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0 IntroductionWe prove for the �rst time nonlinear lower bounds on the depth of randomizedcomputation trees (RCT s) (see e.g. [MT82], [S83], [M85a], [GKMS96]) recogniz-ing sets like unions of hyperplanes (i.e. linear arrangements) or intersections ofhalfspaces (polyhedra). As an application we prove a quadratic lower bound onRCT s solving the knapsack problem, or more generally, the restricted integerprogramming.Obtaining general lower bounds for randomized computation was an openquestion for a long time (see e.g. [MT82], [S83], [M85a, b, c], [KV88],[CKKLW95]). Only recently, a nonlinear lower bound was proven in [GKMS96]for a weaker model of randomized d-decision trees (d-RDT s), in which testingpolynomials have degrees at most d (for 2-dimensional case the lower bound wasproven in [GK93], and for the generic arrangements a lower bound was proved in[GK94]). In particular, for d-RDT s the lower bound 
(n log n) was proven forthe Element Distinctness Problem, and also the lower bound 
(n2) was provenfor the Knapsack Problem ([GKMS96]). The main di�culty whith proving lowerbounds on RCT s is that the degree of testing polynomials could be possibly expo-nential. Therefore, we develop in the present paper a new method for obtainingcomplexity lower bounds for RCT s.The method developed in the present paper cannot be directly applied for theElement Distinctness Problem. In [BKL93] (cf. also [GKMS96]), a linear depthRCT was constructed for a similar problem (permutation problem) f(x; y) 2IR2n : y is a permutation of xg beating therefore its deterministic
(n log n) lowerbound (cf. [B83]). This example shows that the (still open problem) of complexityof an RCT for the Element Distinctness is quite delicate.We also mention that a linear n4 lower bound for an RCT recognizing thearrangement S1�i�nfXi = 0g or the \orthant" T1�i�nfXi � 0g was proved in[GKMS96]. For a stronger model of randomized analytic decision trees (RADT )a complexity upper bound O(log2 n) for testing T1�i�nfXi � 0g was proven in[GKS96] (for deterministic analytic decision trees the exact complexity bound nwas proved in [R72], [MPR94])For deterministic models of decision and computation trees several methodsfor obtaining lower bounds were developed earlier. The \topological" methods2



based on the number of connected components ([SY82], [B83]), or more general,on the sum of Betti numbers ([BLY92], [Y94]), provide the lower bound 
(n2)for the Knapsack Problem and the lower bound 
(n log n) for the Element Dis-tinctness Problem or the Permutation Problem. The already mentioned examplefrom [BKL93] shows that these \topological" bounds cannot be directly extendedto RCT s.For testing a polyhedron (for which the topological methods are not appli-cable), the di�erential-geometric method (involving the curvature) for obtain-ing complextity lower bounds for deterministic computations was developpedin [GKV95], which provides 
(logN) lower bound for decision trees (see also[GKV95]) and 
(logN= log logN) for computation trees, where N is the numberof all faces of the polyhedron.We now brie
y describe the content of the paper. In section 1 we introducethe notion of the border complexity of a polynomial generalizing the notion of theborder rank of a tensor, cf. [S90], [B79], [BCLR79], and prove a lower bound on itin terms of the number of connected components, which could be of independentinterest.In section 2 we prove the main theorem which provides a lower bound for anRCT testing an arrangement or a polyhedron. For that purpose we use sometools (in particular, the tree of 
ags) from [GKMS96], but the proof is di�erentsince the degree of RCT s could be exponential as we already mentioned.In section 3 as an application of the main theorem we give a complexityquadratic lower bound for RCT testing the Restricted Integer Programming andin particular, the Knapsack Problem.1 Lower bound on the border complexityWe start now with the technical development leading to the crucial for this paperlower bound on the border complexity of a polynomial.Let H1; : : : ;Hn�k � IRn be hyperplanes such that their intersection � = H1 \� � � \Hn�k has the dimension dim � = k. Fix arbitrary coordinates Z1; : : : ; Zk in�. Then treating H1; : : : ;Hn�k as the coordinate hyperplanes of the coordinatesY1; : : : ; Yn�k , one gets the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k in IRn.For any polynomial f 2 IR[X1; : : : ;Xn] rewrite it in the coordinates3



