Two-closure of odd permutation group
in polynomial time
Sergei Evdokimov * Ilia Ponomarenko |

October, 1996

Abstract

We present a polynomial-time algorithm which constructs the 2-closure of a
permutation group of odd order.
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1 Introduction

The method of invariant relations in permutation group theory was firstly applied by
H. Wielandt in [11]. In [12] it was identified along with the theory of centralizer rings and
the character theory as one of the three basic tools for studying permutation groups. The
essence of the method is the existence for each positive integer k a Galois correspondence
between permutation groups on a finite set V and all partitions of V* (see [4]). Namely,
to each permutation group G on V we associate a partition Orb,(G) which is the partition
of V¥ into k-orbits of G, i.e. the orbits of the induced action of G on V*. On the other
hand, to each partition P of V¥ we associate its automorphism group Aut(P) consisting
by definition of all permutations of V' preserving the partition P. Denoting by > the
natural partial orders on the sets of all permutation groups on V and partitions of V*
we have

Aut(Orbi(G)) > G, Orbi(Aut(P)) > P,

which expresses the correspondence.

In the context of computational complexity theory the above correspondence leads to
two natural problems: given a partition P find Orb,(Aut(P)) and given a permutation
group G find Aut(Orb(G)). It is well-known that for k& = 2 the first of them is equivalent
to the Graph Isomorphism Problem (a modern knowledge of it can be found in [2]). In
this paper we are interested in the other problem.

According to [11] we define the k-closure G of a permutation group G to be
Aut(Orb(G)) and say that G is k-closed if G = GW . 1t is easy to see that G co-
incides with the intersection of all k-closed permutation groups on V' containing G.

k-closure problem. Given a permutation group G and a positive integer k, find
the generators of G,

The case k = 1 is trivial because the 1-closure of a permutation group G is the direct
product of symmetric groups acting on the orbits of G. Since the 2-closure problem is
reduced to the Graph Isomorphism Problem, the 2-closure of any permutation group
can be constructed in moderately exponential time (see [2]). We also mention a subex-
ponential algorithm from [3] constructing the automorphism group of a tournament
(and so solving the 2-closure problem for odd order groups) in time n21°8") where n is
the cardinality of V. It should be noted that the technique from [3] and the inclusion
G® < G® for k > 2 provide a n®™® reduction of the k-closure problem to the 2-closure
problem in the case when the group G is solvable.

The setting of the 2-closure problem appeared in [7] where a polynomial-time algo-
rithm for nilpotent permutation groups was described. It was based on the technique
of [3] mentioned above and exploited the fact that the 2-closure of a nilpotent permu-
tation group is solvable. The main obstacle to extend the result to solvable groups is
the observation that the 2-closure of a solvable group is not necessary solvable: there
are 2-transitive solvable groups. It was remarked in [7] that the next interesting case
is that of groups of odd order. This class is closed under 2-closure and by the famous
Feit-Thompson theorem consists of solvable groups. The main result of the paper is a
polynomial-time solution to the 2-closure problem in this case.

Theorem 1.1 Let G be a permutation group of odd order on V. Then the generators
of G can be found in polynomial time in the cardinality of V.



It was proved in [8] that each primitive group of odd order is 4-closed. Combining
this result and the above reduction of the k-closure problem to the 2-closure problem
we obtain by Theorem 1.1 the following statement.

Theorem 1.2 Let G be a primitive permutation group of odd order on V. Then for
k > 1 the generators of G¥) can be found in polynomial time in the cardinality of V.

Let us discuss the basic ideas of the proof. Firstly, using the standard permutation
group technique we recursively reduce the 2-closure problem for permutation groups of
odd order to that for primitive ones. Here we make use of the fact that the intransitive
action of the direct product as well as the imprimitive action of the wreath product
preserves the property “to be 2-closed”.

To manage with primitive permutation groups of odd order we make use of
Suprunenko’s theory [9]. In this case a one point stabilizer G,, v € V can be viewed
as an irreducible linear group over a prime field GF(p) for p > 2. Using the algorithm
BLOCK (see section 5) we proceed depending on the imprimitivity or primitivity of this
group. If it is imprimitive we construct an imbedding of G to the wreath product in
primitive action of two smaller permutation groups of odd order (see subsection 4.2) and
apply the recursion. This is possible since the property “to be 2-closed” is preserved by
the primitive action of the wreath product.

