
The Complexity of Two-DimensionalCompressed Pattern-MatchingPiotr Berman � Marek Karpinski y Lawrence L. Larmore zWojciech Plandowski x Wojciech Rytter xAbstractWe consider the complexity of problems for highly compressed 2-dimensional texts: compressedpattern-matching (when the pattern is not compressed and the text is compressed) and fully com-pressed pattern-matching (when also the pattern is compressed). First we consider 2-dimensionalcompression in terms of straight-line programs, see [9]. It is a natural way for representing veryhighly compressed images, by describing larger parts in terms of smaller (earlier described) ones.For 1-dimensional strings there exist polynomial-time deterministic algorithms for similar types ofcompression [2, 6, 8, 9]. We show that the complexity dramatically increases in a 2-dimensionalsetting:� Compressed matching for two dimensional compressed images is NP-complete.� Fully compressed matching for two dimensional compressed images is �2P -complete.� Testing a given occurrence of a two dimensional compressed pattern is co-NP-complete.On the other hand we show e�cient algorithms for some related problems:� Testing equality of two compressed two dimensional patterns (an application of algebraictechniques).� Testing a given occurrence of an uncompressed pattern in a two dimensional compressedimage.We also show the surprising fact that the compressed size of a subrectangle of a compressed twodimensional array can grow exponentially, unlike the one dimensional case.�Dept. of Computer Science & Eng., Pensylvania State University, University Park, PA16802, USAEmail:berman@cse.psu.eduyDept. of Computer Science, University of Bonn, D-53117, Bonn, Germany. This research was partiallysupported by the DFG Grant KA 673/4-1 Email:marek@cs.uni-bonn.dezDepartment of Computer Science, University of Nevada, Las Vegas,NV 89154-4019. Email:larmore@cs.unlv.edu Research partially supported by National Science Founda-tion grant CCR-9503441. Part of this work was done while the author was visiting Institut Informatik V,Universit�at Bonn, Germany.xInstytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02{097 Warszawa, Poland. Supported bythe grant KBN 8T11C01208. Email:wojtekpl@mimuw.edu.pl and rytter@mimuw.edu.pl.1

1 IntroductionWe consider algorithms for problems dealing with highly compressed images (two dimen-sional arrays with entries from some �nite alphabet). The objects considered are as muchas potentially exponentially compressed. In practice the compression ratio for images canbe much larger than in the one dimensional case.Our main problem is the Fully Compressed Matching Problem:Instance: Compress(P) and Compress(T)Question: does P occur in T?P is a rectangular pattern-image and T is a rectangular host-image. The CompressedMatching Problem is essentially the same, the only di�erence being that P = Compress(P),in other words, the pattern is uncompressed. Our results show that any attempt to dealwith highly compressed (potentially exponentially compressed) two dimensional texts shouldfail algorithmically. The size of the problem is n + m, where n = jCompress(T)j andm = jCompress(P)j. Let N determines the total uncompressed size of the problem. Notethat in general N can be exponential with respect to n, and any algorithm which decom-presses T takes exponential time in the worst case.We consider also the problems of Pattern Checking:test an occurrence of a pattern at one given position.This problem has also its compressed and fully compressed versions.The �rst type of compression we consider in this paper is in terms of straight-line pro-grams (SLP's), or equivalently, two dimensional context-free grammars generating singleobjects with the following two operations:A BC, which concatenates images B and C (both of equal height)A B 	 C, which puts image B on top of C (both of equal length)An SLP of size n consists of n statements of the above form, where the result of the laststatement is the compressed image. The only constants in our SLP's are letters of thealphabet, interpreted as 1� 1 images. We will view SLP's as compressed (descriptions of)images. The complexity of basic string problems for one dimensional texts is polynomial.Surprisingly, the complexity jumps if we pass to two dimensions. The compressed size of asubrectangle of a compressed two dimensional array A can be exponential with respect tothe compressed size of A, though such a situation cannot occur in the 1-dimensional case.The proof is omitted in this version.Theorem 1.1 For each n there exists an SLP describing a text image An and a subrectangleBn of An such that the smallest SLP describing Bn has exponential size.2

