A note on improving the running time of a class of parallel
algorithms using randomization

Carsten Dorgerloh* Jiirgen Wirtgen!

December 4, 1996

Abstract

A natural method to avoid memory access conflicts in EREW-PRAM graph algorithms is to
compute a large independent set in a constant-degree-bounded conflict graph. Many EREW-
PRAM algorithms use results from [CV 86], [GPS 87], which can be used to compute such a
set in O(log™ n) parallel time. This paper gives an (1) time randomized algorithm using O(n)

processors for that problem. Our algorithm improves with high probability the running time of
many EREW-PRAM algorithms.

*Institut fiir Informatik V, Universitat Bonn, Romerstr. 164, D-53117 Bonn, Germany, email:
carsten@cs.uni-bonn.de

Mnstitut fir Informatik V, Universitit Bonn, Romerstr. 164, D-53117 Bonn, Germany, email:
wirtgen@cs.uni-bonn.de

1 Introduction

We consider the problem of computing an independent set of size ©(n) in a graph where
the maximum degree is bounded by a constant on a randomized EREW-PRAM. We
present an O(1) time algorithm for this task which returns an independent set of size Q(n).
A different O(1) time algorithm was developed by Dadoun and Kirkpatrick [DK 89]. The
relationship between the algorithm presented here and that created by Dadoun et al.
will be discussed in section 3. We then show that our algorithm together with some
other techniques can be used to improve the running time of many known algorithms. In
particular, we prove the following:

e A 6-bounded acyclic orientation of each planar graph can be constructed on a
randomized EREW-PRAM in parallel time O(logn) with high probability using
O(n/logn) processors.

e A bH-coloring of the vertices of a planar graph may be computed by a randomized
EREW-PRAM in O(logn) parallel time with high probability using O(n/logn)

processors.

e Given a planar graph, the connected component and undirected spanning tree
problems can be solved in O(logn) time on an randomized EREW-PRAM with
O(n/logn) processors with high probability.

e A simple cycle of size k in a planar graph, if one exists, may be computed in O(logn)
expected time by a randomized EREW-PRAM using O(n) processors.

The paper is organized as follows. Section 2 contains some definitions and notations used
throughout the paper. Section 3 describes the core of our unified framework to avoid
log™ n-factors in many EREW-PRAM algorithms. We show how to construct a large
independent set in constant time. We apply this method in section 4 to the EREW-
PRAM algorithms listed above. These ideas do not only work for those problems, but for
all EREW-PRAM algorithms which avoid memory access conflicts by computing a large
independent set in a constant-degree-bounded conflict graph.

2 Notations and definitions

The terminology used in this paper follows that of Even [Ev 79]. Let G = (V| F) be a
graph. For each vertex v, N(v) denotes the set of neighbors of v. As usual, we assume
that the vertices of G are represented by positive numbers and that GG is presented to the
algorithm in the form of a set of edge-lists L: The graph is represented as an array of |V/|
vertices, and each vertex u is equipped with a pointer to its list L(u), a doubly-linked
list that contains exactly one entry for each edge that connect u to another vertex in the
graph. For implementation reasons it is convenient to assume that there is a fake edge
at the end of each edge list. Additionally, each edge (u,v) appearing in the edge-list of
u has a pointer to its twin edge (v, u) appearing in the edge-list of v. In the literature,
pointers of this type are often called cross links.

The computational model used is the randomized EREW-PRAM. This model is a syn-
chronized parallel computation model for which simultaneous access to any memory lo-
cation by different processors is forbidden. Furthermore, each processor has access to a
random number generator which returns random numbers of log n bits in constant time.

3 Finding large independent sets in constant time

In this section we show how to construct randomized an independent set of size Q(n) in
a constant-degree-bounded graph with O(n) processors on an EREW-PRAM in constant
time. The error-probability will be bounded by a constant.

Our algorithm will be based on randomized 2-colorings. The vertices to be chosen for the
independent set will all have the same property:

Definition 1 Let G = (V, E) be a graph and ¢ : V — {0,1} a coloring of the vertices of
G with 2 colors. A vertex v € V is proper colored, if ¢(v) = 0 and all neighbors w € N (v)
are colored with 1.

Look at the following algorithm:
Algorithm 2 (RandLargelS)

Input : A degree-d-bounded Graph G' = (V, E) (d €O(1))
Output : An independent set LargelS
Step 1 : for each v € V pardo
c(v) €Er {0,1}
Step 2 : LargelS := {v € Vv is proper colored }

To check that the algorithm runs on a randomized EREW-PRAM in constant time, we
have only to analyse step 2. We have to show that we can implement this step in constant
time using O(n) processors. Each vertex, edge and twin-edge is assigned to a processor.
Note that the degree of each edge is bounded by a constant d. So we have at most
(1 4+ 2d)n processors. In each edge (u,v) are 2 flags, where the color of the owner u of
this edge and the color of the owner v of its twin-edge (v, u) should be copied. With
these informations each vertex can check in constant time (at most d steps) whether it is
proper colored or not. The copy-process can be implemented in 2 phases:

Phase 1: Each vertex v stores its color in each member of its edge-list L(v).

