
A Note on On-line Load Balancingfor Related MachinesPiotr Berman � Marek Karpinski yAbstractWe describe an on-line algorithm for scheduling permanent jobs on related machines.It achieves the competitive ratio of 3 + p8 � 5:828 for the deterministic version, and3:31= ln 2:155 � 4:311 for its randomized variant, improving the previous competitive ratiosof 8 and 2e � 5:436.

�Dept. of Computer Science & Eng., Pensylvania State University, University Park, PA16802Email:berman@cse.psu.eduyDept. of Computer Science, University of Bonn, 53117, Bonn. This research was partially supported bythe DFG Grant KA 673/4-1 Email:marek@cs.uni-bonn.de1



1 IntroductionWe are given a set of machines that di�er in speed but are related in the following sence: ajob of size p requires time p=v on a machine with speed v. While we cannot compare struc-turally di�erent machines using with a single speed parameter, it is a reasonable approachwhen the machines are similar; in other cases it may be a good approximation.Our task is to allocate a sequence of jobs to the machines in an on-line fashion, whileminimizing the maximum load of the machines. This problem was solved with a competitiveratio 8 by Aspnes et al. [1]. Later, it was noticed by Motwani [2] that by randomizingproperly the key parameter of the original algorithm the expected competitive ratio can bereduced to 2e.Adapting their notation, we have n machines with speeds v1; : : : ; vn (for later conve-nience, we assume that the sequence of speeds is nondecreasing) and a stream of m jobswith sizes p1; : : : ; pm. A schedule s assigns to each job j the machine s(j) that will executeit. We de�ne the load of a machine i and the load of entire schedule s as follows:load(s; i) = 1vi Xs(j)=i pj ; Load(s) = maxi load(s; i)It is easy to observe that �nding an optimum schedule s� is NP-hard o�ine, and impos-sible on-line. We want to minimize the competitive ratio of our algorithm, i.e. the ratioLoad(s)=Load(s�) where s is the schedule resulting from our on-line algorithm, and s� isan optimum schedule.We describe an on-line scheduling algorithm with competitive ratio 3 +p8 � 5:828 forthe deterministic version, and 3:31= ln2:155 � 4:311 for its randomized variant.2 PreliminariesThe idea of the improvement is the following. There exists a simple algorithm that achievescompetitive ratio 2 if we know exactly the optimum load �: we simply assign each job tothe slowest machine that would not increase its load above 2�. Because we do not know �,we make a safely small initial guess and later double it whenever we cannot schedule a jobwithin the current load treshold.Our innovation is to double (or rather, increase by a �xed factor r) the guess as soonas we can prove that it is too small, without waiting for the time when we cannot schedulethe subsequent job. Intuitively, we want to avoid wasting the precious capacity of the fastmachines with puny jobs that could be well served by the slow machines. Therefore westart from describing our method of estimating the necessary load.Let V = f0; v0; : : : ; vng. For v 2 V we de�ne Cap(v) as the sum of speeds of these2



machines that have speed larger than v. (Cap stands for capacity, note that Cap (0) is thesum of speeds of all the machines and Cap(vn) = 0.) For a set of jobs J and a load treshold� we de�ne OnlyFor(v;�; J) as the sum of sizes of these jobs that have pj=v > �. (OnlyForstands for the work that can be performed only by the machines with speed larger than vif the load cannot exceed �.) The following observation is immediate:Observation 1. For a set of jobs J , there exists a schedule s with Load(s) � � onlyif OnlyFor(v;�; J)� �Cap(v) for every v 2 V .If the set of jobs J satis�es the above condition, we say that � is appropriate for v1; : : : ; vnand J .Before we formulate and analyze our algorithm, we will show how to use the notions ofCap and OnlyFor to analyze the already mentioned algorithm that keeps the load under2� if load � is possible o�-line. We reformulate it to make it more similar to the newalgorithm. Machine i has capacity ci = �vi equal to the amount of work it can performunder � load, and the safety margin mi to assure that we will be able to accomodate thejobs in the on-line fashion. In this algorithm the capacity and the safety margin are giventhe same value, in the new one they will be di�erent.(* initialize *)for i 1 to n domi  ci  �vij  0(* online processing *)repeatread(p)j  j + 1for i 1 to n doif ci +mi > p thens(j) ici  ci � pexit forforeverThis algorithm shares the following property with the new one: the jobs are o�ered�rst to the machine 1 (the slowest), then to machine 2 etc. Given a stream of jobs J , wecan de�ne Ji�1 as the stream of jobs that are passed over by machine i � 1 or that reachmachine i (for 1 � i < n this two conditions are equivalent, for i = 0 only the latter and fori = n only the former applies). The correctness of the algorithm is equivalent to the factthat the stream Jn is empty|it consists of the jobs passed over by all the machines. From3



