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1 IntroductionThe starting point of this paper is Birkho�'s theorem on doubly stochastic matrices:each doubly stochastic matrix is a convex combination of permutation matrices. Thistheorem establishes the following property of the symmetric group: the extreme pointsof the polytope of doubly stochastic matrices contained in the enveloping algebra of itspermutation representation coincide with the permutation matrices corresponding tothe elements of the group. We call a permutation group compact if it has the propertycited above. The characterization of compact groups is the essence of a permutationgroup approach to the generalization of Birkho�'s theorem. Note that a compact groupis necessarily 2-closed, i.e. coincides with the maximal subgroup of the symmetric grouphaving the same 2-orbits.Another, more combinatorial approach to generalize Birkho�'s theoremwas proposedin [11]. Namely, let us associate to an undirected graph � the set DS(�) of all doublystochastic matrices commuting with its adjacency matrix. Then Birkho�'s theoremstates in fact that for complete graph � the following equality holds:DS(�) = Conv(Aut(�)); (1)i.e. the polytope DS(�) coincides with the convex hull of the permutation matricescorresponding to the automorphisms of �. The graphs for which the last equality holdswere called Birkho�'s graphs in [13] and compact ones in [12]. An important property ofcompact graphs consists in the fact that their isomorphism can be tested in polynomialtime by a variant of re�nement procedure.Comparing the two approaches one can observe that the notion of compact graphis too restrictive. Indeed, there is a simple procedure discovered by B. Weisfeiler andA. Lehman (see [14]) which corresponds to a graph � a coherent con�guration C =C(�) such that Aut(C) = Aut(�) (as to coherent con�gurations see [7]). Moreover,DS(C) � DS(�) where DS(C) is the set of all doubly stochastic matrices centralizingthe adjacency algebra of C. Keeping in mind the combinatorial approach one can replacethe class of compact graphs by a larger class of weakly compact ones, i.e. those for whichthe condition (1) is satis�ed with � replaced by C. Note that the isomorphism of weaklycompact graphs can still be tested in polynomial time (see section 6). It can be shownthat the automorphism group of a weakly compact graph is compact. On the other hand,there exist compact groups (for instance, some regular ones) which can not be obtainedin such a way. This suggests to consider the class of compact coherent con�gurations(compact cellular algebras) as the largest class of compact combinatorial objects.Let us denote by MatV the full matrix algebra over C on a �nite set V , i.e. the setof all complex matrices whose rows and columns are indexed by the elements of V . Asubalgebra W of MatV is called cellular (coherent) if it is closed under the Hadamard(componentwise) multiplication, the Hermitian conjugation and contains the identitymatrix IV and the all one matrix JV . Each cellular algebra contains a uniquely deter-mined linear base consisting of f0,1g-matrices summing to JV , which enables to view itas the adjacency algebra of a coherent con�guration.The automorphism group Aut(W ) of the cellular algebra W consists by de�nition ofall permutations g of V such that the permutation matrix corresponding to g central-2



