we considereda non-deterministic version of the GW algorithm, which chooses an arbitrary lmp, in Section 2. Incase of ties, there is no reduction of the HT algorithm to the GW0 algorithm, as the following verysimple example shows. If n = 3 and all items have equal weight, there are two possible alphabetictrees, both optimal. The GW0 algorithm �nds one, while the HT algorithm �nds the other. At theend of the paper we indicate how to deal with a non-deterministic version of the HT algorithm.The working sequence of items in the HT algorithm consists of items of two types: opaque andtransparent . Call such sequences special sequences. The working sequence produced by the GW0algorithm makes no distinction between opaque and transparent items. For each special sequence� de�ne the sequence of items MoveTransparent(�) to be the sequence obtained by moving eachtransparent item w to the position immediately to the left of the nearest right larger neighbor of w,or to the end of the list if w has no right larger neighbor. If u is any item to the right of w before thismotion and to the left of w after this motion, we say that w \oats over" u. We move transparentitems one after another, starting with the rightmost transparent item.8



Example. Assume transparent elements are primed. ThenMoveTransparent(180 200 14 12 170 260 130 16 19) = (14 12 13 16 17 18 19 20 26)The proof of correctness of the HT algorithm presented in this paper is by a simulation of the HTalgorithm by the GW0 algorithm. The working sequences of algorithms are related through thefunction MoveTransparent, as stated in the simulation lemma, below. (See Figure 6.) This was alsoobserved in [1]. For completeness we include our proof of the lemma in the appendix.Lemma 4.1 (Simulation lemma) Let �i be the working sequence of items after the ith iterationof the HT algorithm and let i be the working sequence of items after the ith iteration of the GW0algorithm. For 0 � i < n � 1, let (ui; wi) be the globally minimal pair in i in the sense of GW0 andlet (u0i; w0i) be the mcp in �i . Theni = MoveTransparent(�i) and (ui; wi) = (u0i; w0i) for each 1 � i � n� 1 (See Figure 6).Correctness of the HT algorithm (in the case without ties) follows from the simulation lemmasince we already know that GW0 is correct (as a version of GW). In the next section we show thatthe assumption that there are no ties can be dropped.5 Resolving TiesThe problem of ties is rather subtle. A tie appears if two items (original or created by combining)have the same weight. Correctness of a tie-breaking rule means that the computed level function isthe level function of some optimal alphabetic tree over the original sequence of items. There can beseveral globally minimal compatible pairs at the same time in the HT algorithm. Recall that in sucha situation the original version of the HT algorithm applies the following tie-breaking rule (TBR):(TBR): choose the mcp with lexically minimal pair of indices.The fact that some tie-breaking rule is necessary is illustrated by the following example. Consider�ve items with the same weight. The possible history of the computation is:1 2 3 4 5! 1 2 (3 4) 5! 1 (2 5) (3 4)! (1 2 5) (3 4)! (1 2 3 4 5)The parenthesized sets are packages. The combine operations given above yield the followinglevels for the items 1, 2, 3, 4 and 5, respectively: 2, 3, 2, 2, 3. But, there is no full binary tree overleaf-sequence (1, 2, 3, 4, 5) with such a level function, so the algorithm is incorrect. We now provethat the rule TBR is correct. The proof also shows that we can always assume that there are no tiesby changing the arithmetic. This does not a�ect the asymptotic complexity.Theorem 5.1 The tie-breaking rule TBR in the HT algorithm is correct.Proof. In the HT algorithm the weights are non-negative reals and the minimality of trees is withrespect to the arithmetic of the reals. We show that the algorithm computes a minimal tree withrespect to a more complicated arithmetic in R2 without \knowing" it. Let R2 be the additive orderedgroup of pairs of real numbers where the addition is component-wise: (a; b) + (c; d) = (a+ c; b+ d),9