f(Z1; : : : ; Zk; Y1; : : : ; Yn�k) and following [GKMS96], de�ne its leading termlm(f) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k0 6= � 2 IR (with respect to the coordinate system Z1; : : : ; Zk; Y1; : : : ; Yn�k) asfollows. First, take the minimal integermn�k such that Y mn�kn�k occurs in the termsof f . Consider the polynomial0 6� f (1) =  fY mn�kn�k ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�1; 0) 2IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1]which could be viewed as a polynomial on the hyperplane Hn�k . Observe thatmn�k depends only on Hn�k and not on Z1; : : : ; Zk; Y1; : : : ; Yn�k�1, since a lineartransformation of the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k�1 changes the coe�-cients (being the polynomials from IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1]) of the expan-sion of f in the variable Yn�k , and a coe�cient vanishes identically if and onlyif it vanishes identically after the transformation. Then f (1) is the coe�cient ofthe expansion of f at the power Y mn�kn�k .Second, take the minimal integer mn�k�1 such that Y mn�k�1n�k�1 occurs in theterms of f (1). In other words, Y mn�k�1n�k�1 is the minimal power of Yn�k�1 oc-curring in the terms of f in which occurs the power Y mn�kn�k . Therefore,mn�k, mn�k�1 depend only on the hyperplanes Hn�k , Hn�k�1 and not onZ1; : : : ; Zk; Y1; : : : ; Yn�k�2, since (as above) a linear transformation of the coordi-nates Z1; : : : ; Zk; Y1; : : : ; Yn�k�2 changes the coe�cients (being the polynomialsfrom IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�2]) of the expansion of f in the variables Yn�k,Yn�k�1 and a coe�cient vanishes identically if and only if it vanishes identicallyafter the transformation. Denote by 0 6� f (2) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�2] thecoe�cient of the expansion of f at the monomial Y mn�k�1n�k�1 Y mn�kn�k . Obviouslyf (2) =  f (1)Y mn�k�1n�k�1 ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�2; 0)One could view f (2) as a polynomial on the (n � 2)-dimensional plane Hn�k \Hn�k�1.Continuing in the similar way, we obtain consecutively the (non-negative)integers mn�k;mn�k�1; : : : ;m1 and the polynomials0 6� f (l) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l]4



1 � l � n � k, by induction on l. Herewith, Y mn�k�l+1n�k�l+1 is the minimalpower of Yn�k�l+1 occurring in the terms of f , in which occurs the monomialY mn�k�l+2n�k�l+2 � � � Y mn�kn�k for each 1 � l � n � k. Notice that mn�k; : : : ;mn�k�ldepend only on the hyperplanes Hn�k; : : : ;Hn�k�l and not on Z1; : : : ; Zk; Y1;: : : ; Yn�k�l�1. Then f (l) is the coe�cient of the expansion of f at the mono-mial Y mn�k�l+1n�k�l+1 � � � Y mn�kn�k andf (l+1) =  f (l)Y mn�k�ln�k�l ! (Z1; : : : ; Zk; Y1; : : : ; Yn�k�l�1; 0)Thus, f (l) depends only on Hn�k ; : : : ;Hn�k�l and not onZ1; : : : ; Zk; Y1; : : : ; Yn�k�l�1. One could view f (l) as a polynomial on the(n � l)-dimensional plane Hn�k \ � � � \ Hn�k�l+1. Continuing, we de�ne alsom0k; : : : ;m01.Finally, the leading term lm(f) = �Zm011 � � �Zm0kk Y m11 � � �Y mn�kn�k is the min-imal term of f in the lexicographical ordering with respect to the order-ing Z1 > � � � > Zk > Y1 > � � � > Yn�k . The leading term lm(f (l)) =�Zm011 � � �Zm0kk Y m11 � � �Y mn�k�ln�k�l , we refer to this equality as the maintenance prop-erty (see also [GKMS96]).Denote by V ar(f) = V ar(H1;:::;Hn�k) (f) the number of positive (i.e. nonzero)integers among mn�k; : : : ;m1. As we have shown above, V ar(f) is indepen-dent from the coordinates Z1; : : : ; Zk of �. Obviously, V ar(f) coincides with thenumber of 1 � l � n � k such that Yn�k�l j f (l), the latter condition is equiva-lent to that the variety ff (l) = 0gT(Hn�k \ � � � \ Hn�k�l+1) contains the planeHn�k \ � � � \Hn�k�l+1 \Hn�k�l (being a hyperplane in Hn�k \ � � � \Hn�k�l+1).It is convenient (see also [GKMS96]) to reformulate the introduced conceptsby means of in�nitesimals. Namely for a real closed �eld F (see e.g. [L65]) wesay that an element " transcendental over F is an in�nitesimal (relative to F ) if0 < " < a for any element 0 < a 2 F . This uniquely induces the order on the�eld F (") of rational functions and further on the real closure gF (") (see [L65]).One could make the order in gF (") clearer by embedding it in the larger realclosed �eld F (("1=1)) of Puiseux series (cf. e.g. [GV88]). A nonzero Puiseux serieshas the form b = Pi�i0 �i"i=�, where �1 < i0 < 1 is an integer, �i 2 F forevery integer i; �i0 6= 0 and the denominator of the rational exponents � � 1 is aninteger. The order on F (("1=1)) is de�ned as follows: sgn(b) = sgn(�i0). Wheni0 � 1, then b is called an in�nitesimal, when i0 � �1, then b is called in�nitely5