If G, is a primitive linear group then there are two possibilities: either G = G or g
is permutation equivalent to a subgroup of odd order of the group AGL(1, p?) consisting
of all semilinear affine transformations of GF(p?). In the first case we are done. In the
second one the algorithm IMBED (see section 5) constructs the required imbedding and
we find G using the 2-closeness of the odd part of AGL(1, p?).

The paper consists of 7 sections. In the second one we give some definitions concern-
ing permutation and linear groups. The wreath product and its actions compose the
subject of section 3. Here we prove Proposition 3.1 in which the invariance of 2-closure
with respect to these actions is stated. In section 4 we apply Suprunenko’s theory to
primitive permutation group of odd order. Some algorithmic tools and the MAIN AL-
GORITHM are described in section 5 and section 6 respectively. The latter also contains
the proof of Theorem 1.1. A brief discussion of the problems concentrating around the
k-closure problem is presented in section 7.

Notation. As usual GF(p?) denotes a finite field with p? elements (p is a prime).

Throughout the paper V denotes a finite set with n = #V elements. If £ is an
equivalence (i.e. reflexive, symmetric and transitive relation) on V, then V/E denotes
the set of all equivalence classes modulo F.

The group of all permutations of V' is denoted by Sym(V'). The unity of Sym(V') is
denoted by idy. In all our algorithms a permutation group on V will be given by a set
of at most n* generators (for this fact and the standard permutation group algorithms
see [5]).

If G is a group, then H < G means that H is a subgroup of G.



2 Permutation and linear groups

All undefined below notions concerning permutation and linear groups can be found
in [10] and [9] respectively.

2.1. Under a permutation group G = (G, V) on a set V we mean a group G with
a faithful action v — v7 of G on V. We write 1y instead of (idy,V). If H = (H,V)
is another permutation group on V. then we write H < G if H is a subgroup of GG
and the action of H is induced by that of . In particular, G < Sym(V) where
Sym(V) = (Sym(V), V). Let ¢ : V.— V' be a bijection. We say that ¢ produces an
imbedding G =, G" of G in G', if G¥ < G'. Here G¥ = (G¥, V') where GG¥ it the image
of G with respect to the isomorphism from Sym(V') on Sym(V’) induced by ¢.

For two permutation groups G, = (G, V1) and Gy = (G4, Va) we define their direct
sum and direct product by

Gi+ G = (G x G, Vi+V,), G x Gy = (G x Gy, V) x V3),

where V| + V5 is the disjoint union of Vi and V, and the actions are defined in a natural
way.
Let k be a positive integer. For a permutation group G denote by Orby(G) the set
of all orbits of the componentwise action of G on V*. Set G¥ = (G®™ V) where
GH = {geSym(V): 09 = O for all O € Orby(G)}.
This group is called the k-closure of G (see [11]). It is known that
¢ >g®>...>¢gn g

and H < G implies HF) < G for all k. The group G is called k-closed if G
Let U be a subset of V. Denote by

g.

Gv = (Gp,V), ¢"=(G".U)

the setwise stabilizer of U in G and the restriction of Gy to U respectively. If U = {v},
then we write G, instead of Gy,, and &, instead of Gy,.

Let G be transitive, i.e. Orby(G) = {V}. A nonempty subset U C V is called a
G-block if for all g € G either U9 = U or U9 NU = ). G-blocks V and {v} for v € V
are called trivial. If each G-block is trivial, then G is called primitive. Otherwise, it is
called imprimitive.

To each G-block U we associate a G-invariant equivalence £ = FE(U) on V with
V/E = {U?: g € G}. Denote by

Gt = (G, V/E)

the image of G with respect to the natural surjection V' — V/FE.
2.2. Let V be alinear space over a field F'. As usual we denote by GL(V') the group of
all non-degenerate linear transformations of V', by T'(V') the group of all translations of V'

and by AGL(V) = GL(V)T(V) = T(V) GL(V) the group of all affine transformations

of V. Sometimes we will view these groups as subgroups of Sym(V).
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Let ' < GL(V) be an irreducible linear group over V. A linear subspace U C V is

called a ['-block if
V= > U (1)
Usg, gel’

and the sum is direct. The group I' is called primitive (as a linear group) if each I'-block
is trivial, i.e. coincides with V. Otherwise, it is called imprimaitive.

