
A note on improving the running time of a class of parallelalgorithms using randomizationCarsten Dorgerloh� J�urgen WirtgenyDecember 4, 1996AbstractA natural method to avoid memory access con
icts in EREW-PRAM graph algorithms is tocompute a large independent set in a constant-degree-bounded con
ict graph. Many EREW-PRAM algorithms use results from [CV 86], [GPS 87], which can be used to compute such aset in O(log� n) parallel time. This paper gives an O(1) time randomized algorithm using O(n)processors for that problem. Our algorithm improves with high probability the running time ofmany EREW-PRAM algorithms.
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1 IntroductionWe consider the problem of computing an independent set of size 
(n) in a graph wherethe maximum degree is bounded by a constant on a randomized EREW-PRAM. Wepresent anO(1) time algorithm for this task which returns an independent set of size 
(n).A di�erent O(1) time algorithm was developed by Dadoun and Kirkpatrick [DK 89]. Therelationship between the algorithm presented here and that created by Dadoun et al.will be discussed in section 3. We then show that our algorithm together with someother techniques can be used to improve the running time of many known algorithms. Inparticular, we prove the following:� A 6-bounded acyclic orientation of each planar graph can be constructed on arandomized EREW-PRAM in parallel time O(logn) with high probability usingO(n= logn) processors.� A 5-coloring of the vertices of a planar graph may be computed by a randomizedEREW-PRAM in O(log n) parallel time with high probability using O(n= logn)processors.� Given a planar graph, the connected component and undirected spanning treeproblems can be solved in O(log n) time on an randomized EREW-PRAM withO(n= logn) processors with high probability.� A simple cycle of size k in a planar graph, if one exists, may be computed in O(logn)expected time by a randomized EREW-PRAM using O(n) processors.The paper is organized as follows. Section 2 contains some de�nitions and notations usedthroughout the paper. Section 3 describes the core of our uni�ed framework to avoidlog� n-factors in many EREW-PRAM algorithms. We show how to construct a largeindependent set in constant time. We apply this method in section 4 to the EREW-PRAM algorithms listed above. These ideas do not only work for those problems, but forall EREW-PRAM algorithms which avoid memory access con
icts by computing a largeindependent set in a constant-degree-bounded con
ict graph.2 Notations and de�nitionsThe terminology used in this paper follows that of Even [Ev 79]. Let G = (V;E) be agraph. For each vertex v, N(v) denotes the set of neighbors of v. As usual, we assumethat the vertices of G are represented by positive numbers and that G is presented to thealgorithm in the form of a set of edge-lists L: The graph is represented as an array of jV jvertices, and each vertex u is equipped with a pointer to its list L(u), a doubly-linkedlist that contains exactly one entry for each edge that connect u to another vertex in thegraph. For implementation reasons it is convenient to assume that there is a fake edgeat the end of each edge list. Additionally, each edge (u; v) appearing in the edge-list ofu has a pointer to its twin edge (v; u) appearing in the edge-list of v. In the literature,pointers of this type are often called cross links.The computational model used is the randomized EREW-PRAM. This model is a syn-chronized parallel computation model for which simultaneous access to any memory lo-cation by di�erent processors is forbidden. Furthermore, each processor has access to arandom number generator which returns random numbers of logn bits in constant time.2



3 Finding large independent sets in constant timeIn this section we show how to construct randomized an independent set of size 