large. For any not in�nitely large b we de�ne its standard part st(b) = st"(b) 2 Fas follows: when i0 = 0, then st(b) = �i0, when i0 � 1, then st(b) = 0. In thenatural way we extend the standard part to the vectors from (F (("1=1)))n andfurther to subsets in this space.Now let "1 > "2 > : : : > "n+2 > 0 be in�nitesimals, where "1 is an in�nitesimalrelative to IR; in general "i+1 is an in�nitesimal relative to IR("1; : : : ; "i) for all0 � i � n + 1. Denote the real closed �eld IRi = gIR("1; : : : ; "i), in particular,IR0 = IR. For an element b 2 IRn+2 for brevity denote the standard part sti(b) =st"i+1(st"i+2 � � � (st"n+2(b) � � �) 2 IRi (provided that it is de�nable).Also we will use the Tarski's transfer principle [T51]. Namely, for two realclosed �elds F1 � F2 a closed (so, without free variables) formula in the languageof the �rst-order theory of F1 is true over F1 if and only if this formula is trueover F2.Tarski's transfer principle implies that a semialgebraic set ff1 � 0; : : : ; fk1 �0; fk1+1 > 0; : : : ; fk > 0g � F n, where the polynomials fi 2 F [X1; : : : ;Xn] havethe degrees deg(fi) � d, has at most (minf2k; ( kn )ngdn)O(1) connected components(cf. [GV88]), relying on this bound in case F = IR from [W68] (cf. also [BPR94]),which strenghtens the result of [M64].Another application of Tarski's transfer principle is the concept of the com-pletion. Let F1 � F2 be real closed �elds and 	 be a formula (with quanti�ersand, perhaps, with n free variables) of the language of the �rst-order theory ofthe �eld F1. Then 	 determines a semialgebraic set V � F n1 . The completionV (F2) � F n2 is a semialgebraic set determined by the same formula 	 (obviously,V � V (F2)). Tarski's transfer principle entails, in particular, that the number ofconnected components of V is the same as the one of V (F2) (cf. [GV88]).One could easily see that for any point (z1; : : : ; zk) 2 IRkk+2 such thatf (n�k)(z1; : : : ; zk) 6= 0 (we utilize the introduced above notations) the followingequality for the signs�m11 : : : �mn�kn�k sgn �f (n�k)(z1; : : : ; zk)� =sgn �f(z1; : : : ; zk; �1"k+3; : : : ; �n�k"n+2)� (1)holds for any �1; : : : ; �n�k 2 f�1; 1g. For any 1 � i � n� k such that mi = 0 (1)holds also for �i = 0, agreeing that 00 = 1. Moreover, the following polynomial6



identity holds: f (n�k)(Z1; : : : ; Zk) =stk+2�f(Z1; : : : ; Zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 � (2)For a family of hyperplanes H1; : : : ;Hm � IRn let S = [1�i�mHi be an ar-rangement, by B0 (H1; : : : ;Hm) we denote the number of connected componentsof the complement IRn � S.Following e.g. [S90] we de�ne the complexity s = C(f) of a polynomial f 2IR[X1; : : : ;Xn] as the length of the shortest straight-line program which computesf . Recall that the latter is a sequence of operations u1 = X1; : : : ; un = Xn, thenfor every n < j � s + n uj = ~uj1 � ~uj2, where for each i = 1; 2 either ~uji = ujiwith ji < j or ~uji 2 IR and either � = � or � = +. To every uj by recursion onj one attaches in the natural way a polynomial Uj 2 IR[X1; : : : ;Xn] (the value ofuj). The straight-line program computes f if Us+n = f .Observe that one could consider also the division � = = and the resultingrational functions, but since we deal only with the signs of the testing functions inthe computation trees (see below), we could consider separately the computationsof the numerators and denominators of the rational functions by means of thestraight-line programs without the divisions.For a polynomial g 2 IR[Z1; : : : ; Zk] its border complexity C(g) (cf.[S90] for the notion of the border rank) is the minimal C(f) where f 2IR[X1; : : : ;Xn] for a certain n � k such that g = f (n�k), for suitable coordinatesZ1; : : : ; Zk; Y1; : : : ; Yn�k , which we treat as the linear forms in X1; : : : ;Xn.The main result of this section is the following lower bound on the bordercomplexity.Proposition: Let for a polynomial g 2 IR[Z1; : : : ; Zk] its border complexityC(g) � s. Assume that H1; : : : ;Hm � IRk are pairwise distinct hyperplanes suchthat the corresponding linear functions LHi j g, 1 � i � m (where the zero set ofLHi is Hi). Then B0(H1; : : : ;Hm) � 2O(s+k).Proof: Let ui = Xi, 1 � i � n; uj = ~uj1 � ~uj2, n + 1 � j � n + s be astraight-line program which computes a certain polynomial f 2 IR[X1; : : : ;Xn]such that g = f (n�k) for suitable coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k (we utilizethe introduced above notations). Express Xi = �(i)1 Z1 + � � � + �(i)k Zk + �(i)1 Y1 +� � ��(i)n�kYn�k , 1 � i � n, where �(i)j ; �(i)j 2 IR.7



