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1 Dense Set Cover ProblemWe start with the Dense Set Cover Problem. Let X = fx1; :::; xkg be a �nite setand P = fp1; :::; pmg � 2X be a family of its subsets. The Set Cover Problem(SCP) asks for a minimum size sub-family M of P such that X � [fpjp 2Mg.The greedy heuristic gives 1 + lnk approximation for SCP [5]. Moreover,SCP cannot be approximated to within less than ln k-factor unless NP �DTIME[nloglogn] [6].The B-sparse SCP has a constant upper bound B > 1 on the number of setsin P which cover the same element of X. The Vertex Cover Problem is a well-known representative of B-sparse SCP (B=2). There is a simpleB-approximationalgorithm for this problem. From the other side, the B-sparse SCP is MAX SNP-complete.In an �-dense SCP, any element of X belongs to at least �jP j sets for some� < 1.We will analyze the greedy heuristic applied to �-dense SCP. This heuristicrepeatedly choose a maximum size set in P , remove its elements from X and allother sets in P . All chosen sets form the output set cover Greedy.Lemma 1 The size of Greedy is at most log1=(1��) k.Proof. At �rst we will show that the maximum size of a set in P is at least �k.Consider a bipartite graph G = (P [X;E) where x 2 X and p 2 P are adjacentif and only if x 2 p. The degree of any x 2 X is at least �m, so the number ofedges in this graph is at least �mk and, therefore, there is a set p 2 P with degreeat least �m.Each iteration of the greedy heuristic does not decrease density, since allelements which belong to the chosen set are removed from X. So the size of Xafter the ith iteration is at most (1 � �)ik}This lemma shows that the size of the optimal set cover is O(log k). So wecannot expect that the �-dense SCP is NP -complete, since a simple O(mO(logk))-time exhaustive search chooses the optimal solution.Theorem 1 Unless NP � DTIME[nlogn], the �-dense SCP is not NP -complete.Note that O(log k) is the tight bound for the performance ratio of the greedyheuristic applied to �-dense SCP. To show this for � = 12 , we can construct aninstance of this problem with the size of optimal solution of O(log k) and thenadd two sets A and B such that A [ B = X, A \ B = ;. On the other hand,unlike to the general case of SCP, we may decrease the constant factor as far aswe want.Lemma 2 For any c > 0 and 1 > � > 0, there is a c ln k-approximation algorithmfor �-dense SCP. 2



Proof. Indeed, let transform an instance of �-dense SCP to an instance of(1 � (1 � �)2)-dense SCP in the following way. Consider a family P 2 = fp [ q :p; q 2 Pg. It is easy to see that any solution for SCP with the family P 2 givesa solution for initial SCP. An �-density means that at most (1� �)m sets do notcontain a given element of X. But then at most (1 � �)2m2 sets in P 2 do notcontain a given element of X.Lemma 1 implies that such transformation decrease the performance ratio ofthe greedy algorithm twice. }Theorem 1 arises the following two open problems:Problem 1 Can �-dense SCP be solved in polynomial time?Problem 2 Can �-dense SCP be approximated in polynomial time to within con-stant factor?Further densi�cation leads to polynomial solvability of SCP. The �-superdenseSCP is the case of SCP where each element of X is covered by at least m� o(m�)sets of P for some � < 1.Theorem 2 The �-superdense SCP can be solved in polynomial time.Proof. Let each element of X is covered by at least m� 
m� = m(1 � 
m��1)sets of P for some 
 < m1��. By Lemma 1 for � = 1� 
m��1, the size of optimalsolution is at most log
�1m1�� k = 1(1 � �)(1� logm 
) logm k:Thus, exhaustive search for �nding an exact solution has at most k((1��)�)�1 casesto consider. }2 Dense Steiner Tree ProblemConsider a connected graph G = (V;E) with a terminal set S � V . The SteinerTree Problem (STP) asks for a minimum size tree within G which spans allterminals from S. Further, d(F ) denotes the length of a graph F , jSj = k andjV j = n. A well-known minimum spanning tree heuristic (MSTH) [9] �nds aminimum spanning tree M of a weighted complete graph G0 = (S;E0; c), wherethe weight of any edge equals to the length of the shortest path between its endsin G. Then MSTH replaces all edges of M with the corresponding paths in Gand extracts a tree from the subgraph obtained.An optimal Steiner tree contains also non-terminals. Each such vertex ofdegree at least 3 is called a Steiner point. It is easy to see that there are at mostk � 2 Steiner points. Using MSTH we can �nd an optimal Steiner tree if we addall Steiner points to the terminal set. 3