izes W . We say that W is compact ifDS(W ) = Conv(Aut(W ))where DS(W ) is the polytope of all doubly stochastic matrices centralizing W . Asan example of a compact algebra one can take a semiregular one, i.e. the centralizeralgebra of semiregular permutation group (theorem 3.3). It turns out (theorem 3.4) thata compact cellular algebra is necessarily Schurian, i.e. coincides with the centralizeralgebra of its automorphism group. Thus the two approaches to the generalization ofBirkho�'s theorem merge. Namely, there is a 1-1 correspondenceW 7! Aut(W ); G 7! Z(G)between compact cellular algebras and compact permutation groups where Z(G) is thecentralizer algebra of the group G.The main purpose of the paper is to study the properties of compact algebras andgroups from both theoretical and algorithmic points of view. We start with studyingthe structure of a compact cellular algebra by means of combinatorial operations suchas �xation, factorization and restriction. In the permutation group language the �rstof these results states that a setwise stabilizer of a compact group is also compact(theorem 3.7). The second result provides the compactness of the induced action of acompact permutation group on the orbits of each its normal subgroup (theorem 3.8). Itis interesting that a transitive constituent of a compact group is not necessarily compact.This follows from the fact that a permutation group having a faithful regular orbit iscompact (theorem 3.10).In section 4 we are interested in the algebraic operations preserving compactness.In particular, we show that the direct and wreath products of cellular algebras arecompact if and only if each its operand is compact (theorem 4.1 and theorem 4.2). Thecase of the tensor product proved to be more complicated. We give an example of twocompact cellular algebras the tensor product of which is not compact. However, thetensor product of a compact algebra and a semiregular one is compact (theorem 4.3).The technique developed in sections 3 and 4 is applied to the characterization ofcompact objects in various families of cellular algebras and permutation groups (sec-tion 5). We prove (theorem 5.1) that each permutation group having a regular Abeliansubgroup of index 2 is compact. This generalizes a result from [10] which in our termsmeans that dihedral groups are compact. We completely describe compact adjacencyalgebras of Johnson's and Hamming's schemes (theorem 5.3 and theorem 5.5). In par-ticular, it turns out that Petersen's graph is not compact (corollary 5.4), which answersa question from [6]. Finally we completely identify compact graphs and algebras of thePlatonic solids (theorem 5.7) and characterize compact Frobenius groups (theorem 5.8).The last implies that the minimum degree of a non-compact cellular algebra equals 7.Section 6 is devoted to algorithmic aspects of compact algebras and groups. Wepresent a polynomial-time algorithm which constructs the automorphism group and acanonical labeling of a compact cellular algebra (theorem 6.2). A key point here isthe description of the k-orbits of a compact group by means of the Weisfeiler-Lehmanalgorithm. 3



Some open problems concerning compact algebras and groups are discussed in sec-tion 7.Notation. As usual by C and R we denote the complex �eld and the real �eldrespectively.Throughout the paper V denotes a �nite set with n = jV j elements. By relationson V me mean subsets of V � V . If E is an equivalence (i.e. re
exive, symmetric andtransitive relation) on V , then V=E denotes the set of all equivalence classes modulo E.The algebra of all complex matrices whose rows and columns are indexed by theelements of V is denoted by MatV , its unity (the identity matrix) by IV and the allone matrix by JV . For U � V the algebra MatU is in a natural way identi�ed with asubalgebra of MatV .For U;U 0 � V we denote by JU;U 0 the f0,1g-matrix with 1's exactly at the placesbelonging to U � U 0.If A 2 MatV , then AT denotes the transpose and A� the Hermitian conjugate matrix.If ' : V ! V 0 is a bijection, then A' denotes the image of a matrix A with respectto the natural algebra isomorphism from MatV to MatV 0 induced by '.The group of all permutations of V is denoted by Sym(V ). If g 2 Sym(V ), then Pgdenotes the permutation matrix corresponding to g. For S � Sym(V ) we setPS = fPg : g 2 Sgand denote by Conv(S) the convex hull of PS .For integers l;m with l � m by [l;m] we denote the