Due to (2) for any point (z1; : : : ; zk) 2 IRk2 we haveg(z1; : : : ; zk) = st2 f(z1; : : : ; zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 ! (3)Denote u0i = �(i)1 z1 + � � � + �(i)k zk + �(i)1 "k+3 + � � � + �(i)n�k"n+2, 1 � i � n.Introduce a new variable Z0 and two semialgebraic setsV = � (z0; z1; : : : ; zk; un+1; : : : ; un+s) 2 IRk+s+1n+2 :uj = ~u0j1 � ~u0j2 ; n+ 1 � j � n+ s;where for each i = 1; 2 either~u0ji = u0ji when 1 � ji � nand ~u0ji = uji when n < ji <j, or ~u0ji 2 IR according tothe straight-line program whichcomputes f ;�( un+s"m1k+3 � � � "mn�kn+2 )2 � "1�2 +�z20 + z21 + � � �+ z2k � 1"1�2 < "2 �;V = f(z0; z1; : : : ; zk) 2 IRk+11 :g2(z1; : : : ; zk) = "1; z20 + z21 + � � �+ z2k = 1"1gDenote by Q : IRk+s+1n+2 ! IRk+1n+2 the linear projection along the coordinatesun+1; : : : ; un+s. The linear projection Q : Vf!Q(V) is an isomorphism of thesemialgebraic sets, since the projectionY(V) = ((z0; z1; : : : ; zk) 2 IRk+1n+2 :0@ f(z1; : : : ; zk; "k+3; : : : ; "n+2)"m1k+3 � � � "mn�kn+2 !2 � "11A2 +(z20 + z21 + � � �+ z2k � 1"1 )2 < "2)and the inverse mapping is given by the polynomial mapping uj = ~u0j1 � ~u0j2,n+ 1 � j � n + s. 8



Then V � Q(V) because of (3).Furthermore, st1(Q(V)) = V ; the left side is de�nable since for any point(z0; : : : ; zk) 2 Q(V) the square of its euclidean norm kzo; : : : ; zkk2 = z20+� � �+z2k <1"1 + " 122 < 1"1 + 1. By the same reason lemma 1 from [GV88] states that thenumber N3 of the connected components of V does not exceed the number N4 ofthe connected components of Q(V), the latter coincides with the number of theconnected components of V since it is isomorphic to Q(V).We claim that for any connected component W � IRk (which is an open setin the euclidean topology) of the component IRk�fg = 0g and an arbitrary pointw0 2 @W on the boundary, there exists a point (z1; : : : ; zk) 2 W (IR1) � IRk1 fromthe completionW (IR1) (as we have seen above from Tarski's transfer principle, theconnected components W of the complement are in the bijective correspondencewith their completions W (IR1) � W , being the connected components of thecomplement fg = 0g(IR1) in IRk1, the number of these connected components wedenote by N0) such that g2(z1; : : : ; zk) = "1 and st0(z1; : : : ; zk) = w0 (cf. lemma 3from [GV88]). Indeed, pick out an arbitrary point w 2 W . Taking into accountthat w0 2 @(W (IR1)), so g(w0) = 0, and 0 < g2(w) 2 IR we conclude that g2attains on W (IR1) any intermediate value from IR1 between 0 and g2(w) (usingTarski's transfer principle), in particular, "1. Now take a point w1 2 W (IR1)being the nearest to w0 such that g2(w1) = "1 (its existence follows again fromTarski's transfer principle). It su�ces to prove that st0(w1) = w0. Suppose thecontrary. Then there exists 0 < r 2 IR such that for any point w2 2 W (IR1) withthe distance kw0 � w2k � r the inequality g2(w2) < "1 holds. Since w0 2 @Wthere exists a point w3 2 W such that kw0 � w3k � r, then 0 < g2(w3) 2 IR andwe get a contradiction with the supposition, and that proves the claim.Furthermore, since w0 2 IRk and st0(z1; : : : ; zk) = w0, there exists 0 < r1 2 IRsuch that the norm kz1; : : : ; zkk � r1, a fortiori kz1; : : : ; zkk2 � 1"1 .Consider a semialgebraic setV0 = n(z1; : : : ; zk) 2 IRk1 : g2 (z1; : : : ; zk) = "1oDenote by N1 the number of the connected components of V0 containing a pointw4 with the square of the euclidean norm kw4k2 � 1"1 . The proved above claimstates that the number N0 does not exceed N1, taking into account thatV0 � �IRk � fg = 0g�(IR1) = IRk1 � (fg = 0g)(IR1)9