Remark 1 An optimal Steiner tree can be found exactly in O(nk) time.MSTH gives 2-approximation for STP [9] and the best up-today polynomial-time approximation guarantee is about 1.644 [7]. From the other side, STP isknown to be MAX SNP - complete [4].In the B-sparse STP the degree of any vertex is bounded by a constant B.It is known that STP in the rectilinear metric (a sub-case of 4-sparse STP) isNP -complete but the question whether it is MAX SNP-hard or not is still open.In an �-dense instance of STP (for some � < 1) any terminal has at least �nneighbors outside S.Note that for � > 12, �-dense STP is a sub-case of Network STP with distances1 and 2 which is still MAX SNP-complete [4]. The Rayward-Smith heuristic [8]was proposed for the latter problem in [4]. It achieves a better approximationguarantee (43) then MSTH which has the tight bound 2 as for the general case.MSTH also does not di�er the dense and general case of STP.If the number of terminals is small enough, i.e. k � 1� , then we can �nd anexact solution in polynomial time. Otherwise, we apply to the dense STP thefollowing variant of Rayward-Smith heuristic (or the greedy algorithm [10]).Algorithm DSTP(0) SP  ;;C  ffsg : s 2 Sg(1) while jCj > 1� dofind v 2 V n S with the maximum size ofD(v) = fC 2 C : C contains a neighbor of vgSP  SP [ v;C  C nD(v) [ f[C2D(v)Cg;(2) find an optimal Steiner tree T for a terminal set S [ SP.Let C consist of sets C1; :::; Cr after Step (1) of Algorithm DSTP. Let addedges between all terminals of the same set Ci; i = 1; :::; r. The length of theoptimal Steiner tree in the graph G0 obtained cannot be longer than in G. Thereis an optimal Steiner tree OPT 0 in G0 containing spanning trees Mi for each setCi; i = 1; :::r. If we contract any such tree Mi to a vertex, then OPT 0 appears tobe an optimal Steiner tree M0 spanning vertices corresponding to Ci. Thus, theedge set of OPT 0 is a union of edges of Mi; i = 0; 1; ::; r.Algorithm DSTP constructs some Steiner trees M 0i in G for terminals of Ci(step (1)) and then �nds the shortest treeM 00 spanning M 0i ; i = 1; :::; r (step (2)).M 00 cannot be longer that M0, since M0 also spans M 0i . Remark 1 implies thatan exhaustive search in Step (2) can be executed in time O(n1=�).An approximation ratio of Algorithm DSTP is at mostPri=0 d(M 0i)Pri=0 d(Mi) � Pri=1 d(M 0i)Pri=1 d(Mi) = k � r + jSP jk � r � 1 + jSP jk � 1� : (1)4



The size of SP equals to the number of iterations in Step (1). Each iterationof (1) decreases the size of C by at least �jCj � 1. Thus, after i-th iterationjCj � (k � 1� )(1� �)i + 1� . The procedure (1) interrupts when jCj < 1� + 1, sojSP j � log1=(1��)(k � 1� ):Thus, (1) implies the followingLemma 3 An approximation ratio of Algorithm DSTP is at most1 + log1=(1��)(k � 1� )k � 1� }Given an arbitrary approximation ratio 1 + 
, 
 > 0, our strategy is to solveexactly in polynomial time (for �xed � and 
) instances of DSTP with smallnumber of terminals, i.e. when k satis�es the following inequalitylog1=(1��)(k � 1� )k � 1� � 
:If the number of terminals is su�ciently big, then we apply Algorithm DSTP.Thus we obtain the followingTheorem 3 There is a polynomial-time approximation scheme for the �-denseSTP. }It is not di�cult to see that there is a polynomial time reduction of the �-dense SCP to the �-dense STP and vice versa, thus, the problem of polynomialtime solvability of �-dense STP is equivalent to Problem 1.Similarly to SCP, we de�ne �-superdense STP to be the case of STP whereany terminal has at least n� o(n�) neighbors outside S.Corollary 1 The �-superdense STP can be solved exactly in polynomial time.3 Dense Vertex Cover ProblemVertex Cover Problem (VCP). Given a graph G = (V;E), �nd a minimumsize vertex set OPT � V such that at least one end of any edge belongs to OPT .The following algorithm is suggested for VCP in �-dense graphs, i.e., in graphswhere any vertex has at least �n neighbors for some � > 0 (jV j = n). Let O(v)denote the set of neighbors of a vertex v, G(V 0) denote a subgraph induced bya vertex set V 0 � V and 2VC denote the well-known 2-approximation algorithmfor VCP. 5



