A Note on On-line Load Balancing
for Related Machines

Piotr Berman * Marek Karpinski |

Abstract

We describe an on-line algorithm for scheduling permanent jobs on related machines.
It achieves the competitive ratio of 3 + v/8 ~ 5.828 for the deterministic version, and
3.31/1n2.155 =~ 4.311 for its randomized variant, improving the previous competitive ratios
of 8 and 2e = 5.436.

*Dept. of Computer Science & FEng., Pensylvania State University, University Park, PA16802
Email:berman@cse.psu.edu

"Dept. of Computer Science, University of Bonn, 53117, Bonn. This research was partially supported by
the DFG Grant KA 673/4-1 Email:narek@cs.uni-bonn.de



1 Introduction

We are given a set of machines that differ in speed but are related in the following sence: a
job of size p requires time p/v on a machine with speed v. While we cannot compare struc-
turally different machines using with a single speed parameter, it is a reasonable approach

when the machines are similar; in other cases it may be a good approximation.

Our task is to allocate a sequence of jobs to the machines in an on-line fashion, while
minimizing the maximum load of the machines. This problem was solved with a competitive
ratio 8 by Aspnes et al. [1]. Later, it was noticed by Motwani [2] that by randomizing
properly the key parameter of the original algorithm the expected competitive ratio can be

reduced to 2e.

Adapting their notation, we have n machines with speeds vy,...,v, (for later conve-
nience, we assume that the sequence of speeds is nondecreasing) and a stream of m jobs
with sizes p1, ..., pm. A schedule s assigns to each job j the machine s(j) that will execute
it. We define the load of a machine z and the load of entire schedule s as follows:

. 1 .
load(s, 1) = — Z p;,  Load(s) = max load(s,1)
v; s(j):i 7
It is easy to observe that finding an optimum schedule s* is NP-hard offline, and impos-
sible on-line. We want to minimize the competitive ratio of our algorithm, i.e. the ratio
Load(s)/Load(s*) where s is the schedule resulting from our on-line algorithm, and s* is

an optimum schedule.

We describe an on-line scheduling algorithm with competitive ratio 3 + /8 ~ 5.828 for

the deterministic version, and 3.31/1n2.155 a 4.311 for its randomized variant.

2 Preliminaries

The idea of the improvement is the following. There exists a simple algorithm that achieves
competitive ratio 2 if we know exactly the optimum load A: we simply assign each job to
the slowest machine that would not increase its load above 2A. Because we do not know A,
we make a safely small initial guess and later double it whenever we cannot schedule a job

within the current load treshold.

Our innovation is to double (or rather, increase by a fixed factor r) the guess as soon
as we can prove that it is too small, without waiting for the time when we cannot schedule
the subsequent job. Intuitively, we want to avoid wasting the precious capacity of the fast
machines with puny jobs that could be well served by the slow machines. Therefore we

start from describing our method of estimating the necessary load.

Let V.= {0,v0,...,v,}. For v € V we define Cap(v) as the sum of speeds of these



machines that have speed larger than v. (Cap stands for capacity, note that Cap (0) is the
sum of speeds of all the machines and Cap(v,) = 0.) For a set of jobs J and a load treshold
A we define OnlyFor(v, A, J) as the sum of sizes of these jobs that have p;/v > A. (OnlyFor
stands for the work that can be performed only by the machines with speed larger than v

if the load cannot exceed A.) The following observation is immediate:

Observation 1. For a set of jobs J, there exists a schedule s with Load(s) < A only
if OnlyFor(v,A,J) < ACap(v) for every v € V.

If the set of jobs .J satisfies the above condition, we say that A is appropriate for vy, ..., v,

and .J.

Before we formulate and analyze our algorithm, we will show how to use the notions of
Cap and OnlyFor to analyze the already mentioned algorithm that keeps the load under
2A if load A is possible off-line. We reformulate it to make it more similar to the new
algorithm. Machine ¢ has capacity ¢; = Av; equal to the amount of work it can perform
under A load, and the safety margin m; to assure that we will be able to accomodate the
jobs in the on-line fashion. In this algorithm the capacity and the safety margin are given

the same value, in the new one they will be different.