Phase 2: Each edge stores its color in its twin edge.

The implementation runs in constant time and there are no memory access conflicts.
For the analysis of our algorithm we need the following technical lemma: Suppose you
have n 0-1-valued random variables X, ..., X,, with Pr(X; = 1) > p. We define X :=

> Xi
Lemma 3 For 0< ¢ <p/(1—p) and c(¢) :== (14 €¢)(1 — p), is
Pr(X < (1—c(e))n) <1/(1+¢).
Proor: LetY;:=1—-X;and Y :=3,Y;. Thus E(Y) < (1 - p)n.
Pr(X <(1-c(e))n) = Pr(n—=Y < (1—c(e))n)
Pr(Y > ¢(e)n)
PHY > (1+6) (1-p) n)
>Pr(Yi=1)
Pr(Y > (14 ¢)E(Y))
1

IN

Markov i lit <
(Markov inequality) < 1.

Note that 1/(1 4 €) is smaller than 1. |
Now let d € O(1) be the maximum degree of a vertex in . The probability that a
particular vertex v is proper colored is

> 1/(21F)) = p.

1/2 9deg(v) —

Now we define € := p. In the following lemma we proof that RandLargelS returns an
independent set of size greater than a (1 — ¢(¢)) fraction of n with bounded probability.

Lemma 4 Let G = (V, E) be an input of algorithm RandLargelS. Then

1

1
Pr(|LargeIS| > Wn) Z m

and LargelS forms an independent set.

Proor: The output is clearly an independent set. Let X, = 1, if v is proper colored.
We have Pr(X, =1) > p and
2d—|—1

€= 725[4—1_'_1'

p:QdTand 1/(1+¢) =

Now we calculate the fraction of V' which should be the independent set.
2d-|—1 + 1 2d-|—1 -1 22d-|—2 -1
c(e) = 9d+1 9d+1 ~ T o2dt2

(1~ e(0) = 7172

With lemma 3 we get
1 2d—|—1

Pr(|LargelS| < W”) < 241 1 1

Thus,
1 1

Pr(|LargelS| > Wn) > ST

|
The O(1) time algorithm proposed in [DK 89] uses a reduction of the problem of finding
a large independent set in a constant-bounded-degree graph to the problem of finding
such a set in list graphs (digraphs whose vertices have in- and out-degree bounded by 1),

instead of using a direct imlementation like here.

4 An Application: Planar Orientations

We start by applying the subroutine presented in section 3 to a parallel EREW-PRAM
algorithm of [CE 91] for computing a 6-bounded acyclic orientation of planar graphs,
which runs in O(lognlog® n) time with O(n/lognlog™n) processors. Let us call this
algorithm Orient. The computation of Orient is divided in O(logn) phases. In phase i
we find a set R of vertices of degree at most 6. Now we construct a graph H = (R, F),
where (u,v) € F if either (u,v) € I or v and v have a common neighbor z such that

the edges (u,2) and (v,z) are consecutive in the adjacency list of . Observe that the
maximum degree in H is O(1). In the next step a large independent set I in H of size
Q(n) is computed. Finally, we remove all vertices v € I from V and orient the incident
edges of those vertices in the obvious way.

The time for each phase is dominated by the computation of the independent set I.
This can be done e.g. by a deteterministic algorithm of [GPS 87] in O(log™ n) time. We
substitute this subroutine used in all algorithms listed in section 1 by the randomized al-
gorithm RandLargelS proposed in section 3 and show that the running time of all those
algorithms, especially the running time of Orient, is in O(logn) with high probability.
The proof that the algorithm Orient runs in O(log n) time uses lemma 4 from section 3
as well as the next lemma (see [LM 86],[Ch 52]), which provides a bound on the tail of
a binomial distribution. Consider a set of ¢ independent Bernoulli trials, each with a
probability p of success. The next lemma bounds the probability B(s,t,p) that fewer
than s successes occur in t trials when ¢ > 2s and p < 1/2.

