
Two-closure of odd permutation groupin polynomial timeSergei Evdokimov � Ilia Ponomarenko yOctober, 1996AbstractWe present a polynomial-time algorithm which constructs the 2-closure of apermutation group of odd order.

�St.Petersburg Institute for Informatics and Automation of the Academy of Sciences of Russia,199178 St.Petersburg and University of Bonn, 53117 Bonn. E-mail: evdokim@pdmi.ras.ru. Researchsupported by the Volkswagen-Stiftung Program on Computational Complexity.ySt.Petersburg Department of Mathematical Institute of the Academy of Sciences of Russia, 191011St.Petersburg and University of Bonn, 53117 Bonn. E-mail: ponom-ko@pdmi.ras.ru. Research sup-ported by the Volkswagen-Stiftung Program on Computational Complexity.1



1 IntroductionThe method of invariant relations in permutation group theory was �rstly applied byH. Wielandt in [11]. In [12] it was identi�ed along with the theory of centralizer rings andthe character theory as one of the three basic tools for studying permutation groups. Theessence of the method is the existence for each positive integer k a Galois correspondencebetween permutation groups on a �nite set V and all partitions of V k (see [4]). Namely,to each permutation group G on V we associate a partition Orbk(G) which is the partitionof V k into k-orbits of G, i.e. the orbits of the induced action of G on V k. On the otherhand, to each partition P of V k we associate its automorphism group Aut(P ) consistingby de�nition of all permutations of V preserving the partition P . Denoting by � thenatural partial orders on the sets of all permutation groups on V and partitions of V kwe have Aut(Orbk(G)) � G; Orbk(Aut(P )) � P;which expresses the correspondence.In the context of computational complexity theory the above correspondence leads totwo natural problems: given a partition P �nd Orbk(Aut(P )) and given a permutationgroup G �nd Aut(Orb(G)). It is well-known that for k = 2 the �rst of them is equivalentto the Graph Isomorphism Problem (a modern knowledge of it can be found in [2]). Inthis paper we are interested in the other problem.According to [11] we de�ne the k-closure G(k) of a permutation group G to beAut(Orb(G)) and say that G is k-closed if G = G(k). It is easy to see that G(k) co-incides with the intersection of all k-closed permutation groups on V containing G.k-closure problem. Given a permutation group G and a positive integer k, �ndthe generators of G(k).The case k = 1 is trivial because the 1-closure of a permutation group G is the directproduct of symmetric groups acting on the orbits of G. Since the 2-closure problem isreduced to the Graph Isomorphism Problem, the 2-closure of any permutation groupcan be constructed in moderately exponential time (see [2]). We also mention a subex-ponential algorithm from [3] constructing the automorphism group of a tournament(and so solving the 2-closure problem for odd order groups) in time nO(logn) where n isthe cardinality of V . It should be noted that the technique from [3] and the inclusionG(k) � G(2) for k � 2 provide a nO(k) reduction of the k-closure problem to the 2-closureproblem in the case when the group G(2) is solvable.The setting of the 2-closure problem appeared in [7] where a polynomial-time algo-rithm for nilpotent permutation groups was described. It was based on the techniqueof [3] mentioned above and exploited the fact that the 2-closure of a nilpotent permu-tation group is solvable. The main obstacle to extend the result to solvable groups isthe observation that the 2-closure of a solvable group is not necessary solvable: thereare 2-transitive solvable groups. It was remarked in [7] that the next interesting caseis that of groups of odd order. This class is closed under 2-closure and by the famousFeit-Thompson theorem consists of solvable groups. The main result of the paper is apolynomial-time solution to the 2-closure problem in this case.Theorem 1.1 Let G be a permutation group of odd order on V . Then the generatorsof G(2) can be found in polynomial time in the cardinality of V .2