(n) ina constant-degree-bounded graph with O(n) processors on an EREW-PRAM in constanttime. The error-probability will be bounded by a constant.Our algorithm will be based on randomized 2-colorings. The vertices to be chosen for theindependent set will all have the same property:De�nition 1 Let G = (V;E) be a graph and c : V ! f0; 1g a coloring of the vertices ofG with 2 colors. A vertex v 2 V is proper colored, if c(v) = 0 and all neighbors w 2 N(v)are colored with 1.Look at the following algorithm:Algorithm 2 (RandLargeIS)Input : A degree-d-bounded Graph G = (V;E) (d 2O(1))Output : An independent set LargeISStep 1 : for each v 2 V pardoc(v) 2R f0; 1gStep 2 : LargeIS := fv 2 V jv is proper colored gTo check that the algorithm runs on a randomized EREW-PRAM in constant time, wehave only to analyse step 2. We have to show that we can implement this step in constanttime using O(n) processors. Each vertex, edge and twin-edge is assigned to a processor.Note that the degree of each edge is bounded by a constant d. So we have at most(1 + 2d)n processors. In each edge (u; v) are 2 
ags, where the color of the owner u ofthis edge and the color of the owner v of its twin-edge (v; u) should be copied. Withthese informations each vertex can check in constant time (at most d steps) whether it isproper colored or not. The copy-process can be implemented in 2 phases:Phase 1: Each vertex v stores its color in each member of its edge-list L(v).Phase 2: Each edge stores its color in its twin edge.The implementation runs in constant time and there are no memory access con
icts.For the analysis of our algorithm we need the following technical lemma: Suppose youhave n 0-1-valued random variables X1; :::; Xn with Pr(Xi = 1) � p. We de�ne X :=PiXi.Lemma 3 For 0 < � < p=(1� p) and c(�) := (1 + �)(1� p), isPr(X � (1� c(�))n) � 1=(1 + �):Proof: Let Yi := 1�Xi and Y :=Pi Yi. Thus E(Y ) � (1� p)n.Pr(X � (1� c(�))n) = Pr(n� Y � (1� c(�))n)= Pr(Y � c(�)n)= Pr(Y � (1 + �) (1� p)| {z }�Pr(Yi=1)n)� Pr(Y � (1 + �)E(Y ))(Markov inequality) � 11 + �3



Note that 1=(1 + �) is smaller than 1.Now let d 2 O(1) be the maximum degree of a vertex in G. The probability that aparticular vertex v is proper colored is1=2 12deg(v) � 1=(2(d+1)) =: p:Now we de�ne � := p. In the following lemma we proof that RandLargeIS returns anindependent set of size greater than a (1� c(�)) fraction of n with bounded probability.Lemma 4 Let G = (V;E) be an input of algorithm RandLargeIS. ThenPr(jLargeISj > 122d+2n) � 12d+1 + 1and LargeIS forms an independent set.Proof: The output is clearly an independent set. Let Xv = 1, if v is proper colored.We have Pr(Xv = 1) � p and� = p = 12d+1 and 1=(1 + �) = 2d+12d+1 + 1 :Now we calculate the fraction of V which should be the independent set.c(�) =  2d+1 + 12d+1 ! 2d+1 � 12d+1 ! = 22d+2 � 122d+2(1� c(�)) = 122d+2With lemma 3 we get Pr(jLargeISj � 122d+2n) � 2d+12d+1 + 1Thus, Pr(jLargeISj > 122d+2n) � 12d+1 + 1The O(1) time algorithm proposed in [DK 89] uses a reduction of the problem of �ndinga large independent set in a constant-bounded-degree graph to the problem of �ndingsuch a set in list graphs (digraphs whose vertices have in- and out-degree bounded by 1),instead of using a direct imlementation like here.4 An Application: Planar OrientationsWe start by applying the subroutine presented in section 3 to a parallel EREW-PRAMalgorithm of [CE 91] for computing a 6-bounded acyclic orientation of planar graphs,which runs in O(log n log� n) time with O(n= logn log� n) processors. Let us call thisalgorithm Orient. The computation of Orient is divided in O(logn) phases. In phase iwe �nd a set R of vertices of degree at most 6. Now we construct a graph H = (R; F ),where (u; v) 2 F if either (u; v) 2 E or u and v have a common neighbor x such that4



the edges (u; x) and (v; x) are consecutive in the adjacency list of x. Observe that themaximum degree in H is O(1). In the next step a large independent set I in H of size