(* initialize *)
for : + 1 to n do
my; ¢ C; AUZ'
70
(* online processing *)
repeat
read(p)
j—g+1
for : + 1 to n do
if ¢; + m; > p then
s(j) i
Ci—C;— P
exit for

forever

This algorithm shares the following property with the new one: the jobs are offered
first to the machine 1 (the slowest), then to machine 2 etc. Given a stream of jobs J, we
can define J;_; as the stream of jobs that are passed over by machine ¢ — 1 or that reach
machine ¢ (for 1 < ¢ < n this two conditions are equivalent, for i = 0 only the latter and for
i = n only the former applies). The correctness of the algorithm is equivalent to the fact

that the stream J,, is empty—it consists of the jobs passed over by all the machines. From



the correctness the load guarantee follows easily, because the sum of sizes of jobs assigned
to machine 7 is less than the initial capacity plus the safety margin, i.e. Av; + Av;, and so
the load is less than 2Av;/v; = 2A.

Observation 2. If there exists a schedule s* with Load(s*) = A, then for every i =0, ..., n,
A is appropriate for vs1q,...,v, and the stream of jobs J;.
Proof. By induction on 2. For ¢ = 0 the claim follows from Observation 1. For the

inductive step, we use notation C'p;(v) for Cap(j) defined in respect to the sequence of ma-
chine speeds v;,...,v,, and V; to denote the set {0,v;,...,v,}. Our inductive assumption
says that

OnlyFor(v, A, J;_1) < ACap;(v) for v € V;

and have to show that
OnlyFor(v, A, J;) < ACap,,(v) for v € Vi,

Observe that for any v € Viy; — {0}, OnlyFor(v,A,J;) < OnlyFor(v,A,J;—1) and
Cap;y,(v) = Cap;(v). Thus it suffices to show that OnlyFor(0,A,.J; < ACap,,,(0).

First observe that Cap;,,(0) = Cap,;(0)—v; > Cap;(v;). We consider two cases according
to the final value of ¢; in the execution of the algorithm. If it is positive, then machine
accepted all jobs with size at most m; = Av; from the stream .J;_1, hence OnlyFor(0, A, J;,
which is the sum of job sizes in .J;, is at most OnlyFor(v;, A, J;_1, which in turn is less or

equal to ACap,(v;). Because Cap;(vi) < Cap,,,(0), the claim follows.

To finish the proof, we consider the case when the final value of ¢; is negative or 0. Then
total size of the jobs accepted by machine ¢ is at least Awv;, the initial value of ¢;, hence
OnlyFor(0,A, J;) < OnlyFor(0,A, J;_1) — Av;, while Cap;,(0) = Cap,;(0) — v;. Because
one of our assumption is OnlyFor(0, A, J;—1) < Cap;(0), the claim follows. O

Observation 2 implies that if a schedule with load A exists, then then A is appropriate for
the empty sequence of the machines v,41, ..., v, and J,,. Thus the stream .J,, of unscheduled

jobs is empty, which means that the algorithm is correct.

3 The new algorithm

The next algorithm is similar, but it proceeds in phases, each phase having a different value
of A. While it is correct for any value of the parameter r > 1, we will later find the optimum
r’s (they are different in the deterministic and randomized versions).

(* initialize *)

A + something very small



for : + 1 to n do
m; ¢+ 0
7+ 0, J < empty string
(* online processing *)
repeat
read(p)
j—Jj+1, p; < p, append J with p;
if A is not appropriate for vy,...,v, and J then
(* start a new phase *)
multiply A by r until it is appropriate
for : + 1 to n do
m; — Avy, ¢ — ¢+ my
(* scheduferpj ¥4 1 to n do
if ¢; + m; > p; then
S(j) i
C; < C; — Py
exit for

forever

We need to prove that the algorithm is correct, i.e. we never go through the last for loop
without finding a machine with sufficient remaining capacity. We will say that executing
this loop schedules p; (even though, for the sake of argument, we admit the case that after

executing this loop s(j) remains undefined).

Let Ag be the value of A when the first job was scheduled. We view the execution
as consisting of phases numbered from 0 to k, where [-th phase operates with A = A; =
Agr!. Let J! be the stream of jobs received in phase I. Using the same convention as in the
analysis of the previous algorithm, we define J!_; to be the stream of jobs that in phase [
machine ¢ received or machine 7 — 1 passed over. Now the correctness will mean that the

stream J! are empty for every phase [.

Because the initial estimate for Amaybetoolow, machines may receive more work than
in the previous algorithm. This is due to the fact that in the initial phases the machines
from the beginning of the sequence needlessly refuse to pick jobs that they would gladly
accept later, thus increasing the load of the end of the sequence. Nevertheless, as we shall

show, this increase is limited.