and the order is the lexical ordering of pairs of real numbers:(a; b)< (c; d) � ((a < c) or (a = c and b < d))CASE 1 : All weights are strictly positive.Let � = (p1; : : : ; pn) be the sequence of weights (non-negative reals). Denotede tie(�) = (p01; : : : ; p0n) = (p1;�22n�1); (p2;�22n�2); : : : ; (pn;�22n�n))Observe that no integer can be expressed as two di�erent sums of distinct powers of 2. This provesthe following.Claim A: No ties are possible in the HT algorithm working in the arithmetic of R2 for the sequenceof weights de tie(�)We know that HT is correct if there are no ties so it is correct when it works for de tie(�) in thearithmetic of R2. The tree computed for de tie(�) is also an optimal alphabetic tree for �. In thearithmetic of R2 the zero element is (0; 0). Since pi > 0, all elements of de tie(�) are positive.Fix the sequence �. Denote by �i and �0i the working sequences of items after the ith iteration ofHT applied respectively to � and de tie(�). Denote also by (ui; wi) and (u0i; w0i) the correspondingminimal compatible pairs. The claim below states that the history of the computation of the HTalgorithm is the same in the usual arithmetic as in the arithmetic of R2.Claim B: For each 0 � i < n, �i = �0i and (ui; wi) = (u0i; w0i).We sketch the proof of Claim B. Refer to the second component of p0i as the tag weight , or simply thetag. Then the weight refers to pi. Claim B follows from correctness of the following loop invariant,which holds for the list � before and after every iteration:Loop Invariant: If the weight of u is positive, then the tag of u is negative and is less than thesum of the tags of any subset of items to the right of u in �.The relative order of two sums of tags over disjoint subsets of elements depends only on the �rstelements of these subsets. This follows from the following simple observation on base 2 representationsof integers:Remark 5.2 Assume that 0 � ai; bi � 1 for i 2 [1; : : : ; n] and that the sets A = fi : ai 6= 0g andB = fi : bi 6= 0g are disjoint, thennXi=1 ai(�22n�i) < nXi=1 bi(�22n�i) , min(A) < min(B)Hence the rule TBR breaks ties in the same way in the usual arithmetic as it is done automatically(without this rule) in the arithmetic of R2. The same pairs are combined and �i+1 = �0i+1. Thiscompletes the proof of the claim. 10



CASE 2 : Some of the original weights are zero. If pi = 0 then in the operation of \detying" we setp0i = (0; 2i�1), otherwise (for items with positive weight) the \detying" works as in Case 1.Call a group of consecutive zero weighted items a zero chain. Each zero chain is processed fromleft to right, since the tag weights increase from left to right in the chain. This corresponds to therule TBR. Afterwards zero weighted elements are combined with positive items, and the situationis essentially the same as in Case 1. This completes the proof.6 Final RemarksWe can consider a nondeterministic version HT0 of the Hu-Tucker algorithm. De�ne the extendedorder << on the items in the sequence �:u << w i� (weight(u) < weight(w)) or (weight(u) = weight(w) and pos(u) < pos(w))We say that a pair (u; w) of compatible items is a locally minimal compatible pair (lmcp, for short)if w << v for each item v compatible with u and u << q for each item q compatible with w. In otherwords u and w are the minimal compatible partners for each other. The HT0 algorithm is the sameas the HT algorithm, except that it combines any lmcp of items.Remark 6.1 The HT0 algorithm is correct.Correctness is proved in a similar way as for the HT algorithm: simulate HT0 by GW in the casewithout ties. The working sequences in both algorithms are again related through the functionMoveTransparent due to the lack of ties. Then the function MoveTransparent maps each workingsequence in the algorithm HT0 into a corresponding unique sequence for the GW algorithm. Thepairs combined in HT0 correspond to locally minimal pairs in GW. We remark that we can use amodi�ed TBR in the GW algorithm to eliminate ties. The rule TBR will refer now to the smallestposition of an original item contained in a given package. Hence we need only remember the smallerposition of combined items. Then we can assume, without loss of generality, that there are no tiesduring execution of the GW algorithm.The method does not use in�nitesimals; only additional comparisons between positions of items areinvolved. This is useful in many situations, see [10, 11].References[1] A. M. Garsia and M. L. Wachs, A new algorithm for minimal binary search trees, SIAM Journal ofComputing 6 (1977), pp. 622{642.[2] T. C. Hu. A new proof of the T-C algorithm, SIAM Journal of Applied Mathematics 25 (1973), pp.83{94. 11