Example 1.Hilbert's curve can be viewed as an image exponentially compressible in terms of SLP's.An SLP which describes the nth Hilbert's curve, Hn, uses six (terminal) symbols ,, , , , . There are used 12 variables r ri , rr i , r ri , rr i, rr i , rr i , rr i , rri , rri , r ri , r r i , r ri , for each 0 � i � n. Avariable with index i represents a text square of size 2i� 2i containing part of a curve. Thedots in the boxes show the endpoints of the curve.
u
u u u

ur r5 (r r4 r r4) 	 (rr 4 rr4)Figure 1: The 5th Hilbert curve H5 is composed of four smaller square arrays according tothe rule above, it consists of 1024 (terminal) symbols.The 1� 1 text squares are described as follows.rr 0 ; rr0 ; r r0 ; r r0 ;rr 0 ; rr 0 ; rr 0 ; r r0 ;r r0 ; rr0 ; rr0 ; r r0 ;The text squares for variables indexed by i � 1 are rotations of text squares for the variablesr ri , r r i , r ri . These variables are composed according to the rules:r ri r ri�1 r r i�1 	 rr i�1 rri�1 ;r r i r ri�1 r r i�1 	 rr i�1 rr i�1 ;r ri r ri�1 r r i�1 	 rr i�1 rri�1 :3

2 Compressed two dimensional pattern-matchingRecall that the compressed matching problem is to �nd, given an uncompressed patternand compressed text (image), whether the pattern occurs within the text.In our constructions we will use, as a building block, images �lled with one kind of letteronly, say a. We will use [a]ij to denote such i � j image. It is easy to see that [a]ij can becompressed to a SLP of size O(log(i) + log(j)).We will use I; J; : : : ; P; Q; : : : for uncompressed images, and I;J ; : : : ;P ;Q; : : : for com-pressed ones. Given a compressed image R (uncompressed image R), we use Ri;j (Ri;j)to denote the symbol at position (i; j); if the position (i; j) is out of range, we will haveRi;j = ?. We will number the rows and columns starting from 0. We also use the conven-tion that given a number m, em is a 0-1 vector (a0; :::; ak�1) such that m =Pk�1i=0 2iai. Thelength of em should be clear from context. Let Positions(P) = f(i; j) : Pi;j 6= ?g.First we consider Point test problem: compute the symbol Ii;j for given I; i and j.Lemma 2.1 There exists a linear time algorithm for the point test problem.Theorem 2.2 Compressed matching for two dimensional images is NP-complete.Proof:To see that the compressed matching is in NP, we can express this problem as thefollowing property of pattern P and image R:9(i; j)f8(k; l) 2 Positions(P) Pk;l = Ri+k;j+lg:The equality inside the braces can be tested in polynomial time (Lemma 2.1), hence wehave expressed the problem in the normal form for NP.To show NP hardness, we will use a reduction from 3SAT. Consider a set of clausesC0; : : : ; Ck�1, where each clause is a Boolean function of some three variables from the setfx0; : : : ; xn�1g. The 3SAT question is whether there exists m such that Ci(em) = 1 fori = 0; : : : ; k� 1.De�ne an k�2n image A as follows: Ai;m = Ci(em). Then the 3SAT question is equivalentto the following: does A contain a column consisting of k 1's (i.e. the pattern [1]1m)? Wewill reduce 3SAT to the compressed matching problem by showing how to compress A to aSLP with O(kn) statements. Obviously, it su�ces to show that we can compress any rowof A into a SLP with O(n) statements, because we can combine the compressed rows usingk 	 operations.Consider then a row R of A corresponding to a clause C(xh; xi; xj) where h < i < j.De�ne {(v0; : : : ; vn�1) = vh+2vi+4vj , then Rm = C(g{(em)). We will show how to compressI de�ned by Im = {(em); then to obtain a SLP for R from SLP I for I we simply replaceeach constant a with C(ea). 4