Lemma 5 Fort > 2s and p < 1/2, we have

B(s,t,p) < (11__2];) (1-p) (%)S :

We will call an iteration of Orient successful, if the size of the independent set returned
by algorithm RandLargelS (see section 3) is at least n/224*2. Let LargelS be the
independent set returned by RandLargelS. Then by Lemma 4 we have the following
lower bound on the probability that an iteration is successful:

1
Pr(|LargeIS| > n/22d+2) Z m
We now are ready to show that the running time of all algorithms listed in section 1 may be
improved to O(logn) even without loosing optimality using the algorithm RandLargelIS
of section 3. As mentioned before, we start with the algorithm Orient. The proofs for
the other algorithms are analogously.

Theorem 6 The FREW-PRAM algorithm Orient computes a 6-bounded acyclic orien-
tation of planar graphs in O(klogn) parallel time with probability 1 - o(1/n*) for any
constant k.

ProOOF: During a successful iteration, the number of vertices in the graph is reduced
by a constant fraction. Therefore we require at most flogn successful iterations. By
Lemma 5, the probability that fewer than s = flogn successful iterations occur in aks
iterations each with probability p = ﬁ of success is

B(Blogn, afklogn,1/(29 + 1)) <

. 1— ﬁ (1 1)aﬁklogn (60&ﬂk10gn)ﬁlogn
S 2T 11 Flogn

2d+141

2d—|—1 2d—|—1 ak flogn
= \gm 1 i) ok

By some algebraic manipulation and by settting « = 29!, one may derive the relation

Blog n®k
B(flogn, afklogn, 1/24! +1)) < —L_pPlos(cak) (L) ¢
b b a — 1 a _I_ 1

<0

a a
. 1nﬁlog(eak)—|—ozkﬁlog T
a/ J—

We can choose the constant a sufficiently large so that B(3log n, aBklogn, 1/(27+1 +1))
is o(1/n%). |

5 Further results

As mentioned before, the techniques used in this paper may also be applied to many

other EREW-PRAM algorithms, including:

5-coloring: Compute a coloring of a planar graph G, i.e., a partition of V into dis-
joint sets Vi, ..., V5 such that each V; is an independent set for G. [CDH 87] gave
an EREW-PRAM algorithm for this task which runs in O(lognlog®n) time using
O(n/lognlog® n) processors. Their algorithm, though being more complicated, is
very similar to the algorithm Orient described above.

Connected Components, Undirected Spanning Trees: [Ha 90] presented EREW-
PRAM algorithms which solve those basic graph problems for planar graphs in
O(lognlog® n) time using O(n/lognlog™ n) processors. In fact, his algorithms work
for a much broader class of undirected graphs, the so-called linear contractible class
of graphs.

Simple Cycles: [Do 96] showed that if a planar graph has a simple cycle of length £,

where k is a fixed integer, such a cycle may be computed in O(lognlog™ n) expected
time by a randomized EREW-PRAM with O(n) processors.

Acknowledgements

We are grateful to Marek Karpinski for stimulating discussions which were starting points
for the present note. We also wish to thank Elias Dahlhaus for helpful comments.

References

[Ch 52] Chernoff, H., A measure of asymptotic efficiency for tests of hypothesis based
on the sum of observations, Proc. 23”7 Annals of Mathematic Statistics (1952),
pp. 493-507.

[CDH 87] Chrobak, M., Diks, K., Hagerup, T., Parallel 5-Colouring of Planar Graphs,
ICALP 87, Lecture Notes in Computer Science 267, pp. 304-313, Springer
Verlag Heidelberg, 1987.

[CE 91] Chrobak, M., Eppstein, D., Planar orientations with low out-degree and
compaction of adjacency matrices, Theoretical Computer Science 86 (1991),
pp- 243-266.

[CV 86]
[DK 89]
[Do 96]
[Ev 79]
[GPS 87]
[Ha 90]

[LM 86]

Cole, R., Vishkin, U., Deterministic Coin Tossing with Applications to Optimal
Parallel List Ranking, Information and Control 70 (1986), pp. 32-53.

Dadoun, N., Kirkpatrick, D. G., Parallel Construction of Subdivision Hierar-
chies, Journal of Computing Systems Science 39 (1989), pp. 153-165.

Dorgerloh, C. F., A Fast Randomized Parallel Algorithm for Finding Simple
Cycles in Planar Graphs, Research Report 85150-CS, Institut fiir Informatik
der Universitit Bonn, 1996.

Even, S., Graph Algorithms, Computer Science Press, 1979.

Goldberg, A. V., Plotkin, S. A., Shannon, G. E., Parallel Symmetry-Breaking
in Sparse Graphs, Proc. 19" ACM STOC (1987), pp. 315-324.

Hagerup, T., Optimal Parallel Algorithms on Planar Graphs, Information and
Computing 84 (1990), pp. 71-96.

Leiserson, C. E., Maggs, B. M., Communication-efficient parallel graph algo-
rithms, Proc. Parallel Processing (1986), pp. 861-868.