It was proved in [8] that each primitive group of odd order is 4-closed. Combiningthis result and the above reduction of the k-closure problem to the 2-closure problemwe obtain by Theorem 1.1 the following statement.Theorem 1.2 Let G be a primitive permutation group of odd order on V . Then fork � 1 the generators of G(k) can be found in polynomial time in the cardinality of V .Let us discuss the basic ideas of the proof. Firstly, using the standard permutationgroup technique we recursively reduce the 2-closure problem for permutation groups ofodd order to that for primitive ones. Here we make use of the fact that the intransitiveaction of the direct product as well as the imprimitive action of the wreath productpreserves the property \to be 2-closed".To manage with primitive permutation groups of odd order we make use ofSuprunenko's theory [9]. In this case a one point stabilizer Gv, v 2 V can be viewedas an irreducible linear group over a prime �eld GF(p) for p > 2. Using the algorithmBLOCK (see section 5) we proceed depending on the imprimitivity or primitivity of thisgroup. If it is imprimitive we construct an imbedding of G to the wreath product inprimitive action of two smaller permutation groups of odd order (see subsection 4.2) andapply the recursion. This is possible since the property \to be 2-closed" is preserved bythe primitive action of the wreath product.If Gv is a primitive linear group then there are two possibilities: either G = G(2) or Gis permutation equivalent to a subgroup of odd order of the group AGL(1; pd) consistingof all semilinear a�ne transformations of GF(pd). In the �rst case we are done. In thesecond one the algorithm IMBED (see section 5) constructs the required imbedding andwe �nd G(2) using the 2-closeness of the odd part of AGL(1; pd).The paper consists of 7 sections. In the second one we give some de�nitions concern-ing permutation and linear groups. The wreath product and its actions compose thesubject of section 3. Here we prove Proposition 3.1 in which the invariance of 2-closurewith respect to these actions is stated. In section 4 we apply Suprunenko's theory toprimitive permutation group of odd order. Some algorithmic tools and the MAIN AL-GORITHM are described in section 5 and section 6 respectively. The latter also containsthe proof of Theorem 1.1. A brief discussion of the problems concentrating around thek-closure problem is presented in section 7.Notation. As usual GF(pd) denotes a �nite �eld with pd elements (p is a prime).Throughout the paper V denotes a �nite set with n = #V elements. If E is anequivalence (i.e. re
exive, symmetric and transitive relation) on V , then V=E denotesthe set of all equivalence classes modulo E.The group of all permutations of V is denoted by Sym(V ). The unity of Sym(V ) isdenoted by idV . In all our algorithms a permutation group on V will be given by a setof at most n2 generators (for this fact and the standard permutation group algorithmssee [5]).If G is a group, then H � G means that H is a subgroup of G.3