We omit an easy proof of the following fact.Fact 2.3I = (((02h12h)2i�h�1(22h32h)2i�h�1)2j�i�1((42h52h)2i�h�1(62h72h)2i�h�1)2j�i�1)2n�j�1To compress I , write a constant length SLP that computes all subexpressions of I , thenreplace each statement of the form K L2i with i statements L LL followed by K L.One can see that this results in a SLP with O(n) statements. 23 Fully compressed two dimensional pattern-matchingRecall that the fully compressed matching problem is to �nd, given a pattern and a textthat are both compressed, whether the pattern occurs within the text.Theorem 3.1 (main result)Fully compressed matching for two dimensional images is �2P -complete.Given compressed pattern P and compressed image I, the positive answer to the fullycompressed two dimensional pattern matching question is equivalent to the following:9(i; j)8(k; l) 2 Positions(P) fPk;l = Ii+k;j+lgBy Lemma 2.1, the equality in this formula can be checked in polynomial time, hence theproblem can be formulated in the normal form of �P2 problems.This proof of �P2 -hardness requires two lemmas.Lemma 3.2 There exists a logspace function f such that for any 3CNF formula F , f(F) =(u; v; t), where u and v are vectors of non-negative integers, t is an integer and8x F (x) � 9y ux+ vy = t:Proof: Assume that F has n variables, a clauses with three literals, b clauses with twoliterals and c clauses with one literal. Vector u will consists of n numbers and vector vof 7a + 3b numbers. We will describe each of these numbers, (and t as well) using theidentity ~d = d0 : : :d(a+b+c�1), where d(k) is the fragment of d corresponding to clause Ck.The fragments corresponding to a clause with l literals will have length 2l. We describe indetail the case of a clause with three literals, the other cases being similar, only simpler.Assume that clause Ck contains three variables, xh, xi, xj . The fragments of uh, ui, anduj corresponding to Ck are 000100, 000010 and 000001 respectively, while for l 62 fh; i; jgwe have u(k)l = 000000. 5

There are 7 truth assignments for (xh; xi; xj) that satisfy C(k), for each one we have anentry in vector v; if vl is the entry corresponding to a truth assignment (b0; b1; b2) for Ck,then v(k)l = 100(1� b0)(1� b1)(1� b2). Moreover, for k0 6= k we have v(k0)l = 0 : : :0.Finally, t(k) = 100111.Consider now x such that F (x) is true. Then the fragment of cux corresponding to aclause Ck is 000b0b1b2, where (b0; b1; b2) is a truth assignment satisfying Ck (note that xsatis�es all the clauses of F). Let vl be the entry of v corresponding to this truth assignment,and vl1 ; : : : ; vl6 be the entries corresponding to other truth assignments that may satisfyCk. We set yl to 1 and yl1 ; : : : ; yl6 to 0; it is easy to see that the fragment of dux+ vycorresponding to Ck is 100111, the same as the corresponding fragment of t. Since this istrue for every fragment of t, we have ux + vy = t.Now suppose that there exists y such that ux+vy = t. If for every clause Ck exactly oneof the entries corresponding to the truth assignments that satisfy Ck has coe�cient 1 in thevector y, and if the addition is performed without carries, then each Ck is satis�ed. It is easyto prove by induction that this is indeed the case (note that in our string representationsof numbers we write the least signi�cant bit �rst). Details are left to the reader.Finally, the method of creating (u; v; t) is so regular that it can be carried out by adeterministic log-space Turing machine. 2De�ne the �2(Subset Sum) problem as follows: given is (u; v; t) where u and v arevectors of positive integers and t is an integer; the question is whether 9x8y ux + vy 6= t,where the quanti�ers range over 0-1 vectors of appropriate length.Lemma 3.3 The �2(Subset Sum) problem is �P2 complete.Proof: Consider now an arbitrary property L of binary strings that belongs to �P2 . In itsnormal form, L is represented asL(x) � 9y18y2 P (x; y1; y2)where P is a polynomial time predicate. Because P�NP\co-NP, the predicate P can berepresented as P (x; y1; y2) � :(9y3F (x; y1; y2; y3))where F is a 3CNF formula (computed using space which is logarithmic in the size of x inunary). Let \�" denote concatenation of vectors. By the previous lemma,F (x; y1; y2; y3) � 9y4 u(x � y1 � y2 � y3) + vy4 = twhere (u; v; t) can be computed in logarithmic space from F . De�ne �u; �v; �w and �t so thatu(x � y1 � y2 � y3) + vy3 = �wx + �uy1�v(y2 � y3 � y4) and �t = t � �wx. By substitution and DeMorgan laws we have, 6