For a I'-block U set V/E = {U9: g € I'} where € = E(U) is the decomposition (1).
There is a natural group homomorphism from I' to Sym(V/E) mapping h € T' to the
permutation U9 — U9, g € T'. Let us denote its image by I'*. We also associate to U
a linear group I'Y < GL(U) consisting of all g € T' for which U¢ = U.

3 Wreath product and its properties

3.1. Let (G be a group and K = (K, X) be a permutation group. Set
Gk = {({gx}xEXvk) DGz € G, ke I(}.

Then the multiplication given by

({gl’}v k)({g;}v k/) = ({gl’g;k}v kk/)

turns the set G/ { K into a group called the wreath product of G and K. 1t is easy to see
that it is isomorphic to the semidirect product of the groups G* and K with respect to
the action of K on G by permutations of coordinates. The action of K on X induces
a natural action of G} K on X with kernel G¥.

3.2. Let G = (G, V) be a permutation group. There are two natural actions of the
wreath product G 1 K on the sets V' x X and VX defined as follows.

The imprimitive action is given by
(U7x)({.g.r}7k) — (U.g.r7xk)7 v e V7 T € X

and defines a permutation group (G 1K,V x X) denoted by G | K. The name “im-
primitive” is explained by the fact that if G is a transitive group, F is a G-invariant
equivalence on V and U € V/E, then there exists an imbedding G —,GY | G¥ for a
suitable bijection ¢ = @y from V on U x V/E. This bijection ¢ can be efficiently
constructed but is not uniquely determined.

The primitive action is given by

{v,}Hoabk) = {vizk__ll ; veV, zeX
and defines a permutation group (G 1 K, V¥) denoted by G 1 K. If G is primitive, non-
cyclic and K is transitive, then G T K is primitive (see [4]), which explains the name
“primitive”.

3.3. Let V be a linear space and I' < GL(V) be a group. Then the group I' | K
can be viewed as a subgroup of GL(V?*) where VX = @,exV. If T is an irreducible
linear group, U is a I-block and & = E(U) is the decomposition (1), then there exists
an imbedding I' =, 'V 1 'Y for a suitable linear isomorphism ¢ = ¢p from V on UY/€,
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This isomorphism @ can be efficiently constructed but is not uniquely determined. It
is worth noting that to each linear group I' < GL(V') one can associate a permutation
group (I', V') defined by a natural injection of GL(V) in Sym(V), so that

(MK, VY =(T,V) T K. (2)
3.4. In the following statement we give the properties of the permutation group
operations related to 2-closure.
Proposition 3.1 Given permutation groups Gy, Go, G = (G, V) and K = (K, X) the
following statements hold:
(1) (G1+G2)® =6 +6{;
(2) (G1 x G2)® =G x G¥;
(3) (GLK)D =g® | K@,
(4) (G1K)® <GB+ KD if GB £ Sym(V).

Proof. Since the first three statements can be treated in a similar way, we will prove
only the third one. It is easy to see that the 2-orbits of the groups in the both sides
of (3) coincide. So G¥) | K®) < (G | K)@. On the other hand,

(G LK) < Sym(V) | Sym(X),

Let ({g.}, k) € (G | K)@. Then this permutation stabilizes all binary relations on
V x X of the form (Jy,S), S € Orby(K) and (R, Ix), R € Orby(G), where Jy =V x V
and Iy = {(z,z) : = € X}. This implies k € K® and g, € G2 for all x, which
completes the proof of (3).