2 Permutation and linear groupsAll unde�ned below notions concerning permutation and linear groups can be foundin [10] and [9] respectively.2.1. Under a permutation group G = (G;V ) on a set V we mean a group G witha faithful action v 7! vg of G on V . We write 1V instead of (idV ; V ). If H = (H;V )is another permutation group on V , then we write H � G if H is a subgroup of Gand the action of H is induced by that of G. In particular, G � Sym(V ) whereSym(V ) = (Sym(V ); V ). Let ' : V ! V 0 be a bijection. We say that ' produces animbedding G ,!' G0 of G in G 0, if G' � G0. Here G' = (G'; V 0) where G' it the imageof G with respect to the isomorphism from Sym(V ) on Sym(V 0) induced by '.For two permutation groups G1 = (G1; V1) and G2 = (G2; V2) we de�ne their directsum and direct product byG1 + G2 = (G1 �G2; V1 + V2); G1 � G2 = (G1 �G2; V1 � V2);where V1+ V2 is the disjoint union of V1 and V2 and the actions are de�ned in a naturalway.Let k be a positive integer. For a permutation group G denote by Orbk(G) the setof all orbits of the componentwise action of G on V k. Set G(k) = (G(k); V ) whereG(k) = fg 2 Sym(V ) : Og = O for all O 2 Orbk(G)g:This group is called the k-closure of G (see [11]). It is known thatG(1) � G(2) � � � � � G(n) = Gand H � G implies H(k) � G(k) for all k. The group G is called k-closed if G(k) = G.Let U be a subset of V . Denote byGU = (GU ; V ); GU = (GU ; U)the setwise stabilizer of U in G and the restriction of GU to U respectively. If U = fvg,then we write Gv instead of Gfvg and Gv instead of Gfvg.Let G be transitive, i.e. Orb1(G) = fV g. A nonempty subset U � V is called aG-block if for all g 2 G either Ug = U or Ug \ U = ;. G-blocks V and fvg for v 2 Vare called trivial. If each G-block is trivial, then G is called primitive. Otherwise, it iscalled imprimitive.To each G-block U we associate a G-invariant equivalence E = E(U) on V withV=E = fUg : g 2 Gg. Denote by GE = (GE ; V=E)the image of G with respect to the natural surjection V ! V=E.2.2. Let V be a linear space over a �eld F . As usual we denote by GL(V ) the group ofall non-degenerate linear transformations of V , by T (V ) the group of all translations of Vand by AGL(V ) = GL(V )T (V ) = T (V )GL(V ) the group of all a�ne transformationsof V . Sometimes we will view these groups as subgroups of Sym(V ).4



Let � � GL(V ) be an irreducible linear group over V . A linear subspace U � V iscalled a �-block if V = XUg; g2�Ug (1)and the sum is direct. The group � is called primitive (as a linear group) if each �-blockis trivial, i.e. coincides with V . Otherwise, it is called imprimitive.For a �-block U set V=E = fUg : g 2 �g where E = E(U) is the decomposition (1).There is a natural group homomorphism from � to Sym(V=E) mapping h 2 � to thepermutation Ug 7! Ugh; g 2 �. Let us denote its image by �E . We also associate to Ua linear group �U � GL(U) consisting of all g 2 � for which Ug = U .3 Wreath product and its properties3.1. Let G be a group and K = (K;X) be a permutation group. SetG o K = f(fgxgx2X; k) : gx 2 G; k 2 Kg:Then the multiplication given by(fgxg; k)(fg0xg; k0) = (fgxg0xkg; kk0)turns the set G o K into a group called the wreath product of G and K. It is easy to seethat it is isomorphic to the semidirect product of the groups GX and K with respect tothe action of K on GX by permutations of coordinates. The action of K on X inducesa natural action of G o K on X with kernel GX .3.2. Let G = (G;V ) be a permutation group. There are two natural actions of thewreath product G o K on the sets V �X and V X de�ned as follows.The imprimitive action is given by(v; x)(fgxg;k) = (vgx; xk); v 2 V; x 2 Xand de�nes a permutation group (G o K; V � X) denoted by G # K. The name \im-primitive" is explained by the fact that if G is a transitive group, E is a G-invariantequivalence on V and U 2 V=E, then there exists an imbedding G ,!' GU # GE for asuitable bijection ' = 'U from V on U � V=E. This bijection 'U can be e�cientlyconstructed but is not uniquely determined.The primitive action is given byfvxg(fgxg;k) = fvgxk�1xk�1 g; v 2 V; x 2 Xand de�nes a permutation group (G o K; V X) denoted by G " K. If G is primitive, non-cyclic and K is transitive, then G " K is primitive (see [4]), which explains the name\primitive".3.3. Let V be a linear space and � � GL(V ) be a group. Then the group � o Kcan be viewed as a subgroup of GL(V X) where V X = �x2XV . If � is an irreduciblelinear group, U is a �-block and E = E(U) is the decomposition (1), then there existsan imbedding � ,!' �U o �E for a suitable linear isomorphism ' = 'U from V on UV=E.5



This isomorphism 'U can be e�ciently constructed but is not uniquely determined. Itis worth noting that to each linear group � � GL(V ) one can associate a permutationgroup (�; V ) de�ned by a natural injection of GL(V ) in Sym(V ), so that(� o K; V X) = (�; V ) " K: (2)3.4. In the following statement we give the properties of the permutation groupoperations related to 2-closure.Proposition 3.1 Given permutation groups G1, G2, G = (G;V ) and K = (K;X) thefollowing statements hold:(1) (G1 + G2)(2) = G(2)1 + G(2)2 ;(2) (G1 � G2)(2) = G(2)1 � G(2)2 ;(3) (G # K)(2) = G(2) # K(2);(4) (G " K)(2) � G(2) " K(2) if G(2) 6= Sym(V ).Proof. Since the �rst three statements can be treated in a similar way, we will proveonly the third one. It is easy to see that the 2-orbits of the groups in the both sidesof (3) coincide. So G(2) # K(2) � (G # K)(2). On the other hand,(G # K)(2) � Sym(V ) # Sym(X):Let (fgxg; k) 2 (G # K)(2). Then this permutation stabilizes all binary relations onV �X of the form (JV ; S); S 2 Orb2(K) and (R; IX); R 2 Orb2(G), where JV = V �Vand IX = f(x; x) : x 2 Xg. This implies k 2 K(2) and gx 2 G(2) for all x, whichcompletes the proof of (3).We start the proof of (4) with some constructions. For x1; x2 2 X set�(x1; x2) = f(fvxg; fv0xg) : (vx1; v0x1) 2 R1; (vx2; v0x2) 2 R2; vx = v0x for x 62 fx1; x2ggwhere R1; R2 2 Orb2(G), R1 6= R2, R1; R2 � V 2 n IV . (The existence of R1 and R2follows from the hypothesis.) The de�nition implies that�(x1; x2)(fgxg;k) = �(xk1; xk2); k 2 Sym(X): (3)Besides, �(x1; x2) \�(x01; x02) = ;; if (x1; x2) 6= (x01; x02): (4)For S 2 Orb2(K) set �(S) = [(x1;x2)2S�(x1; x2):It follows from (3) that �(S) is a union of 2-orbits of G " K and �(Sk) = �(S)(fgxg;k)for all gx 2 G, k 2 K. Moreover, the mapping S 7! �(S) is a bijection by (4).Now we prove the fourth statement. Since G " K � Sym(V ) " Sym(X) and thelast permutation group is 2-closed by [4], we have (G " K)(2) � Sym(V ) " Sym(X).Let (fgxg; k) stabilize each 2-orbit of G " K where gx 2 Sym(V ), k 2 Sym(X). Then�(S) = �(Sk) = �(S)(fgxg;k)6



for all S 2 Orb2(K) (see above). By the injectivity of the mapping S 7! �(S) weconclude that S = Sk, i.e. k 2 K(2). Finally, since the set fRgx2X � V X � V X is a2-orbit of G " K for all R 2 Orb2(G), by the de�nition of the action we have Rgx = Rfor all R and x. So gx 2 G(2) for all x 2 X.Remark 3.2 The inverse inclusion in (4) is not always true. A counterexample is givenby G = 1V and an arbitrary K with K 6= K(2) and #X not more than n.Corollary 3.3 If the permutation groups G1, G2, G, K are 2-closed, then so are G1+G2,G1 � G2, G # K and for G 6= Sym(V ) so is also G " K.3.5. Below we mainly deal with groups of odd order called for brevity odd groups.By the Feit-Thompson theorem they are solvable. The class of odd permutation groupsis closed with respect to taking direct sums and direct and wreath products. It wasproved in [11] that the k-closure of an odd permutation group