On the other hand, B0(H1; : : : ;Hm) � N0, since u1�i�mLHi j g (evidently,in every connected component, being an open set in the euclidean topology, ofthe complement of the arrangement �IRk � S1�i�mHi� � �IRk � fg = 0g�, thereexists a point at which g does not vanish).Obviously, N1 is less than or equal to the number N2 of the connected com-ponents of the setV1 = V0 \ �(z1; : : : ; zk) 2 IRk1 : kz1; : : : ; zkk2 � 1"1�In its turn V1 = Q0(V ), where Q0 : IRk+11 ! IRk1 is the projection along thecoordinate Z0. Hence N2 � N3.Gathering the obtained chain of inequalities B0(H1; : : : ;Hm) � N0 � N1 �N2 � N3 � N4 for the numbers of the connected components, we conclude thatB0(H1; : : : ;Hm) does not exceed the number of connected components of V. Thelatter is less than 2O(s+k) according to [W68] and Tarski's transfer principle (seeabove).The proposition is proved.2 Lower bounds for randomized computationtreesRecall (see e.g. [B83]) that in the computation tree (CT ) testing polynomials arecomputed along paths using the elementary arithmetic operations. In particular,for a testing polynomial fi 2 IR[X1; : : : ;Xn] at the level i (assuming that theroot has the zero level) we have C(fi) � i. Under RCT (cf. [MT82], [S83],[M85a,b,c]) we mean a collection of CT T = fT�g and a probabilistic vectorp� � 0, P� p� = 1 such that T� is chosen with the probability p�. The mainrequirement is that for any input RCT gives a correct output with the probability1� 
 > 12 (
 is called the error probability of RCT ).For a hyperplaneH � IRn byH+ � IRn denote the closed halfspace fLH � 0g,where LH is a certain linear function with the zero set H. For a family ofhyperplanesH1; : : : ;Hm the intersections S+ = \1�i�mH+i is called a polyhedron.An intersection � = Hi1 \ � � � \Hin�k is called k-face of S+ if dim � = dim(� \S+) = k. By �k(S+) we denote the number of k-faces of S+. Similary (and10



even simpler) for the arrangement S = [1�i�mHi its k-face is any k-dimensionalintersection of the form � = Hi1 \ � � � \ Hin�k . By �k(S) we denote the numberof k-faces of S.Now we are able to formulate the main result of this paper.Theorem: Let there exist positive constants c1; c2; c3; c4 such that c3(1�c1) <c2 and an arrangement S = S = [1�i�mHi or a polyhedron S = S+ = \1�i�mH+isatisfy the following properties:1. �[c1n](S) � 
(mc2n);2. for any k-face � of S with k � c1n and any subfamily Hi1 ; : : : ;Hiq ofH1; : : : ;Hm with at least q � mc3 hyperplanes such that Hij 6� � for each1 � j � q and the hyperplanes Hi1\�; : : : ;Hiq\� in � are pairwise distinct,the number of the connected components B(�)0 (Hi1 \ �; : : : ;Hiq \ �) of thecomplement in � of the arrangement [1�j�q(Hij\�) is greater than 
(mc4n).Then for any RCT recognizing S, its depth is greater than 
(n logm).Before proceeding to the proof of the theorem, we need some preparation.First we �x the canonical representation of k-face � in two cases: namely, ofS and of S+, respectively (see [GKMS96]). In the case of S take the maximalin�k � m such that Hin�k � �, then the maximal in�k�1 such that Hin�k�1 � �and dim(Hin�k \Hin�k�1) = n�2 (obviously in�k�1 < in�k) and so on we producethe indices in�k > in�k�1 > � � � > i1 such that � = Hin�k \ � � � \ Hi1 . As therepresentation of � we take the 
ag of planes: Hin�k � Hin�k \Hin�k�1 � � � � �Hin�k \ � � � \Hi1 = �.Now consider the case of S+. One can prove (see [GKMS96]) that for anyk-face � there exists a 
ag which we treat as a canonical representation of �:Hin�k � Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = �such that for each 1 � l � k Hin�k \ � � � \ Hin�k�l+1 is (n � l)-face of S+ (therecursion on l implies that dim(Hin�k \ � � � \ Hin�k�l+1) = n � l). Moreover,this sequence of indices in�k > � � � > i1 is the maximal with respect to thelexicographical ordering (similar to the case of S above) satisfying the latterproperty. 11