the correctness the load guarantee follows easily, because the sum of sizes of jobs assignedto machine i is less than the initial capacity plus the safety margin, i.e. �vi + �vi, and sothe load is less than 2�vi=vi = 2�.Observation 2. If there exists a schedule s� with Load(s�) = �, then for every i = 0; : : : ; n,� is appropriate for vi+1; : : : ; vn and the stream of jobs Ji.Proof. By induction on i. For i = 0 the claim follows from Observation 1. For theinductive step, we use notation Cpj(v) for Cap(j) de�ned in respect to the sequence of ma-chine speeds vj ; : : : ; vn, and Vj to denote the set f0; vj; : : : ; vng. Our inductive assumptionsays that OnlyFor(v;�; Ji�1) � �Capi(v) for v 2 Viand have to show that OnlyFor(v;�; Ji) � �Capi+1(v) for v 2 Vi+1. Observe that for any v 2 Vi+1 � f0g, OnlyFor(v;�; Ji) � OnlyFor(v;�; Ji�1) andCapi+1(v) = Capi(v). Thus it su�ces to show that OnlyFor(0;�; Ji � �Capi+1(0).First observe that Capi+1(0) = Capi(0)�vi � Capi(vi). We consider two cases accordingto the �nal value of ci in the execution of the algorithm. If it is positive, then machine iaccepted all jobs with size at most mi = �vi from the stream Ji�1, hence OnlyFor(0;�; Ji,which is the sum of job sizes in Ji, is at most OnlyFor(vi;�; Ji�1, which in turn is less orequal to �Capi(vi). Because Capi(v1) � Capi+1(0), the claim follows.To �nish the proof, we consider the case when the �nal value of ci is negative or 0. Thentotal size of the jobs accepted by machine i is at least �vi, the initial value of ci, henceOnlyFor(0;�; Ji) � OnlyFor(0;�; Ji�1) � �vi, while Capi+1(0) = Capi(0) � vi. Becauseone of our assumption is OnlyFor(0;�; Ji�1) � Capi(0), the claim follows. 2Observation 2 implies that if a schedule with load � exists, then then � is appropriate forthe empty sequence of the machines vn+1; : : : ; vn and Jn. Thus the stream Jn of unscheduledjobs is empty, which means that the algorithm is correct.3 The new algorithmThe next algorithm is similar, but it proceeds in phases, each phase having a di�erent valueof �. While it is correct for any value of the parameter r > 1, we will later �nd the optimumr's (they are di�erent in the deterministic and randomized versions).(* initialize *)� something very small 4



for i 1 to n domi  ci  0j  0, J  empty string(* online processing *)repeatread(p)j  j + 1, pj  p, append J with pjif � is not appropriate for v1; : : : ; vn and J then(* start a new phase *)multiply � by r until it is appropriatefor i 1 to n domi  �vi; ci  ci +mi(* schedule pj *)for i 1 to n doif ci +mi > pj thens(j) ici  ci � pjexit forforeverWe need to prove that the algorithm is correct, i.e. we never go through the last for loopwithout �nding a machine with su�cient remaining capacity. We will say that executingthis loop schedules pj (even though, for the sake of argument, we admit the case that afterexecuting this loop s(j) remains unde�ned).Let �0 be the value of � when the �rst job was scheduled. We view the executionas consisting of phases numbered from 0 to k, where l-th phase operates with � = �l =�0rl. Let J l be the stream of jobs received in phase l. Using the same convention as in theanalysis of the previous algorithm, we de�ne J li�1 to be the stream of jobs that in phase lmachine i received or machine i � 1 passed over. Now the correctness will mean that thestream J ln are empty for every phase l.Because the initial estimate for �maybetoolow, machines may receive more work thanin the previous algorithm. This is due to the fact that in the initial phases the machinesfrom the beginning of the sequence needlessly refuse to pick jobs that they would gladlyaccept later, thus increasing the load of the end of the sequence. Nevertheless, as we shallshow, this increase is limited.As a preliminary, we need to analyze the consequences of the test that triggers a newphase as soon as � is not appropriate for the stream of jobs received so far. First of all,this implies that every �i is appropriate for the stream J1 � � �J l, and in particular, for the5