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AppendixProof. (of the simulation lemma)The crucial point is to prove that the sequence of combined pairs is the same for both algorithms. Thisreduces to the two claims below.Claim A: Assume that  = MoveTransparent(�). Then if (u;w) is the globally minimal pair in , the itemsu, w are visible to each other in �.Proof of Claim A. Observe that if the item x is transparent in � and has \oated over" at least k itemswhen performing MoveTransparent(�) then the left k neighbors of x in  have smaller weight than x. Theproof of the claim is by contradiction. Assume that u, w are not visible to each other, i.e., there is an opaqueitem q between u and w in �. There are two cases.Case 1: In �, w is before u. Then w is transparent because it \oats over" u, and weight(u) < weight(w).Let q0 be the predecessor of u in . If weight(q0) < weight(w), then (u;w) is not minimal in �, a contradiction.If q0 is transparent, then, since q0 does not \oat over" u, weight(q0) < weight(u) < weight(w), which impliesthat (u;w) is not minimal in �, a contradiction. Thus weight(q0) > weight(w) and q0 is opaque.Since w cannot \oat over" q0, we know that q0 is to the left of w in . We have the situation:: : : q0 : : :w : : : q : : :u : : : MoveTransparent) : : : q0uw : : :But q has no possible place in , as it must remain to the left of u and to the right of q0, a contradiction.Case 2: In �, u is before w. Then u is transparent because it \oats over" q. Since u does not \oatover" w, weight(u) < weight(w). Let q0 be the predecessor of u in . If weight(q0) < weight(w), then(u;w) is not minimal in �, a contradiction. If q0 is transparent, then, since q0 does not \oat over" u,weight(q0) < weight(u) < weight(w), which implies that (u;w) is not minimal in �, a contradiction. Thusweight(q0) > weight(w) and q0 is opaque. Since u cannot \oat over" q0, we know that q0 is to the left of u in. We have the situation:: : : q0 : : : u : : : q : : :w : : : MoveTransparent) : : : q0uw : : :Now q must remain to the left of w and to the right of q0, a contradiction. This completes the proof of ClaimA.Claim B: If (u;w) is the minimal compatible pair in � then the items u, w are adjacent in .Proof of Claim B. Assume there is an item q between u and w in . Observe the possible scenario of theoperation MoveTransparent . The items are been processed (moved to right) in right-to-left order. Assume uis before w in �. First w is processed, then all items between u and w. Finally u is processed. All elementsbetween u and w in � are of larger weight than w (since (u;w) is the mcp) and they \oat over" w. Immediatelyafter moving u, the items u and w become adjacent. Hence the item which is inserted between u and w in is to the left of u in �. We have the following situation:: : : q : : : u : : :w : : : MoveTransparent) : : : u : : : q : : :w : : :If q is visible from u then q is a better partner for u than w since q stopped before \oating over" w, i.e.,(q; u) would be a smaller pair of compatible items. This contradicts the fact that (u;w) is the mcp. Otherwise13



q is not visible from u. Let q0 be the opaque item visible from u between q and u. (Such an item must exist.)Since q \oated over" q0, we know that weight(q0) < weight(q). Furthermore, weight(q) < weight(w) since qstopped before w. Thus q0 is a better partner for u than w, and q0 and u are visible to each other. We have acontradiction since the pair (q0; u) is a better choice of mcp than (u;w). This completes the proof of Claim B.Assume that  = MoveTransparent(�). Claim A and Claim B imply that the minimal pair combined in is the same as the pair combined in �. We have:MoveTransparent(HT(�)) = GW0() if  = MoveTransparent(�)where GW0 and HT denote here one iteration of the GW0 and HT algorithms, respectively, on the workingsequence of items. (This is shown for an example sequence in Figure 3.) The proof works by induction on thenumber of iterations. Let �i, i, be the lists after i iterations. Then �0 = 0 is the initial sequence of items,and MoveTransparent(�i) = i implies MoveTransparent(�i+1) = i+1.
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