Fix k-face � of S, where either S = S or S = S+. Let Hin�k �Hin�k \ Hin�k�1 � � � � � Hin�k \ � � � \ Hi1 = � be a 
ag which represents �as described above. For a family of polynomials f1; : : : ; fs 2 IR[X1; : : : ;Xn] wede�ne V ar(�)(f1; : : : ; fs) to be the number of the variables among Y1; : : : ; Yn�k(we utilize the notations introduced in section 1) which occur in at least one oflm(f1); : : : ; lm(fs), where Hi1 ; : : : ;Hin�k are the coordinate hyperplanes of thecoordinates Y1; : : : ; Yn�k , respectively. Since lm(f1 � � � fs) = lm(f1) � � � lm(fs) weget that V ar(Hi1 ;:::;Hin�k )(f1 � � � fs) = V ar(�)(f1 � � � fs) = V ar(�)(f1; : : : ; fs).For any CT T1 we denote by V ar(�)(T1) = V ar(Hi1 ;:::Hin�k )(T1) the maximumof V ar(�)(f1 � � � fs) taken over all the paths of T1, where f1; : : : ; fs are testingpolynomials along the path.The following lemma was proved in [GKMS96] (see also [GKMS96]).Lemma 1: Let T = fT�g be an RCT recognizinga) an arrangement S = [1�i�mHi such that � = \1�j�n�kHij is k-face of S,orb) a polyhedron S+ = \1�i�mH+i such that for each 1 � l � n�k \l�j�n�kHijis (k + l � 1)-face of S+ (denote � = \1�j�n�kHij)with error probability 
 < 12. Then V ar(Hi1 ;:::;Hin�k )(T�) � (1� 2
)2(n� k)for a fraction of 1�2
2�2
 of all T�'s.Remark: Notice that the conditions in a), b) are ful�lled if Hin�k � Hin�k \Hin�k�1 � � � � � Hin�k \ � � � \Hi1 = � is the canonical 
ag representation of � inboth cases of S and S+ (see above).An analogue of lemma 2 from [GKMS96] (see also [GKMS96]) is the followinglemma.Lemma 2: Let S = S or S = S+ satisfy the condition 2. of the theorem.Assume that CT T 0 for some constant c > 0, satis�es the inequality V ar(�)(T 0) �c(1� c1)n for at least M dc1ne-faces � of S. Then the depth t of T 0 ful�ls eithert � 
(n logm) or M � O(3tm(1�c+c3+�)(1�c1)n), where a constant � > 0 could bemade as close to zero as desired.The proof of lemma 2 di�ers from the proof of the analogous lemma 2 from[GKMS96] proved for d-decision trees, in which the degrees of the testing polyno-mials do not exceed d, rather than computation trees (considered in the present12



paper), in which the degrees of the testing polynomials could be exponential inthe depth t of CT. Therefore the main tool in the proof of lemma 2 is the lowerbound on the border complexity from the proposition (see section 1).Before proving lemma 2 we show how to deduce the theorem from lemmas 1and 2. Consider RCT fT�g recognizing S with error probability 
 < 12 . Denotek = dc1ne. Lemma 1, condition 1. of the theorem and counting imply theexistence of T�0 such that the inequality V ar(�)(T�0) � (1 � 2
)2(n � k) is truefor M = 1�2
2(1�
)
(mc2n) k-faces � of S. Apply lemma 2 to CT T 0 = T�0 withc = (1 � 2
)2. If t � 
(n logm) the theorem is proved, else since the errorprobability 
 could be made a positive constant as close to zero as desired at theexpence of increasing by a constant factor the depth of RCT [M85a,c], take 
such that (1 � c + �) < c2�c3(1�c1)1�c1 . Then lemma 2 entails that t � 
(n logm),which proves the theorem. Thus, it remains to prove lemma 2.Proof of lemma 2: To each k-face � of S satisfying the inequalityV ar(�)(T 0) � c(n � k), we correspond a path in T 0 with the testing polynomi-als f1; : : : ; fs 2 IR[X1; : : : ;Xn] such that V ar(�)(f1 � � � fs) � V ar(�)(T 0). Denotef = f1 � � � fs. Consider a canonical representation of � by a 
ag (see above)Hin�k � Hin�k \Hin�k�1 � : : : � Hin�k \ : : : \Hi1 = �Fix this path of T 0 for the time being and consider all k-faces � to whichcorresponds this path. We arrange the representing 
ags of all these k-faces in atree T which we call the tree of 
ags (cf. the proof of lemma 2 from [GKMS96]).T has a root with the zero level, each its path has the same length n � k (suchtrees are called regular), some of its vertices are labeled.We construct T by induction on the level of its vertices. The base of induction.For each k-face � to which corresponds the �xed path of T 0, construct a vertex,being a son of the root of T , and to this vertex (of level 1) attach the hyperplaneHin�k (we utilize inroduced above notations). Thus, to di�erent sons of the rootdi�erent hyperplanes are attached. We label the constructed vertex if and onlyif Yn�k jf (the latter means that the linear function or the variable Yn�k gives acontribution into V ar(�)(f)). Besides, we assign to the constructed vertex thepolynomial f (1) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�1] (see section 1).Now assume by induction on l that l < n � k levels of T are already con-structed. Consider any vertex v of T at l-th level. To the vertex v leads the13