set fl; l+ 1; : : : ;mg.2 Cellular algebrasAll unde�ned below terms concerning permutation groups can be found in [16].2.1. By a cellular algebra on V we mean a subalgebra W of MatV for which thefollowing conditions are satis�ed:(C1) IV ; JV 2 W ;(C2) 8A 2 W : A� 2 W ;(C3) 8A;B 2 W : A �B 2 W ,where A �B is the Hadamard (componentwise) product of matrices A and B. It followsfrom (C2) that W is a semisimple algebra over C.Each cellular algebra W has a uniquely determined linear basis R = R(W ) (thestandard basis of W ) consisting of f0,1g-matrices such thatXR2RR = JV and R 2 R , R� 2 R:Set Cel(W ) = fU � V : IU 2 Rg. Each element of Cel(W ) is called a cell of W . It iseasy to see that V = [U2Cel(W )U (disjoint union).4



The algebra W is called homogeneous if jCel(W )j = 1.For U;U 0 2 Cel(W ) set RU;U 0 = fR 2 R : R � JU;U 0 = Rg. ThenR = [U;U 02Cel(W )RU;U 0 (disjoint union).Moreover, for R 2 RU;U 0 the number of 1's in the uth row (resp. vth column) of thematrix R does not depend on the choice of u 2 U (resp. v 2 U 0). This number isdenoted by dout(R) (resp. din(R)).For each cell U 2 Cel(W ) we view the subalgebra IUWIU of W as a cellular algebraon U . It is denoted by WU and called the homogeneous component of W correspondingto U . The basis matrices of WU are in 1-1 correspondence to the matrices of RU;U .2.2. A large class of cellular algebras comes from permutation groups as follows(see [14]). Let G � Sym(V ) be a permutation group. Then its centralizer algebraZ(G) � MatV is a cellular algebra on V . Its standard basis consists of the adjacencymatrices of the 2-orbits of G. In particular, the cells of Z(G) coincide with the orbitsof G.A cellular algebra W is called semiregular if din(R) = dout(R) = 1 for all R 2 R(W ).A homogeneous semiregular algebra is called regular. It is easy to see that semiregular(regular) algebras coincide with centralizer algebras of semiregular (regular) permutationgroups.Two cellular algebras W and W 0 on V and V 0 are called isomorphic if W ' = W 0 (assets) for some bijection ' : V ! V 0 called an isomorphism from W to W 0. Clearly, 'induces a bijection between the sets R(W ) and R(W 0). The group of all isomorphismsfrom W to itself contains a normal subgroupAut(W ) = f' 2 Sym(V )j A' = A; A 2 Wgcalled the automorphism group of W . If W = Z(Aut(W )), then W is called Schurian.It follows from [16] that there exist cellular algebras which are not Schurian (see also[3]).2.3. Let E be an equivalence on V . Set IE = PU2V=E JU=jU j. It is easy to see thatthe linear map iE : MatV=E ! MatV ; eU;U 0 7! 1qjU jjU 0jJU;U 0 (2)where eU;U 0 is a matrix unit of MatV=E, is an injective ring homomorphism preservingthe orthogonality with respect to the Hadamard multiplication, iE(IV=E) = IE andIm(iE) = IE MatV IE.Let now W be a cellular algebra on V and E be an equivalence of W , i.e. IE 2 W .Set W=E = i�1E (IEWIE):Then W=E is a subalgebra of MatV=E isomorphic to IEWIE as a matrix algebra. Itcan be proved that W=E is really a cellular algebra on V=E called the factoralgebra ofthe algebra W modulo E. Moreover, its basis matrices are multiples of the matricesi�1E (IERIE) with R 2 R(W ). 5



Since the matrix IE centralizes PAut(W ), each g 2 Aut(W ) induces a permutation ofthe set V=E which clearly belongs to Aut(W=E). This de�nes a group homomorphism'E : Aut(W )! Aut(W=E); (3)the kernel of which coincides with the subgroup of Aut(W ) leaving each class of E �xed.An equivalence E of W is called central if IEA = AIE for all A 2 W . It is easy to seethat in this case each class of E is contained in a cell of W . The factoralgebras moduloequivalences satisfying the last condition were introduced and studied in [14].2.4. The set of all cellular algebras on V is put in order by inclusion. The algebraMatV is obviously the greatest element of the set. The least one is the simplex S(V ),i.e. a cellular algebra with two basis matrices IV and