We start the proof of (4) with some constructions. For a1, x5 € X set

A(xlva) = {({Ul’}v{v;}) : (U1’17U;:1) S Rlv (Ul’zvvgcQ) S RQ? U = U;, for x € {1}171}2}}

where Ry, Ry € Orby(G), Ry # Rz, Ry, Ry C V?\ Iy. (The existence of Ry and R,
follows from the hypothesis.) The definition implies that

Ay, )0 = Aat,ah), k€ Sym(X), (3)

Besides,
Ay, x2) VA2, 25) =0, if (21, 22) # (2, 25). (4)
For S € Orby(K) set
A(S) = U A(xy, x2).
(z1,@2)€ES

It follows from (3) that A(S) is a union of 2-orbits of G 1 K and A(S*) = A(S){Hs=h)
for all g, € G, k € K. Moreover, the mapping S — A(S) is a bijection by (4).

Now we prove the fourth statement. Since G 1T K < Sym(V) 1 Sym(X) and the
last permutation group is 2-closed by [4], we have (G T K)® < Sym(V) 1 Sym(X).
Let ({g.}, k) stabilize each 2-orbit of G 1 K where g, € Sym(V), k € Sym(X). Then

A(S) = A(SF) = A(S)Ho=hh)
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for all S € Orby(K) (see above). By the injectivity of the mapping S +— A(S) we
conclude that S = S* ie. k € K®. Finally, since the set {R},ex C V¥ x V¥ is a
2-orbit of G T K for all R € Orby(G), by the definition of the action we have R = R
for all R and z. So ¢, € G forall € X .m

Remark 3.2 The inverse inclusion in (4) is not always true. A counterexample is given
by G = 1y and an arbitrary K with K # K® and #X not more than n.

Corollary 3.3 I[f the permutation groups Gi, Go, G, K are 2-closed, then so are Gy + G,
G1 X Gs, G LK and for G # Sym(V) so is also G T K .m

3.5. Below we mainly deal with groups of odd order called for brevity odd groups.
By the Feit-Thompson theorem they are solvable. The class of odd permutation groups
is closed with respect to taking direct sums and direct and wreath products. It was
proved in [11] that the k-closure of an odd permutation group is also odd for k > 2.
Thus the condition of statement (4) of Proposition 3.1 is satisfied for such a group.

4 Odd primitive permutation groups

4.1. All facts cited in this subsection can be found for instance in [9]. Let G = (G, V)
be a solvable primitive permutation group. Then G has a uniquely determined normal
subgroup H isomorphic to an elementary Abelian p-group of order p? for some prime p.
The permutation group H = (H,V) is regular, i.e., transitive with H, = 1v. In
particular, n = #H = p?.

For each v € V the set V can be endowed with the structure of a linear space
over GF(p) with zero v so that (G, can be viewed as an irreducible linear group on V.
Moreover,

G=G,H<AGLYV), H=T(V) (5)

Below we study G depending on the primitivity or imprimitivity of (¢, as a linear group.

4.2. Let I' < GL(V) be an irreducible linear group and U be a I'-block. Set X = V/&
where £ is the decomposition (1). For each U’ € X choose g € I' with U9 = U. Then
¢ = g7 'y is a linear isomorphism from U’ on U. Collecting all ¢/ we obtain a linear
isomorphism ¢rr : V' — UX such that T, TV ) T¢ (see [9]).

Proposition 4.1 Let G = (G, V) be a solvable primitive permutation group and U be a
Go-block, v € V. Then the bijection ¢ = py produces an imbedding G —, GV 1 K with
K = G where oy and € are as above for I' = G,,.

Proof. Since p(v) = (v,...,v), we have by (2)
GV 1 K)oy = (6")0 1K =(G,)" t K =((G,) 1K, U%).

By the definition of ¢ this gives the imbedding G\, =,(GY 1 K),(,). On the other hand,
T(V)? =T(UX)=T(U)X. Thus the required statement follows from (5).m

4.3. Let us denote by G(p,d) the group of all transformations of a finite field
F = GF(p?) of the form

i ax’ +b, abeF, a#0, o€ Aut(F).



This group is solvable and has a uniquely determined maximal subgroup of odd order,
Gload(p, d). The corresponding permutation groups are denoted by G(p, d) and Goq4(p, d).
The group G(p,d) is clearly 2-transitive whereas G,q4(p, d) is a maximal by inclusion odd
subgroup of Sym(F') (see [1]) and so 2-closed by 3.5. We say that a permutation group
G < Sym(V) is cyclotomic if G —, G(p,d) for some bijection ¢ : V — F.