L(x) � 9y18y2:(9y39y4 u(x � y1 � y2 � y3) + vy4 = t)� 9y18y28y38y4 u(x � y1 � y2 � y3) + vy4 6= t� 9y18y28y38y4 �wx+ �uy1�v(y2 � y3 � y4) 6= t� 9y18(y2 � y3 � y4) �uy1�v(y2 � y3 � y4) 6= �tBecause the last of the above statements is an instance of �2(Subset Sum), we have shownthat L can be reduced to �2(Subset Sum). 2To prove that fully compressed two dimensional pattern matching is �P2 complete, it su�cesto show how to translate an instance of �2(Subset Sum). Consider an instance given by(u; v; t). Recall the de�nition of Tw from our proof of co-NP completeness. Let U be theimage Tu and let V be the image T v with all row reversed. Recall that dimensions of Uand V are 2n � (1 + r) and 2m � (1 + s) respectively, where m and n are the lengths of uand v, while r and s are their sums. We de�ne the pattern and the test as follows:P 1	 [0]12n+2mS0 [0]2ns�tUS1 V [1]2mr�tS2 [0]2n1+r+s�tT R1 	 R2 	R2The subimages Si's are stripes of the text T . Observe �rst that T contains P if and only ifthere exists a column of T , say c, that contains P . Because the length of P equals the sumof heights of S1 and S2 plus 1, P can start anywhere in the upper stripe S0 but only there.Because P starts with 1, it must start within U , so c = s� t+ a for some a � 0. Thereforecolumn c consists of column a of U , column s� t+a of V and zeros at the bottom|we caneasily exlude the case when this column crosses the middle stripe S1 through the subimageconsisting of 1's only.Now, column a of U is column a of T u, so a 1 exists in this column if and only if for somex < 2n we have uex = a. Moreover, column s� t+a of V is column s� (s� t�a) = t�a ofT v, we have all 0's in this column if and only if vy 6= t� a for every y < 2m. Summarizing,P occurs in T if and only if there exists x with the following property: for a = ux theequality vy = t � a � a + vy = t � ux + vy = t holds for no y. Therefore the positiveanswer to our pattern matching problem is equivalent to the positive answer to the original�2(Subset Sum) problem. This concludes the proof of Theorem 3.1.7

4 Fully compressed pattern checkingThe problem of fully compressed pattern checking at a given location is to check, givenpattern P and text R that are both compressed and a position within the text, whether Poccurs within R at this particular place.Theorem 4.1 Fully compressed pattern checking for two dimensional images is co-NP-complete.Proof: We can use Lemma 2.1 to express this problem in the normal form of co-NP:8(k; l) 2 Positions(P) Pk;l = Rk+i;l+j :To prove co-NP hardness, we will reduce co-(Subset Sum) to our problem. An instanceof co-(Subset Sum) is a vector of integer weights w = (w0; : : : ; wn�1) and a target integervalue t; the question is whether 8m < 2n w em 6= t. (Here w em stands for the inner product;because em is a 0-1 vector, w em is a sum of a subset of the terms of w.) We can transformthis question to a pattern checking question in a natural manner. Let s = 1 +Pn�1i=0 wi,and let the image Tw consists of 0's and 1's, with Twm;i = 1 if and only if w em = i. Then ourco-(Subset Sum) question is whether column t of Tw consists of 0's only. In terms of thepattern checking problem, we specify the text Tw, the pattern [0]12n and the position (t; 0).To �nish the proof, we need to compress Tw. Observe that rowm of Tw contains exactlyone 1, at position w em. Moreover, for m < 2n�1 we have w(gm+ 2n�1) = we(m) + wn�1.Therefore when we split Tw into upper and lower halves (each with 2n�1 rows), the patternof 1's is very similar, the only di�erence being that in the lower half (with higher rownumbers) the 1's are shifted by wn�1 to the right. Moreover, if we remove the last wn�1zeros from each row in the upper half, we obtain Tw(n�1), an image de�ned just as Tw, butwhere w(n � 1) = (w0; : : : ; wn�2). Applying this observation inductively, we can computeTw as follows:Tw(0) 1for i 0 to n� 1 doU Tw(i)[0]2iwi ; L [0]2iwiTw(i); Tw(i+1) U 	 LTo obtain SLP for Tw we combine 3n + 1 statements of the above program with SLP'sthat compute auxiliary images [0]2iwi . It is easy to see that the number of statements in theresulting SLP is O(n2+ b), where b is the total number of bits in the binary representationsof the numbers in vector w. 2 8