JV � IV . We write W � W 0 if Wis a subalgebra of W 0.GivenX � MatV , the cellular closure of X, i.e. the smallest cellular algebra contain-ing X, is denoted by [X]. If W is a cellular algebra on V , then W [X] denotes [W [X].We use notation Wv and WE if X = fIfvgg, v 2 V , and X = fIUgU2V=E where E isan equivalence on V respectively. Finally, we write [A] and W [A] instead of [fAg] andW [fAg].3 Compactness3.1. For an arbitrary set X � MatV let us denote by DS(X) the set of all doublystochastic matrices of MatV commuting with each matrix of X.De�nition 3.1 The set X is called compact if all extreme points of DS(X) are integral.We say that X is weakly compact if the set [X] is compact.Note that the set of all integral extreme points of DS(X) coincides with the setfPg : g 2 Aut(X)g where Aut(X) = fg 2 Sym(V ) : Ag = A; A 2 Xg. So thecompactness of X means that there are no other extreme points. Certainly, if X is acellular algebra, the compactness of X is equivalent to its weak compactness.Proposition 3.2 A compact set is weakly compact.Proof. Let X � MatV be a compact set and W = [X] be its cellular closure.Then, clearly Aut(X) = Aut(W ); DS(X) � DS(W ). So DS(W ) � Conv(Aut(W ))due to the compactness of X. On the other hand, since PAut(W ) � DS(W ), we haveDS(W ) � Conv(Aut(W )), which completes the proof.An undirected graph � is called compact (weakly compact), if the set fA�g is compact(weakly compact) where A� is the adjacency matrix of �. Note that this de�nition ofcompact graph coincides with that of [12]. Proposition 3.2 shows that a compact graphis weakly compact. The converse statement is not true. A counterexample is given byany regular graph � for which [A�] = MatV where V is the vertex set of �. Neverthelessin a number of cases the weak compactness of a graph � implies its compactness. Thishappens, for instance, if [A�] coincides with the matrix algebra generated by A�. Thelast condition is clearly satis�ed for a connected distance-regular graph �.3.2. It follows from the de�nition that the study of weak compactness is reducedto the study of compact cellular algebras. The simplest example of a compact cellular6



algebra is MatV . It follows from Birkho�'s theorem on doubly stochastic matrices thatthe symplex S(V ) is also compact.Theorem 3.3 A semiregular (in particular, regular) cellular algebra is compact.Proof. The automorphism group of semiregular algebraW is a semiregular permutationgroup and the corresponding permutation matrices are pairwise orthogonal with respectto the Hadamard multiplication. Since any matrix commuting with all matrices of Wis a linear combination of these permutation matrices, the compactness of W follows.In [5] it was proved that a compact distance-regular graph is distance-transitive. Inour terms this means that the cellular algebra of a compact distance-regular graph isSchurian. We generalize this statement as follows.Theorem 3.4 A compact cellular algebra is Schurian.Proof. Let W be a cellular algebra on V . SetC(W ) = fA 2 MatV : AB = BA; B 2 Wg:According to [15] the algebra C(W ) is semisimple and C(C(W )) = W .Lemma 3.5 C(W ) is spanned by the set DS(W ).Proof. Let A be a real matrix belonging to C(W ). Then AIU = IUA for all U 2 Cel(W ),whence it follows that A is a block-diagonal matrix with blocks corresponding to thecells of W . Moreover, since A commutes with all matrices JU;U 0, U;U 0 2 Cel(W ), wesee that the row (column) sums of the matrix A coincide. So there exist �; � 2 R suchthat �A + �JW 2 DS(W ). Since the algebra W is de�ned over R, so is C(W ), whichcompletes the proof.Let now W be a compact cellular algebra. Then by lemma 3.5C(W ) = Env(Aut(W ))where in the right side the enveloping algebra of permutation group Aut(W ) stands.Taking into account that W is a semisimple algebra over C, we getW = C(C(W )) = C(Env(Aut(W ))) = Z(Aut(W )):This proves that W is Schurian.The last theorem