As a preliminary, we need to analyze the consequences of the test that triggers a new
phase as soon as A is not appropriate for the stream of jobs received so far. First of all,

this implies that every A; is appropriate for the stream Jy ---J!, and in particular, for the



substream J'. Therefore
OnlyFor(v, Ay, Jl) < A;Cap(v) for every phase [ and every v € V. (#)

This allows to prove, by induction on ¢, the following

Observation 3. For every : = 0,...,n and every phase [
l
Z OnlyFor(0, Ay, J) < (Z At) Z v;
t=0 j=i+1

For 2 = 0 this follows simply from the fact that for every phase t <1
OnlyFor(0, Ay, J§) = OnlyFor(0, Ay, J*) < A;Cap(0 (Z v]) .

For [ = 0 the follows from Observation 2, as the phase 0 is identical to the first algorithm
with A = Ag.

Therefore we may assume that the claim is true for ¢ — 1 and [ — 1. We consider two
cases, according to the value of ¢; at the end of phase [. Assume first that this value is
positive. Subtract formally from both sides of the claim for ¢ and [ the respective sides of

the claim for ¢ and [ — 1; this way we see that it suffices to show that

OnlyFor(0, A, J) < Ay ( Z vj)

j=it+1
Because the final value of ¢; is positive, in phase [ machine ¢ accepted all jobs from the
stream J!_, that had size bounded by Ajv;, and therefore the stream J! consists only of the
jobs that must be executed on machines faster than v;. Thus the sum of sizes of all jobs
in this stream, OnlyFor(0, A, J}), equals to OnlyFor(v;, Ay, J*), which by (#) is at most
Ay Cap(v;). Lastly, Cap(v;) <3271 vj.

Now assume that the final value of ¢; in phase [ equals some ¢ < 0. This time subtract
from both sides of the claim the respective sides of the claim for ¢ — 1 and [, this way we

can see that it suffices to show that
{

Z(OnlyFOT((L At7 Jzt) - OnlyFOT( At7 i— 1 (Z At) U; (##)

=0
On the left hand side this inequality has the difference between the sum of jobs sizes that
reach machine 7 and the sum of the job sizes that are passed over by machine 7 to the
subsequent machines (during the phases from 0 to [). In other words, this is the sum of
sizes of the jobs accepted by machine ¢ during these phases. This sum, say s, is related in

the following manner to c:

{ {
0>c= (Z Atvi) — s which implies s > (Z At) v, = (##). O



To analyze the competitive ratio, we may assume that Load(s*) = 1. Then the penulti-
mate value of A must be smaller than 1 and the final one smaller than r. Consider a machine
with speed 1. The work accepted by a machine is smaller than the sum of all A’s up to that
time (additions to the capacity) plus the last A given for the safety margin. Together it is
(r+14+rt4+ . D+r=r(1/0-rH +1)=r@2r—-1)/(r —1). To find the best value
of r, we find zeros of the derivative of this expression, namely of (2r2 —4r +1)/(r — 1),
and solve the resulting quadratic equation. The solution is r = 1 + /1/2 and the resulting
competitive ratio is 3 + \/§ ~ 5.8284.

One can observe that the worst case occurs when our penultimate value of A is very
close to 1 (i.e. to the perfect load factor). We will choose the initial value of A to be of the
form r=N*+% where N is a suitably large integer and 2 is chosen, uniformly at random, from
some interval < —y, 1 —y > (we shifted the interval < 0,1 > to componsate for the scaling
that made Load(s*) = 1). Therefore we can replace the factor r with the average value of

the last A. For negative x this value is r*T!, for positive it is r?. The average is

0 1—y 1 1—y 1 -1
/ e —I—/ r¥dx = / rfdx —I—/ rfdx :/ rPdy = |
—y 0 1—y 0 0 Inr

Therefore the average competitive ratio is

r—12r—1_2r—1
Inr r—1  Inr

The equation for the minimum value is kind of ugly, but nevertheless the minimum is

achieved for r close to 2.155, and approximately equals 4.311.

References

[1] Aspnes, J., Y. Azar, A. Fiat, S. Plotkin and O. Waarts, On-line load balancing with
applications to machine scheduling and virtual circuit routing, Proc. 25th ACM STOC,
623-631, San Diego, 1993.

[2] Motwani, R., personal communication through P. Indyk.