is also odd for k � 2.Thus the condition of statement (4) of Proposition 3.1 is satis�ed for such a group.4 Odd primitive permutation groups4.1. All facts cited in this subsection can be found for instance in [9]. Let G = (G;V )be a solvable primitive permutation group. Then G has a uniquely determined normalsubgroup H isomorphic to an elementary Abelian p-group of order pd for some prime p.The permutation group H = (H;V ) is regular, i.e., transitive with Hv = 1V . Inparticular, n = #H = pd.For each v 2 V the set V can be endowed with the structure of a linear spaceover GF(p) with zero v so that Gv can be viewed as an irreducible linear group on V .Moreover, G = GvH � AGL(V ); H = T (V ): (5)Below we study G depending on the primitivity or imprimitivity of Gv as a linear group.4.2. Let � � GL(V ) be an irreducible linear group and U be a �-block. SetX = V=Ewhere E is the decomposition (1). For each U 0 2 X choose g 2 � with Ug = U . Then'0 = g�1jU 0 is a linear isomorphism from U 0 on U . Collecting all '0 we obtain a linearisomorphism 'U : V ! UX such that � ,!' �U o �E (see [9]).Proposition 4.1 Let G = (G;V ) be a solvable primitive permutation group and U be aGv-block, v 2 V . Then the bijection ' = 'U produces an imbedding G ,!' GU " K withK = GEv where 'U and E are as above for � = Gv.Proof. Since '(v) = (v; : : : ; v), we have by (2)(GU " K)'(v) = (GU)v " K = (Gv)U " K = ((Gv)U o K; UX):By the de�nition of ' this gives the imbedding Gv ,!'(GU " K)'(v). On the other hand,T (V )' = T (UX) = T (U)X. Thus the required statement follows from (5).4.3. Let us denote by G(p; d) the group of all transformations of a �nite �eldF = GF(pd) of the formx 7! ax� + b; a; b 2 F; a 6= 0; � 2 Aut(F ):7



This group is solvable and has a uniquely determined maximal subgroup of odd order,Godd(p; d). The corresponding permutation groups are denoted by G(p; d) and Godd(p; d).The group G(p; d) is clearly 2-transitive whereas Godd(p; d) is a maximal by inclusion oddsubgroup of Sym(F ) (see [1]) and so 2-closed by 3.5. We say that a permutation groupG � Sym(V ) is cyclotomic if G ,!' G(p; d) for some bijection ' : V ! F .4.4. Here we consider primitive groups with primitive one point stabilizer.Proposition 4.2 Let G = (G;V ) be a primitive odd permutation group with primitiveGv � GL(V ), v 2 V . Then G = G(2), unless G is cyclotomic.Proof. Set G = G(2). Since G � G, G is a primitive permutation group and Gv is aprimitive linear group. On the other hand, if G is not cyclotomic, then Gv cannot beimbedded in G(p; d)0 (= �(1; pd) in notation of [8]). Then by [8, Th. 2.12] there existsU 2 Orb1(Gv) for which the permutation group (Gv; U) is regular. Since Orb1(Gv) =Orb1(Gv) and Gv � Gv, it follows that #Gv = #Gv = #U . Thus G = G.Note that if G is a cyclotomic group satisfying the hypothesis of the proposition,then Gv has a uniquely determined maximal normal Abelian subgroup A. Moreover, itis cyclic and its linear span [A] in EndGF(p)(V ) is a �nite �eld of cardinality n.4.5. In the following statement we summarize the results of the section to clarifythe logic of the main algorithm.Proposition 4.3 Let G be a primitive odd permutation group. Then at least one of thefollowing statements holds:1. G ,!H " K for some odd permutation groups H;K with H 6= G;2. G is cyclotomic;3. G is 2-closed.5 Algorithmic tools5.1. Let G = (G;V ) be a primitive solvable permutation group. Below we show how to�nd the minimal Gv-block U = U(S) containing a nonempty set S � V di�erent fromfvg in polynomial time in n. Note that Gv is an imprimitive linear group i� U(fwg) 6= Vfor some w 2 V n fvg. Moreover, within the same time one can �nd the set