shows that the combinatorial approach to Birkho�'s theorem givesno compact combinatorial objects di�erent from centralizer algebras of compact groups.De�nition 3.6 A permutation group G is called compact if each doubly stochastic ma-trix contained in Env(G) is a convex combination of Pg, g 2 G.It should be noted that the class of compact groups can be viewed as the largest classof permutation groups for which the analog of Birkho�'s theorem on doubly stochas-tic matrices is valid. It easily follows from the de�nition that each compact group isnecessarily 2-closed, i.e. coincides with the automorphism group of some subset of MatV .Theorem 3.4 shows that there is a 1-1 correspondence (W 7! Aut(W ); G 7! Z(G))between compact cellular algebras and compact permutation groups on V . So all the7



results of the paper can be formulated both for compact groups and compact algebras.In each case we choose the way more suitable for us.3.3. As it is shown in section 5 there are examples of non-compact cellular algebrasfor all n � 7. Each of them is an overalgebra of a simplex. So in general an overalgebraof a compact algebra is not necessarily compact. However, there is a simple way toconstruct compact overalgebras.Theorem 3.7 Let W �MatV be a compact cellular algebra. Then for each equivalenceE on V the algebra WE is also compact. In particular, the algebra W [IU] is compact forall U � V .Proof. Let A 2 DS(WE). Then A 2 DS(W ) and so by the compactness of W wehave A = Xg2Aut(W )�gPg; Xg �g = 1; �g � 0:Since A is a block-diagonal matrix whose blocks coincide with the classes of E, theinequality �g > 0 implies that g leaves �xed each class of E, i.e. g 2 Aut(WE). ThusA 2 Conv(Aut(WE)).3.4. It is easy to see that the factor of a regular cellular algebra modulo its centralequivalence is also regular and hence a compact one. This observation can be generalizedto all compact cellular algebras as follows.Theorem 3.8 Let W � MatV be a compact cellular algebra. Then for each centralequivalence E of W the factoralgebra W=E is also compact. Moreover, a natural grouphomomorphism 'E : Aut(W )! Aut(W=E) is a surjection.Proof. Let A 2 DS(W=E). Then iE(A) 2 DS(W ) where iE is the injection (2).Indeed, sinceE is a central equivalence ofW , each its class is contained in some cell ofW .Besides, A is a block-diagonal matrix with blocks corresponding to the cells of W=E.So the matrix iE(A) is also block-diagonal with blocks corresponding to the cells of W ,whence it follows that it is doubly stochastic. Finally, since iE(W=E) = IEWIE andiE(A)IE = IEiE(A) = iE(A), for any B 2 W we haveiE(A)B = iE(A)IEB = iE(A)iE( �B) = iE(A �B) == iE( �BA) = iE( �B)iE(A) = BIEiE(A) = BIE(A);where �B = i�1E (IEB) 2 W=E.It follows from the compactness of W thatiE(A) = Xg2Aut(W )�gPg; Xg �g = 1; �g � 0:Multiplying the both sides by IE and using the de�nitions of iE and 'E (see (3)) we getiE(A) =Xg �g(PgIE) =Xg �giE(P'E(g)):So by the injectivity of iE the matrix A belongs to Conv('E(Aut(W ))). This proves theboth statements of the theorem (the second one by setting A = Ph, h 2 Aut(W=E)).8



Remark 3.9 The statement of the theorem is no longer true if E is not central. Indeed,each homogeneous Schurian algebra W is isomorphic to a factoralgebra of the centralizeralgebra of the regular representation of Aut(W ). However, as we will see in section 5,there exist homogeneous Schurian algebras which are not compact.It follows from theorems 3.7 and 3.8 that if W is a compact cellular algebra andE is its central equivalence, then the algebras WE and W=E are also compact. As theexample of the icosahedron shows (see proof of theorem 5.7), the converse statement isnot true.3.5. The restriction of a cellular algebra to a cell can be viewed as some kindof factorization. The following statement shows that a homogeneous component of acompact cellular algebra is not necessarily compact (see also remark 3.9).Theorem 