substream J l. ThereforeOnlyFor(v;�l; J l) � �lCap(v) for every phase l and every v 2 V: (#)This allows to prove, by induction on i, the followingObservation 3. For every i = 0; : : : ; n and every phase llXt=0OnlyFor(0;�t; J ti ) �  lXt=0�t!0@ nXj=i+1 vj1AFor i = 0 this follows simply from the fact that for every phase t � lOnlyFor(0;�t; J t0) = OnlyFor(0;�t; J t) � �tCap(0) = �t0@ nXj=1 vj1A :For l = 0 the follows from Observation 2, as the phase 0 is identical to the �rst algorithmwith � = �0.Therefore we may assume that the claim is true for i � 1 and l � 1. We consider twocases, according to the value of ci at the end of phase l. Assume �rst that this value ispositive. Subtract formally from both sides of the claim for i and l the respective sides ofthe claim for i and l � 1; this way we see that it su�ces to show thatOnlyFor(0;�l; J li) � �t0@ nXj=i+1 vj1ABecause the �nal value of ci is positive, in phase l machine i accepted all jobs from thestream J li�1 that had size bounded by �lvi, and therefore the stream J li consists only of thejobs that must be executed on machines faster than vi. Thus the sum of sizes of all jobsin this stream, OnlyFor(0;�l; J li), equals to OnlyFor(vi;�l; J l), which by (#) is at most�lCap(vi). Lastly, Cap(vi) �Pnj=i+1 vj .Now assume that the �nal value of ci in phase l equals some c � 0. This time subtractfrom both sides of the claim the respective sides of the claim for i� 1 and l, this way wecan see that it su�ces to show thatlXt=0(OnlyFor(0;�t; J ti )� OnlyFor(0;�t; J ti�1)) �  lXt=0�t! vi (##)On the left hand side this inequality has the di�erence between the sum of jobs sizes thatreach machine i and the sum of the job sizes that are passed over by machine i to thesubsequent machines (during the phases from 0 to l). In other words, this is the sum ofsizes of the jobs accepted by machine i during these phases. This sum, say s, is related inthe following manner to c:0 � c =  lXt=0�tvi!� s which implies s �  lXt=0�t! vi � (##): 26



To analyze the competitive ratio, we may assume that Load(s�) = 1. Then the penulti-mate value of � must be smaller than 1 and the �nal one smaller than r. Consider a machinewith speed 1. The work accepted by a machine is smaller than the sum of all �'s up to thattime (additions to the capacity) plus the last � given for the safety margin. Together it is(r + 1 + r�1 + : : :) + r = r(1=(1� r�1) + 1) = r(2r � 1)=(r � 1). To �nd the best valueof r, we �nd zeros of the derivative of this expression, namely of (2r2 � 4r + 1)=(r � 1)2,and solve the resulting quadratic equation. The solution is r = 1+p1=2 and the resultingcompetitive ratio is 3 +p8 � 5:8284.One can observe that the worst case occurs when our penultimate value of � is veryclose to 1 (i.e. to the perfect load factor). We will choose the initial value of � to be of theform r�N+x where N is a suitably large integer and x is chosen, uniformly at random, fromsome interval < �y; 1� y > (we shifted the interval < 0; 1 > to componsate for the scalingthat made Load(s�) = 1). Therefore we can replace the factor r with the average value ofthe last �. For negative x this value is rx+1, for positive it is rx. The average isZ 0�y r1+xdx+ Z 1�y0 rxdx = Z 11�y rxdx+ Z 1�y0 rxdx = Z 10 rxdx = r � 1ln rTherefore the average competitive ratio isr � 1ln r 2r � 1r � 1 = 2r � 1ln rThe equation for the minimum value is kind of ugly, but nevertheless the minimum isachieved for r close to 2.155, and approximately equals 4.311.References[1] Aspnes, J., Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line load balancing withapplications to machine scheduling and virtual circuit routing, Proc. 25th ACM STOC,623-631, San Diego, 1993.[2] Motwani, R., personal communication through P. Indyk.
7