partially labeled path (from the root), to whose vertices the beginning elementsof a 
ag are attached successively:Hin�k � Hin�k \Hin�k�1 � : : :� � � � Hin�k \ : : : \Hin�k�l+1 = �1Finally, the polynomial f (l) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l] is assigned to thevertex v. Recall (see section 1) that f (l) is de�ned on (n� l)-plane �1. Besides,v is either labeled or not labeled.Thus, to di�erent vertices at the level l are attached the di�erent beginningsof 
ags.At the inductive step we construct the sons of v. Namely, for any k-face �with the same beginning (4) of its representing 
ag consider the next element ofits 
ag, let it be �1\Hin�k�l. Construct a son of v to which we attach �1\Hin�k�land assign the polynomial f (l+1) 2 IR[Z1; : : : ; Zk; Y1; : : : ; Yn�k�l�1]. We label thisvertex if and only if Yn�k�ljf (l) (recall that due to the maintainance property, seesection 1, the latter condition means that the linear form or the variable Yn�k�lgives a contribution into V ar(�)(f)).This completes the inductive construction of T . The leaves (or paths) of Tcorrespond bijectively to k-faces of S to which the �xed path of T 0 corresponds.To each leaf (or path) of T which corresponds to k-face � the 
ag representing �Hin�k � Hin�k \Hin�k�1 � : : : � Hin�k \ : : :\Hi1 = � is attached along the path(which is partially labeled).Now we proceed to estimating the number of leaves of T . For a vertex v con-sider all its labeled sons (we utilize the introduced above notations). Each labeledson corresponds to a hyperplane Hi such that the linear function L�1\Hijf (l),where L�1\Hi is a certain linear function on (n � l)-plane �1 with the zeroset �1 \ Hi, being a hyperplane in �1, and to di�erent sons correspond dif-ferent hyperplanes �1 \ Hi. Consider the family H of all such hyperplanesHi. First assume that it contains at least mc3 hyperplanes. Then the con-dition 2. of the theorem implies that the number of the connected compo-nents b = B(�1)0 (fHi \ �1gHi2H) of the complement in �1 of the arrangementSHi2H(Hi \ �1) is greater than 
(mc4n). On the other hand the proposition (seesection 1) entails that b � 2O(s+n�l) � 2O(s+n), taking into account that the com-plexity C(f) = C(f1 � � � fs) � 2s�1. This provides the lower bound on the depth14



of T 0, namely, t � s � 
(n logm), that proves lemma 2. Thus, we can assumethat any vertex v of T has less than mc3 labeled sons. Besides the labeled sons,each vertex could have at most m unlabeled sons. Furthermore, due to the main-tenance property, along each path of T at least c(1 � c1)n vertices are labeled(see the inductive step above).To estimate the number of leaves in T introduce an auxiliary magnitudeM(R;Q) to be the maximal possible number of the leaves in a regular tree (ac-tually, we could stick with subtrees of T , so they are partially labeled) with thelength of any path equal to R and with at most Q unlabeled vertices along thepath. One can assume w.l.o.g. that Q � R � m (ifQ > R then setM(R;Q) = 0,the inequalityR � m holds since we consider the subtrees of T , and to each pathof T a 
ag of the length at most m is attached). Considering such a tree and itssubtrees with the roots being the sons (both unlabeled and labeled) of the rootof the tree, we get the following inductive inequality:M(R;Q) � m �M(R � 1; Q� 1) +mc3M(R � 1; Q)For the base of induction, obviously M(0; 0) = 1. By induction on R we obtainthe bound M(R;Q) � � �mQ �m(c3+�1)R for arbitrary �1 > 0 and a suitable � > 0.Substituting R = n � dc1ne, Q = (1 � c)(n � dc1ne), we conclude that thenumber of the leaves of T is less than O(m(1�c)(1�c1)n+(c3+�)(1�c1)n) for arbitrary� > 0.To complete the proof of lemma 2 it remains to notice that the tree of 
ags Twas constructed for a �xed path of CT T 0; there are at most 3t paths of T 0. On theother hand, every k-face � of S, satisfying the inequality V ar(�)(T 0) � c(1�c1)n,corresponds to one of the leaves of a tree of 
ags constructed for one of the pathsof T 0. Hence the number of such k-faces M � O(3t �m(1�c+c3+�)(1�c1)n).3 Quadratic complexity lower bound for RCTssolving the restricted integer programmingThe restricted integer programming is the arrangementLn;j = [a2f0;:::;j�1gn faX = 1g � IRn15



of m = jn hyperplanes for some j � 2 (see e.g. [M85b]). For j = 2 Ln;2 is theknapsack problem.As an application of the theorem we prove the following corollary.Corollary: For any RCT solving the restricted integer programming Ln;j,its depth is greater than 
(n2 log j).To check the conditions 1., 2. of the theorem �rst take 34 < c1 < 1. Anyk = dc1ne-face � of Ln;j can be given by n � k linear equations g1; : : : ; gn�k ofthe form aX = 1 from Ln;j. If other linear equations g01; : : : ; g0n�k from the familyLn;j give the same k-face � then their linear hulls coincide: L(g1; : : : ; gn�k) =L(g01; : : : ; g0n�k).Take a prime j � p < 2j. Let us show that the linear hull L(g1; : : : ; gn�k)contains at most pn�k linear equations from the family Ln;j. Consider the linearequations from (L(g1; : : : ; gn�k) \ Ln;j) mod p (we treat the linear equations astheir vectors of the coe�cients). Then the results are pairwise distinct vectors,they constitute a family F � IFn+1p , choose among the elements from F a basisover IFp, it contains at most n� k elements (otherwise, the preimages of F priortaking modp would be linear independent as well). All the vectors from F are thelinear combinations over IFp of the elements of the basis, therefore, F contains atmost pn�k elements, thus the cardinality jL(g1; : : : ; gn�k) \ Ln;j j = jFj � pn�k .Any (n� k)-tuple of the linearly independent linear equations from Ln;j pro-vides a k-face. Therefore, any k-face is provided by less or equal to pn�kn� k! � p(n�k)2 � (2j � 1)(n�k)2number of (n�k)-tuples because of the shown above. On the other hand, denoteby Il, 1 � l � n the number of linearly independent l-tuples from Ln;j . Obviously,I1 = jn � 1. By induction on l for l � n � 1 we have Il+1 � Il(jn � pl) againbecause of the shown above. Hence,Il � (jn � 1)(jn � p)(jn � p2) � � � (jn � pl�1) >(jn � 1)(jn � 2j)(jn � (2j)2) � � � (jn � (2j)l�1) >jnl  1� 1 + (2j) + (2j)2 + � � �+ (2j)l�1jn ! =jnl  1 � (2j)l � 1(2j � 1)jn!16