5 Equality testingWe reduce equality of two images A and B to equality of two polynomials Poly(A) andPoly(B). The following basic theorem is a version of theorems given by Schwartz and(independently) by Zippel [13].Theorem 5.1 (nonzero-test theorem)Let P be a nonzero polynomial of degree at most d. Assume that we assign to each variablein P a random value from a set
 of integers of cardinality R. ThenProbfP(�x) 6= 0 g � 1� dR .We can assume that the symbols are integers in some small range, depending on thealphabet. For an n� n image Z de�ne its corresponding polynomialPoly(Z) =Pni;j=1Zi;jxiyj .Theorem 5.2 There exists a linear time randomized algorithm for testing whether twoSLP's compute the same image.Proof: Observe that two images are equal if and only if their corresponding polynomials areidentical. Hence the equality of two images is reduced to testing whether Poly(A)�Poly(B)is identically zero. This can be done e�ciently by a randomized algorithm due to Theorem5.1 and the following fact:Fact 5.3 Let A, B, C be images corresponding to variables A, B, C in some SLP.� If A B 	 C then Poly(A) = Poly(C) � xheight(B) + Poly(B).� If A BC then Poly(A) = Poly(C) � ywidth(B) + Poly(B).26 Compressed pattern checkingRecall that the compressed pattern checking problem is to check whether an uncompressedpattern P occurs at a position (x; y) of an image T given by an SLP T . Let n be the size ofT and N be the size of T . The compressed pattern checking problem can be solved easilyin polynomial time by using an algorithm for point test problem m �k times. By Lemma 2.1there is an algorithm which solves the compressed pattern checking problem in O(njP j)time. We improve that by replacing n by logN logm. This is similar to the approach of[6]. If the text image is not very highly compressed then log(N) is close to log(n). Theidea behind the algorithm is to consider point tests in groups, each group called a query.Denote by V a text which is generated by a variable V . A query is a triple (V; p;R) whereV is a variable in SLP T , p is a position inside V and R is a subrectangle of the pattern9

P . Denote by R0 the rectangle of the same shape as the rectangle R which is placed atposition p in V . We require that R0 abut one of the sides of the rectangle V . An answerfor a query is true or false depending on whether or not R0 = R. The queries are answeredby replacing them by equivalent \simpler" queries. We say that a query (V; p;R) is simplerthan a query (V 0; p0;R0) if and only if jVj < jV 0j. A query which contains a variable V iscalled a V -query. An atomic query is a query (V; p;R) such that V is a 1�1 square. Clearly,an atomic query can be answered in O(1) time.The queries are divided into three classes: strip queries, edge queries, and corner queries.Let (V; p;R) be a query. Denote by R0 a rectangle of the same shape as R and which ispositioned at p in V . Then (V; p;R) is a corner query if R contains at least one side of thepattern or R is a corner subrectangle of the pattern and R0 is a corner subrectangle of V .The query (V; p;R) is an edge query if R0 contains one side of V . There are four types ofedge queries depending on which side of V is contained in R0. They are called down, left,right and up queries. The query (V; p;R) is a strip query if R is a strip of the pattern andR0 is a strip of V .The algorithm for the checking problem uses two procedures, Remove Edge Queries(V;Q)and Split(V;Q) where V is a variable in T and Q is a set of queries. The scheme of thealgorithm looks as follows.Algorithm CHECKINGf input: an SLP T , a pattern P and a position p gf output: true i� P occurs at p in a text described by T gbeginV1; V2; : : : ; Vn:= sort variables in T on the sizes of their texts, in descending orderQ:=f(V1; p; P)gfor i:=1 to n doQ:=Remove Edge Queries(Vi; Q) Q:=Split(Vi; Q)fthere are now only atomic queries in Qg answer all atomic queries in QendThe procedure Compress Edge Queries(V;Q) deals only with edge V -queries in Q. Its aimis to eliminate, for each type of edge query separately, all edge V -queries except the querywhich contains the largest subrectangle of the pattern. We describe how this procedureworks for left-edge queries. Let (V; (0; 0);R) be a left-edge query and R be of maximal sizeamong all left-edge V -queries in Q. Let (V; (0; 0);R0) be any other left-edge V -query. Thenrectangle of shape R0 positioned at (0; 0) in V is a subrectangle of the rectangle of shape Rpositioned at (0; 0) in V . Hence, to answer both queries it is enough to answer the query(V; (0; 0);R) and to check whether the text R0 occurs in R at (0; 0). Before removing eachedge query equality of appropriate rectangles is checked and if the rectangles do not match10