V=E whereE = E(U) is the decomposition (1) and the permutation group (Gv)E. According to [6]we have #G � n4, so the permutation group GU can be found within the same time byexaustive search.Let us describe how to �nd the minimal �-block U(S) where � � GL(V ) is anirreducible linear group and V is a linear space over a �eld F . For recursion purpose wede�ne BLOCK(�; L;M) to be the minimal �-block containing L where � is a generatingset of �, L 6= f0g is a subspace of V and M is a nonempty subset of � such thatLM = Pg2M Lg is a direct sum. In this notation U(S) = BLOCK(�; hSi; f1g) wherehSi is the linear span of S. It is easy to see that the following procedure correctly �ndsBLOCK(�; L;M) and can be implemented in time polynomial in #� and dimF (V ).8



BLOCKStep 1. If LM = V , then output L.Step 2. If there exists g 2 M and h 2 � such that LM[fghg = LM + Lgh is a directsum, then output BLOCK(�; L;M [ fghg).Step 3. Choose g 2 M and h 2 � such that Lgh 6� LM . Output BLOCK(�; L0; f1g)where L0 = L +Pg02M 0 Lg0h�1g�1 with M 0 = fg0 2M : Lgh \ LM 6= Lgh \ LMnfg0gg.5.2. Here we construct in polynomial time an explicit imbedding (if it exists) of aprimitive solvable permutation group in the group of all semilinear a�ne tranformationsof the corresponding �nite �eld. IMBEDInput: a primitive solvable group G = (G;V ) with n = pd and primitive Gv � GL(V ),v 2 V .Output: \G is not cyclotomic" or a bijection ' : V ! GF(pd) giving an imbeddingG ,!' G(p; d).Step 1. By exaustive search �nd a maximal by inclusion normal cyclic subgroup Aof Gv. If it is not uniquely determined or #K 6= n where K = [A] � EndGF(p)(V ) is thespan of A, then output \G is not cyclotomic".Step 2. Choose w 2 V n fvg and output ' =  �1 where a bijection  : K ! V is givenby x 7! x(w). (In fact, K �= GF(pd) and '(0) = v, '(1) = w.)Claim. The algorithm IMBED is correctly de�ned and runs in time polynomialin n.Proof. The time upper bound is clear from #G � n4 (see [6]). If the group Gappears as an input of Step 2, then it is cyclotomic by [9, x19.1 Cor. 2] and so ' is therequired bijection. This proves the correctness of the algorithm for a non-cyclotomic Gand after taking into account the end of 4.4 also for a cyclotomic one.Remark. If G is an odd cyclotomic group, then the bijection ' produces the imbed-ding G ,!' Godd(p; d).5.3. The following construction is the basic auxiliary tool of the main algorithm.Let G = (G;V ) and G0 = (G0; V 0) are permutation groups and ' : V ! V 0 is a bijection.Set CLOSURE(G;G0; ') = ((G')(2) \ G0)'�1:Claim. If G0 is solvable, then the group CLOSURE(G;G0; ') can be found in timepolynomial in n.Proof. It su�ces to assume that V = V 0 and ' = idV . Denote by � the edge coloredgraph with V as a vertex set, V � V as an edge set and Orb2(G) as the set of coloredclasses. Then clearly G(2) = Aut(�). Since the group G0 is solvable, the claim followsfrom [3, Cor. 3.6]. 9



6 Proof of Theorem 1.1We start with describing the algorithm.MAIN ALGORITHMInput: an odd permutation group G = (G;V ).Output: the permutation group G(2).Step 1. If G is intransitive and U 2 Orb1(G), then outputCLOSURE(G; (GU)(2) + (GV nU)(2); ')where (GU)(2) and (GV nU)(2) are found recursively and ' : V ! U + (V nU) is a naturalbijection.Step 2. If G is imprimitive and U is a nontrivial G-block, then outputCLOSURE(G; (GU)(2) # (GE)(2); 'U)where (GU)(2) and (GE)(2) are found recursively, E = E(U) is the equivalence from 2.1and 'U : V ! U � V=E is the bijection from 3.2.Step 3. If G is primitive, Gv � GL(V ) is imprimitive and U is a nontrivial Gv-block(see 5.1), then output CLOSURE(G; (GU)(2) " (GEv )(2); 'U )where (GU)(2) and (GEv )(2) are found