4.4. Here we consider primitive groups with primitive one point stabilizer.

Proposition 4.2 Let G = (G, V) be a primitive odd permutation group with primitive
Gy, <GL(V),ve V. Then G = g<2>, unless G is cyclotomic.

Proof. Set ¢ = G, Since G > G, G is a primitive permutation group and G, is a
primitive linear group. On the other hand, if G is not cyclotomic, then &, cannot be
imbedded in G(p,d)o (= ['(1,p%) in notation of [8]). Then by [8, Th. 2.12] there exists
U € Orby(G,) for which the permutation group (G,,U) is regular. Since Orb,(G,) =
Orby(G,) and G, < G,, it follows that #G, = #G, = #U. Thus G =G.m

Note that if G is a cyclotomic group satisfying the hypothesis of the proposition,
then (G, has a uniquely determined maximal normal Abelian subgroup A. Moreover, it
is cyclic and its linear span [A] in Endgp(y) (V') is a finite field of cardinality n.

4.5. In the following statement we summarize the results of the section to clarify
the logic of the main algorithm.

Proposition 4.3 Let G be a primitive odd permutation group. Then at least one of the
following statements holds:

1. G—=H T K for some odd permutation groups H,K with H # G;
2. G is cyclotomic;

3. G is 2-closed.

5 Algorithmic tools

5.1. Let G = (G, V) be a primitive solvable permutation group. Below we show how to
find the minimal G/,-block U = U(S) containing a nonempty set S C V different from
{v} in polynomial time in n. Note that (7, is an imprimitive linear group iff U({w}) # V
for some w € V' \ {v}. Moreover, within the same time one can find the set V/E where
£ = &(U) is the decomposition (1) and the permutation group ((,)°. According to [6]
we have #G' < n*, so the permutation group GY can be found within the same time by
exaustive search.

Let us describe how to find the minimal I'-block U(S) where I' < GL(V) is an
irreducible linear group and V' is a linear space over a field F'. For recursion purpose we
define BLOCK(A, L, M) to be the minimal I'-block containing L where A is a generating
set of I', L # {0} is a subspace of V and M is a nonempty subset of I' such that
LM =3y L9 is a direct sum. In this notation U(S) = BLOCK(A,(S),{1}) where
(S) is the linear span of S. It is easy to see that the following procedure correctly finds
BLOCK(A, L, M) and can be implemented in time polynomial in #A and dimg(V).



BLOCK

Step 1. If LM = V| then output L.

Step 2. If there exists ¢ € M and h € A such that LMY = [M 4 [9% s a direct
sum, then output BLOCK(A, L, M U {gh}).

Step 3. Choose g € M and h € A such that L9 ¢ LM. Output BLOCK(A, L', {1})
where L' = L+ S eap L9797 with M' = {¢ € M : L"n LM #£ [9h 0 M9}, u

5.2. Here we construct in polynomial time an explicit imbedding (if it exists) of a
primitive solvable permutation group in the group of all semilinear affine tranformations
of the corresponding finite field.

IMBED

Input: a primitive solvable group G = (G, V) with n = p? and primitive G, < GL(V),
velV.

Output: “G is not cyclotomic” or a bijection ¢ : V — GF(p?) giving an imbedding
g %@ g(p7 d)

Step 1. By exaustive search find a maximal by inclusion normal cyclic subgroup A
of Gy. If it is not uniquely determined or # K # n where K = [A] C Endgp(,) (V) is the
span of A, then output “G is not cyclotomic”.

Step 2. Choose w € V' \ {v} and output ¢ = )= where a bijection ¢ : K — V is given
by x — z(w). (In fact, K = GF(p?) and »(0) = v, (1) = w.)

Claim. The algorithm IMBED is correctly defined and runs in time polynomial
in n.