then the procedure stops and the algorithm returns false.Assume that A:=BC or A:=B 	 C is an assignment for A. The Split(A;Q) procedurereplaces A-queries in Q by equivalent B-queries and C-queries. Let (A; p;R) be an A-queryin Q. Consider a rectangle R of shape R positioned at p in A. Then division of A into Band C according to the assignment for A causes that either R to be wholly contained in B,or wholly in C, or to be divided into two smaller rectangles one of which is in B and theother in C. In the latter case the split of a query is called a division of the query.Fact 6.1 The total number of all divisions of queries during the work of the algorithm isexactly jP j � 1.For each variable, edge and corner queries are stored in a list. The data structure forstoring strip queries is more sophisticated. For each variable it is a 2-3-tree [1] in which keysare positions of strip rectangles in the variable. Recall that 2-3 trees provide operationssplit and join in O(log s) time where s is the number of elements in the tree.Fact 6.2 In each step of algorithm CHECKING the set Q contains at most four cornerqueries and m strip queries.Implementation of the Split operation, if it is not a division, requires merging 2-3 treesand this may result in a large number of splits of 2-3 trees. Fortunatelly, it is possible toprove, using arguments similar to those of [6], to prove the following lemma.Lemma 6.3 The number of splits of 2-3 trees in algorithm CHECKING is O(m logN).Theorem 6.4 The algorithm CHECKING works in O(jP j+ n+ (m logN)(logm)) time.Proof: By Fact 6.1, the total cost of all divisions is O(jP j). Total cost of all Splits whichare not divisions is determined by the number of all corner queries and all edge querieswhich survive after Remove Edge Queries operation during the execution of the algorithmand the number of splits of 2-3 trees. This gives, by Lemma 6.3, O(n+ (m logN)(logm)).2Open Problem: we designed a fast randomized algorithm for the equality of two com-pressed images, and we conjecture that there is a polynomial time deterministic algorithmfor this problem.References[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The design and analysis of computer algo-rithms, Addison-Wesley, Reading, Mass., 1974.[2] A. Amir, G. Benson and M. Farach, Let sleeping �les lie: pattern-matching in Z-compressed �les, in SODA'94. 11

[3] A. Amir, G. Benson, E�cient two dimensional compressed matching, Proc. of the 2ndIEEE Data Compression Conference 279-288 (1992).[4] A. Amir, G. Benson and M. Farach, Optimal two-dimensional compressed matching,in ICALP'94 pp.215-225.[5] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York(1994).[6] M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, inSTOC'95, pp. 703-712.[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theoryof NP-Completeness. W.H. Freeman (1979).[8] L. G�asieniec, M. Karpi�nski, W. Plandowski and W. Rytter, E�cient Algorithms forCompressed Strings. in proceedings of the SWAT'96 (1996).[9] M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with shortdescription, in Combinatorial Pattern Matching, 1995.[10] D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edition.Addison-Wesley, 1981.[11] A. Lempel and J. Ziv, On the complexity of �nite sequences, IEEE Trans. on Inf.Theory 22, 75-81 (1976).[12] A. Lempel and J. Ziv, Compression of two-dimensional images sequences, Combinato-rial algorithms on words (ed. A. Apostolico, Z.Galil) Springer Verlag (1985) 141-156.[13] R. Motwani, P. Raghavan, Randomized algorithms, Cambridge University Press 1995.[14] W. Plandowski, Testing equivalence of morphisms on context-free languages, ESA'94,Lecture Notes in Computer Science 855, Springer-Verlag, 460{470 (1994).[15] J. Storer, Data compression: methods and theory, Computer Science Press, Rockville,Maryland, 1988.[Zi] R.E. Zippel, Probabilistic algorithms for sparse polynomials, in EUROSAM 79, LectureNotes in Comp. Science 72, 216-226 (1979)[16] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEETrans. on Inf. Theory vo. IT{23(3), 337{343, 1977.
12