(n) is computed. Finally, we remove all vertices v 2 I from V and orient the incidentedges of those vertices in the obvious way.The time for each phase is dominated by the computation of the independent set I .This can be done e.g. by a deteterministic algorithm of [GPS 87] in O(log� n) time. Wesubstitute this subroutine used in all algorithms listed in section 1 by the randomized al-gorithm RandLargeIS proposed in section 3 and show that the running time of all thosealgorithms, especially the running time of Orient, is in O(log n) with high probability.The proof that the algorithm Orient runs in O(log n) time uses lemma 4 from section 3as well as the next lemma (see [LM 86],[Ch 52]), which provides a bound on the tail ofa binomial distribution. Consider a set of t independent Bernoulli trials, each with aprobability p of success. The next lemma bounds the probability B(s; t; p) that fewerthan s successes occur in t trials when t > 2s and p < 1=2.Lemma 5 For t > 2s and p < 1=2, we haveB(s; t; p) � � 1� p1� 2p� (1� p)t�ets �s .We will call an iteration of Orient successful, if the size of the independent set returnedby algorithm RandLargeIS (see section 3) is at least n=22d+2. Let LargeIS be theindependent set returned by RandLargeIS. Then by Lemma 4 we have the followinglower bound on the probability that an iteration is successful:Pr(jLargeISj > n=22d+2) � 12d+1 + 1We now are ready to show that the running time of all algorithms listed in section 1 may beimproved to O(logn) even without loosing optimality using the algorithm RandLargeISof section 3. As mentioned before, we start with the algorithm Orient. The proofs forthe other algorithms are analogously.Theorem 6 The EREW-PRAM algorithm Orient computes a 6-bounded acyclic orien-tation of planar graphs in O(k logn) parallel time with probability 1 - o(1=nk) for anyconstant k.Proof: During a successful iteration, the number of vertices in the graph is reducedby a constant fraction. Therefore we require at most � logn successful iterations. ByLemma 5, the probability that fewer than s = � logn successful iterations occur in �ksiterations each with probability p = 12d+1+1 of success isB(� logn; ��k logn; 1=(2d+1 + 1)) ��  1� 12d+1+11� 22d+1+1 !�1� 12d+1 + 1���k logn �e��k log n� logn �� logn=  2d+12d+1 � 1!0@ 2d+12d+1 + 1!�k e�k1A� logn5



By some algebraic manipulation and by settting a = 2d+1, one may derive the relationB(� logn; ��k log n; 1=(2d+1 + 1)) � aa � 1n� log(e�k)� aa+ 1�� logn�k= aa � 1n� log(e�k)+�k� <0z }| {log aa+1We can choose the constant � su�ciently large so that B(� log n; ��k log n; 1=(2d+1+1))is o(1=nk).5 Further resultsAs mentioned before, the techniques used in this paper may also be applied to manyother EREW-PRAM algorithms, including:5-coloring: Compute a coloring of a planar graph G, i.e., a partition of V into dis-joint sets V1; : : : ; V5 such that each Vi is an independent set for G. [CDH 87] gavean EREW-PRAM algorithm for this task which runs in O(logn log� n) time usingO(n= logn log� n) processors. Their algorithm, though being more complicated, isvery similar to the algorithm Orient described above.Connected Components, Undirected Spanning Trees: [Ha 90] presented EREW-PRAM algorithms which solve those basic graph problems for planar graphs inO(logn log� n) time using O(n= logn log� n) processors. In fact, his algorithms workfor a much broader class of undirected graphs, the so-called linear contractible classof graphs.Simple Cycles: [Do 96] showed that if a planar graph has a simple cycle of length k,where k is a �xed integer, such a cycle may be computed in O(logn log� n) expectedtime by a randomized EREW-PRAM with O(n) processors.AcknowledgementsWe are grateful to Marek Karpinski for stimulating discussions which were starting pointsfor the present note. We also wish to thank Elias Dahlhaus for helpful comments.References[Ch 52] Cherno�, H., A measure of asymptotic e�ciency for tests of hypothesis basedon the sum of observations, Proc. 23rd Annals of Mathematic Statistics (1952),pp. 493{507.[CDH 87] Chrobak, M., Diks, K., Hagerup, T., Parallel 5-Colouring of Planar Graphs,ICALP 87, Lecture Notes in Computer Science 267, pp. 304{313, SpringerVerlag Heidelberg, 1987.[CE 91] Chrobak, M., Eppstein, D., Planar orientations with low out-degree andcompaction of adjacency matrices, Theoretical Computer Science 86 (1991),pp. 243{266. 6
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