3.10 A permutation group having a faithful regular orbit is compact.Proof. Let G � Sym(V ) be a permutation group satisfying the hypothesis of the the-orem and W be its centralizer algebra. Then W has a cell U0 such that the algebra WU0is regular and G �= Aut(WU0). So dout(R) = 1 for all R 2 RU0;U ; U 2 Cel(W ).Let A 2 DS(W ). Then by the compactness of WU0A � JU0 = Xg02Aut(WU0) �g0Pg0 ; Xg0 �g0 = 1; �g0 � 0: (4)Let us prove that A = Xg2G�'(g)Pg; (5)where ' : G ! Aut(WU0) is the restriction isomorphism. Denote by A0 the di�erencebetween the left and the right sides of (5). Then A0 2 C(W ) and A0 � JU0 = 0 by (4).So for each U 2 Cel(W ) and R 2 RU0;U we haveRA0U = RA0 = A0R = A0U0R = 0where A0U = A0 � JU . Since dout(R) = 1, it follows that A0U = 0 for all U , i.e. A0 = 0.This proves (5).4 Operations preserving compactness4.1. Let W1 � MatV1 and W2 �MatV2 be cellular algebras. Following [14] let us de�netheir direct sum being a cellular algebra on the disjoint union of V1 and V2, byW1�W2 = [R(W1) [ R(W2)]:It is easy to see that Aut(W1�W2) is isomorphic to Aut(W1)�Aut(W2).Theorem 4.1 The cellular algebra W1�W2 is compact i� so are W1 and W2.Proof. It immediately follows from the de�nition thatDS(W1�W2) = DS(W1) + DS(W2); PAut(W1�W2) = PAut(W1) + PAut(W2)9



(as sets) and the sums are direct. So the theorem follows.Certainly, the de�nition of the direct sum and the theorem can be extended to anarbitrary number of summands.4.2. Let us de�ne the wreath product of cellular algebras W1 � MatV1, W2 �MatV2being a cellular algebra on the set V1 � V2, byW1 oW2 = [R(W1)
 IV2 [ JV1 
R(W2)]where 
 denotes the Kronecker product of matrices. It can be veri�ed that Aut(W1 oW2)is isomorphic to the wreath product of Aut(W1) and Aut(W2). For homogeneous W1and W2 our de�nition is compatible with that of [14].Let us denote by E the equivalence on V1 � V2 de�ned by the coincidence of thesecond coordinates. Then E is an equivalence of W1 oW2, the restriction of W1 oW2 toany class of E is isomorphic to W1 and(W1 oW2)=E = W2; (W1 oW2)E = W1� � � ��W1| {z }V2 times : (6)Theorem 4.2 The cellular algebra W1 oW2 is compact i� so are W1 and W2.Proof. Let algebras W1 and W2 be compact and A 2 DS(W ) where W = W1 oW2.We view A as a block matrix each block Au;v, u; v 2 V2, of which is a matrix of MatV1.Since A commutes with E, we see that the row (column) sums of the matrix Au;vcoincide. Let us denote this number by au;v and consider the matrix �A = (au;v)u;v2V2.Clearly, �A is a doubly stochastic matrix of MatV2. The condition of commuting A witheach matrix JV1 
 R, R 2 R(W2) shows that the matrix �A centralizes the algebra W2,i.e. �A 2 DS(W2). It follows from the compactness of W2 that�A = Xg2Aut(W2)�gPg; Xg �g = 1; �g � 0: (7)Let us de�ne a block matrix eA = ( eAu;v)u;v2V2 belonging to MatV1�V2 byeAu;v = � a�1u;v; if au;v 6= 0;0; otherwise.It follows from the de�nition that either eAu;v = 0 or eAu;v is a doubly stochastic matrixof MatV1. By a straightforward checking we get from (7) thatA = Xg2Aut(W2)�gAg (8)where Ag = eA� (JV1
Pg). Since each block of the matrix eA commutes with all matricesof W1, each nonzero block of Ag belongs to DS(W1), and so it is a convex combinationof the permutation matrices corresponding to the automorphisms of W1. SoAg = X�h2GV21 ��hP(�h;g); X�h ��h = 1; ��h � 0 (9)10



where G1 = Aut(W1) and (�h; g) = (fhvgv2V2; g) is the permutation of V1 � V2 given by(u; v)(�h;g) = (uhv ; vg):Since the permutation (�h; g) belongs to G1 oAut(W2) = Aut(W ), it follows from (8) and(9) that A 2 Conv(Aut(W )).Conversely, let W be a compact cellular algebra. Then by theorem 3.7, the secondequality of (6) and theorem 4.1 the algebra W1 is compact. Let us denote by E0 thecoarsest central equivalence of W containing in E. ThenW=E0 = MatCel(W1) oW2 = MatCel(W1)
W2:It is easy to see that for any �nite set SDS(MatS 
W2) = IS 
DS(W2); PAut(MatS 
W2) = IS 