If l � n2 we have (2j)l�1(2j�1)jn � 13 , i.e. Il > 
(jnl). Substituting l = n�k, we concludethat the number of k-faces �k(Ln;j) is greater than
 j(1�c1��1)n2(2j)(1�c1)2n2 ! � 
 �j((1�c1)(2c1�1)��1)n2�for arbitrary �1 > 0. Thus, to satisfy the condition 1. in the theorem one cantake c2 = (1� c1)(2c1 � 1)� �1.To justify the condition 2. in the theorem take any k1-face � of Ln;j wherek1 � k given by n � k1 linear equations g1; : : : ; gn�k1 from Ln;j, and besides,q � jc3n linear equations h1; : : : ; hq from Ln;j . Take a certain 0 < c5 < 1 whichwill be speci�ed later. Denote k2 = dc5ne. There are � qk2� � 
(jc5(c3��)n2) k2-tuples from h1; : : : ; hq for arbitrary � > 0. If two k2-tuples hi1 ; : : : ; hik2 andhl1; : : : ; hlk2 give the same face in � (i.e. a face of Ln;j , being a subset of �), thelinear hulls coincide:L(g1; : : : ; gn�k1 ; hi1; : : : ; hik2 ) = L(g1; : : : ; gn�k1 ; hl1; : : : ; hlk2 )(cf. above). Therefore, for any face in � there are at most �pn�k1+k2k2 � �(2j)c5(n�k1+c5n)n such k2-tuples (since the latter linear hull contains at mostpn�k1+k2 linear equations from Ln;j , see above). Furthermore, (2j)c5(n�k1+c5n)n �j2c5(1�c1+c5)n2. Thus, the number of faces in � of the subarrangement S(�) =S1�i�q(� \ fhi = 0g) is greater than 
 �jc5(c3���2+2c1�2c5)n2�.Now take c3 = 12 , then the requirement c3(1 � c1) < c2 is ful�lled for smallenough �1 > 0. Since c3 � 2 + 2c1 > 0, one could choose c5 > 0 and � > 0 smallenough to provide c04 = c5(c3 � � � 2 + 2c1 � 2c5) > 0.Thus, we have proved so far that the number of faces in � in the subarrange-ment S(�) is greater than 
(jc04n2). Take any 0 < c4 < c04. The required bound 2.of the theorem on the number of the connected components of the complementin � of the subarrangement S(�) B(�)0 (� \ fh1 = 0g; : : : ;�\ fhq = 0g) � 
(jc4n2)(and thereby the corollary) follows from the following general remark.Remark: For any arrangement S = S1�i�mHi � IRn and 0 � k � n � 1 thenumber of k-faces in the arrangement �k(S) < B0(H1; : : : ;Hm).Proof: Intersecting S with a generic (n� k)-plane, we reduce the remark tothe case k = 0. 17



Thus k = 0. Choose a generic hyperplane H and shift it parallel to itself.When it contains a vertex v of S we show that there \appears" a new (in otherwords, not yet sweeped) connected component of the complement IRn�S with avertex v and situated completely on one side of H. Indeed, let v = T1�j�nHij forsome Hi1 ; : : : ;Hin. Take the coordinates system with the coordinate hyperplanesHi1 ; : : : ;Hin . LetH have an equation in these coordinates �1X1+� � �+�nXn = 0,each �i 6= 0, 1 � i � n, since H is generic. Then the \orthant" f�iXi � 0; 1 �i � ng (which is situated completely on one side of H) contains a connectedcomponent of the complement IRn � S with a vertex in v.So, to each vertex v of S corresponds a connected component of the com-plement IRn � S. In addition, to the �rst (in the order of shifting H) vertexv1 corresponds also at least one more connected component situated in the \or-thant" f�iXi � 0; 1 � i � ng (so on the other side of H) with a vertex in v1, thisimplies the strict inequality in the remark.4 Open ProblemWe were not able to prove any superlinear lower bound or a linear upper bound onthe Element Distinctness(cf. [M85a], [GKMS96]) for randomized computationaltrees. Note that the corresponding lower bound for randomized decision trees is
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