Algorithm DVCfor all v 2 Vdo V 0  V n (O(v) [ fvg);find a vertex cover V C(v) for G(V 0) using 2VC;V C(v) O(v) [ V C(v);APPR  argminv2V jV C(v)j.Let v =2 OPT . Then O(v) � OPT since all edges incident to v shouldbe covered by OPT . Moreover, O(v) covers all edges between O(v) and thecorresponding V 0. So the rest of vertices of OPT cover the edges of G(V 0).Let OPT 0 = OPT �O(v). The output vertex cover of 2VC applied to V 0 hasa size at most minf2jOPT 0j; jV 0jg. So the approximation ratio can be boundedas follows.jAPPRjjOPT j � jO(v)j+minf2jOPT 0j; jV 0jgjO(v)j+ jOPT 0j � minfjO(v)j+ 2jOPT 0jjO(v)j+ jOPT 0j ; njO(v)j+ jOPT 0jgIf 2jOPT 0j � (1 � �)n, thenjAPPRjjOPT j � �n+ 2jOPT 0j�n+ jOPT 0j = 2� 11 + jOPT 0j�nThus, the more jOPT 0j corresponds to the more bound for the approximationratio. Therefore, jAPPRjjOPT j � 2 � 11 + 0:5(1��)n�n = 21 + �:If 2jOPT 0j � (1� �)n, then we obtain the same bound for the approximationratio as follows jAPPRjjOPT j � n�n+ 0:5(1 � �)n = 21 + �:Theorem 4 The algorithm DVC has an approximation ratio at most 21+� for�-dense graphs.Theorem 5 The �-dense Vertex Cover Problem is MAX SNP-hard.Proof. (Sketch.) Starting with an instance of the Vertex Cover Problem in agraph G with n vertices we dencify it joining all vertices of a clique of size �1��nwith all vertices of G. The resulting graph is �-dense and, therefore, if we have an�-approximation for DVC, then the reduction above gives �(1+�)-approximationalgorithm for the general problem which is MAX SNP-hard. }6



Further densi�cation (as for SCP and STP) leads to decreasement of approx-imation complexity.We say that an instance of VCP is �-superdense if the degree of any vertex isat least n� o(n�). Theorem 4 impliesCorollary 2 The �-superdense VCP has a polynomial-time approximationscheme.References[1] S. Arora, D. Karger, and M. Karpinski. Polynomial Time ApproximationSchemes for Dense Instances of NP-Hard Problems.In Proc. of 27th ACMSymp. on Theory of Computing, 284{293, 1995.[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�ca-tion and hardness of approximation problems. In Proc. of 33d Annual IEEESymp. on Foundations of Computer Science, 14{23, 1992.[3] M. Bellare, S. Goldwasser, C. Lund, and A. Russel. E�cient probabilisticallycheckable proofs and application to approximation. In Proc. of 25th AnnualACM Symp. on Theory of Comp., 294{304, 1993.[4] M. Bern and P. Plassmann. The Steiner problems with edge lengths 1 and2. Inform. Process. Lett. 32: 171{176, 1989.[5] Chvatal. A greedy-heuristic for the set-covering problem. Math. OperationsRes. 4: 233{235, 1979.[6] U. Feige. A threshold of lnn for approximating set cover. In Proc. of 28thACM Symp. on Theory of Comp., 314-318, 1996.[7] M. Karpinski and A. Zelikovsky. New approximation algorithms for theSteiner tree problem. Journal of Combinatorial Optimization 1: 1{19, 1997.[8] V. J. Rayward-Smith, The computation of nearly minimal Steiner trees ingraphs, International J. Math. Ed. Sci. Tech. 14: 15{23, 1983.[9] H. Takahashi and A. Matsuyama. An approximate solution for the Steinerproblem in graphs. Math. Japonica, 24: 573{577, 1980.[10] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steinerproblem. Algorithmica 9: 463{470, 1993.7