Proof. The time upper bound is clear from #G < n* (see [6]). If the group G
appears as an input of Step 2, then it is cyclotomic by [9, §19.1 Cor. 2] and so ¢ is the
required bijection. This proves the correctness of the algorithm for a non-cyclotomic G
and after taking into account the end of 4.4 also for a cyclotomic one.m

Remark. If G is an odd cyclotomic group, then the bijection ¢ produces the imbed-
dmg g ;}@ godd(p, d)

5.3. The following construction is the basic auxiliary tool of the main algorithm.
Let G = (G, V) and G' = (G, V') are permutation groups and ¢ : V' — V' is a bijection.
Set

CLOSURE(G,G',¢) = (¢9)P ng)¢ .

Claim. If ¢ is solvable, then the group CLOSURE(G,G’, ) can be found in time
polynomial in n.

Proof. It suffices to assume that V = V'’ and ¢ = idy. Denote by I' the edge colored
graph with V' as a vertex set, V x V as an edge set and Orby(G) as the set of colored

classes. Then clearly G2 = Aut(T'). Since the group G’ is solvable, the claim follows
from [3, Cor. 3.6].m



6 Proof of Theorem 1.1

We start with describing the algorithm.
MAIN ALGORITHM
Input: an odd permutation group G = (G, V).
Output: the permutation group G,
Step 1. If G is intransitive and U € Orby(G), then output

CLOSURE(G, (V)@ + (¢V\")®), o)

where (QU)(Q) and (QV\U)(Q) are found recursively and ¢ : V. — U + (V' \ U) is a natural
bijection.

Step 2. If G is imprimitive and U is a nontrivial G-block, then output

where (GV)® and (GF)@ are found recursively, £ = E(U) is the equivalence from 2.1
and @y : V — U x V/E is the bijection from 3.2.

Step 3. If G is primitive, GG, < GL(V) is imprimitive and U is a nontrivial G,-block
(see 5.1), then output

CLOSURE(G, (V) 1 (G5)D o)

where (GY)®) and (G)®? are found recursively, € = £(U) is the decomposition (1) (see
2.2) and @y : V. — UY/€ is the bijection from 4.2.

Step 4. If G is cyclotomic and ¢ : V' — GF(p?) is the bijection found by the algorithm
IMBED, then output
CLOSURE(G, Goaa(p,d), ).

Step 5. Output G.m

To prove the correctness of the algorithm it suffices to check that the output of each
its step coincides with G(). For Step 5 it follows from Proposition 4.2. For Steps 1-4
the statement is easily deduced from the fact that the second argument of CLOSURE
is a 2-closed group containing G¥. The last is the consequence of Corollary 3.3 (Steps
1-3) and subsection 4.3 (Step 4).

To estimate the running time of the algorithm we note that the number of recursive
calls is polynomial in n. Besides, since the 2-closure of an odd group is also odd, each
computation of CLOSURE throughout the algorithm can be done in time n°") by Claim
of 5.3. Finally, the bijections wrr and ¢ at Steps 2-4 can be found in time n®™ (see 3.2,
4.2, 5.2 respectively).m

7 Discussion

The 2-closure problem seems to be easier than the Graph Isomorphism Problem. How-
ever we do not know a polynomial-time solution to it even for solvable groups. As far
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as an arbitrary k is concerned the difficulties arise even for Abelian groups. Despite the
fact that the 2-closure of an Abelian group can be found efficiently, we cannot construct
its k-closure in time depending on k polynomially. In particular, the problem of finding
the smallest £ for which such a group is k-closed seems to be hard.

It is well-known that the Graph Isomorphism Problem is polynomially reduced to
the problem of finding the automorphism group of a graph. The natural question arises:
what knowledge of the automorphism group could help to find it? More exactly, we
state the following problem:

Problem. Given a colored graph I' and a permutation group G < Aut(l') find the
generators of Aut(l).

If G is the identity group, the problem is equivalent to the Graph Isomorphism
Problem. If G and Aut(I') are 2-equivalent (i.e. have the same 2-orbits), we come to
the 2-closure problem, which is solved in this paper for an odd odd G. It would be
interesting to extend this result to the case when G and Aut(I') are l-equivalent, i.e.
have the same orbits. For example, if G is a regular permutation group we come to the
problem of finding the automorphism group of the S-ring over G generated by I' (as to
S-rings see [10] and [4]).
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