recursively, E = E(U) is the decomposition (1) (see2.2) and 'U : V ! UV=E is the bijection from 4.2.Step 4. If G is cyclotomic and ' : V ! GF(pd) is the bijection found by the algorithmIMBED, then output CLOSURE(G;Godd(p; d); '):Step 5. Output G.To prove the correctness of the algorithm it su�ces to check that the output of eachits step coincides with G(2). For Step 5 it follows from Proposition 4.2. For Steps 1-4the statement is easily deduced from the fact that the second argument of CLOSUREis a 2-closed group containing G'. The last is the consequence of Corollary 3.3 (Steps1-3) and subsection 4.3 (Step 4).To estimate the running time of the algorithm we note that the number of recursivecalls is polynomial in n. Besides, since the 2-closure of an odd group is also odd, eachcomputation of CLOSURE throughout the algorithm can be done in time nO(1) by Claimof 5.3. Finally, the bijections 'U and ' at Steps 2-4 can be found in time nO(1) (see 3.2,4.2, 5.2 respectively).7 DiscussionThe 2-closure problem seems to be easier than the Graph Isomorphism Problem. How-ever we do not know a polynomial-time solution to it even for solvable groups. As far10



as an arbitrary k is concerned the di�culties arise even for Abelian groups. Despite thefact that the 2-closure of an Abelian group can be found e�ciently, we cannot constructits k-closure in time depending on k polynomially. In particular, the problem of �ndingthe smallest k for which such a group is k-closed seems to be hard.It is well-known that the Graph Isomorphism Problem is polynomially reduced tothe problem of �nding the automorphism group of a graph. The natural question arises:what knowledge of the automorphism group could help to �nd it? More exactly, westate the following problem:Problem. Given a colored graph � and a permutation group G � Aut(�) �nd thegenerators of Aut(�).If G is the identity group, the problem is equivalent to the Graph IsomorphismProblem. If G and Aut(�) are 2-equivalent (i.e. have the same 2-orbits), we come tothe 2-closure problem, which is solved in this paper for an odd odd G. It would beinteresting to extend this result to the case when G and Aut(�) are 1-equivalent, i.e.have the same orbits. For example, if G is a regular permutation group we come to theproblem of �nding the automorphism group of the S-ring over G generated by � (as toS-rings see [10] and [4]).References[1] A. Astie, Vertex-symmetric tournaments of order n with the minimum number ofarc orbits, in: \Recent Advances Graph Theory", Academia, Praha, 1975, 17-30.[2] L. Babai, Automorphism Groups, Isomorphism, reconstruction, in: R.L. Graham,M. Gr�otschel, L.Lov�asz (eds): Handbook of combinatorics, vol. 2, Amsterdam(etc.), Elsevier (etc.), 1995, 1447-1540.[3] L. Babai, and E.M. Luks, Canonical labeling of graphs, Proc. 15th ACM STOC,(1983), 1-15.[4] I.A. Farad�zev, M.H. Klin, and M.E. Muzichuk, Cellular rings and groups of au-tomorphisms of graphs, in: I.A. Farad�zev et al. (eds): Investigations in algebraictheory of combinatorial objects, Kluwer Acad. Publ., Dordrecht, 1994, 1-152.[5] W.M. Kantor, and E.M. Luks, Computing in quotient groups, Proc. 22nd ACMSTOC, (1990), 524-534.[6] P.P. Palfy, A polynomial bound for the orders of primitive solvable groups, J. Al-gebra, 77 (1982), 127-137.[7] I. Ponomarenko, Graph Isomorphism Problem and 2-closed Permutation groups,Applicable Algebra in Engineering, Communication and Computing, 5 (1994), 9-22.[8] A. Seress, The minimal base size of primitive solvable permutation groups, appearin J. London Math. Soc.[9] D.A. Suprunenko, Matrix Groups, AMS, Providence, 1976.11
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