 PAut(W2): (10)Thus the compactness of W2 follows from the compactness of W=E0 (see theorem 3.8).4.3. Following [14] let us de�ne the tensor product of cellular algebras W1 �MatV1and W2 � MatV2 being a cellular algebra on V1 � V2, byW1 
W2 = [R(W1)
R(W2)]:It can be veri�ed that Aut(W1 
W2) is isomorphic to Aut(W1) � Aut(W2). It shouldbe mentioned that the cellular algebra W1 
W2 as a matrix algebra coincides with thetensor product of the matrix algebras W1 and W2. It immediately follows from thede�nition that W1 oW2 �W1 
W2.The tensor product of compact cellular algebras is not necessarily compact. Forexample we by using Fukuda's program (see [4]) found 1116 extreme points of thepolytope DS(S(3) 
 S(3)) whereas jAut(S(3) 
 S(3))j = 36. However the followingstatement holds.Theorem 4.3 Let W2 be a semiregular cellular algebra. Then the algebra W1 
W2 iscompact i� so is W1.Proof. Since each semiregular algebra is isomorphic to the tensor product of a regularalgebra and a full matrix algebra, we can assume that the algebra W2 is regular (see(10)).Let W1 be a compact cellular algebra and A 2 DS(W ) where W = W1 
W2. ThenA = Xu;v2V2Au;v 
 eu;v; Au;v 2 MatV1where eu;v is the matrix unit of MatV2 corresponding to (u; v). Since A commutes withall matrices IV1 
R, R 2 R(W2), we haveAu;v = Auh;vh; h 2 Gwhere G = fh 2 Sym(V2) : Ph 2 R(W2)g. SoA = Xg2Aut(W2)Ag 
 Pg; Ag 2 MatV1;11



since fPg : g 2 Aut(W2)g = fPh2G euh;vh : u; v 2 V2g due to the regularity of W2.By using the fact that A commutes with all matrices from W1 
 IV2 we conclude thatAg 2 DS(W1) for all g. By the compactness of W1 we see that Ag 2 Conv(Aut(W1)).Therefore A 2 Conv(Aut(W )).Conversely, suppose W to be a compact cellular algebra. Let us denote by E theequivalence on V1 � V2 de�ned by the coincidence of the �rst coordinates. Since W2 ishomogeneous, E is a central equivalence of W . Thus the compactness of W1 followsfrom theorem 3.8 and the equality W=E =W1.5 Examples5.1. We start with describing an in�nite family of compact cellular algebras and per-mutation groups. The following statement generalizes the result proved in [10].Theorem 5.1 Let G be a permutation group having an Abelian regular subgroup H ofindex 2. Then G is compact.Proof. Let G � Sym(V ) and H be the corresponding regular subgroup. Clearly, His a normal subgroup of G and G = H [ tH where t 2 Gv for some v 2 V , t2 = 1. SetT = [v2V Gv; S = tT:According to [16, Ch. 4] identify V with H so that vh corresponds to h 2 H. Here G isidenti�ed with a subgroup of Sym(H) so thathg = �hg; if g 2 H;(tht)h1; if g = th1, h1 2 H.In particular, ht = tht for all h 2 H.It follows from the de�nitions that in the above notation h 2 S if and only if thereexists k 2 H for which h = k � (kt)�1. Thus the commutativity of H implies that S is asubgroup of H. Let us prove that Xg2S Pg = Xg2T Pg: (11)For h 2 H we have (h; ht) = (h; hh0) where h0 = k(kt)�1 2 S with k = h�1. ThusPt �Pg2S Pg = Pt. Since S is a subgroup of H, the same is true with t replaced by anyelement of T . So the matrix in the right side of (11) is not changed multiplied by thematrix in the left side. Since jSj = jT j, the equality (11) follows.Let A be a doubly stochastic matrix belonging to Env(G). ThenA = Xg2G �gPg; �g 2 R: (12)Without loss of generality assume that the number of negative �g in (12) is minimalpossible. Let �g0 < 0 for some g0 2 G. We can also assume that g0 = 1, since otherwiseA can be replaced by Pg�1A. ThenA = Xg2Gn(S[T )�gPg +Xg2S(�g + j�1j)Pg + Xg2T(�g � j�1j)Pg:12



Since Pg � P1 6= 0 for all g 2 T , we see that �g � j�1j = �g + �1 � 0. On the otherhand, the coe�cient at 1 of the last decomposition equals 0. So the number of negativecoe�cients of this decomposition is less that of decomposition (12). This contradicts tothe choice of the latter.Remark 5.2 The condition of the commutativity of H is essential. Indeed, let G be thepermutation group arising from the action of Sym(4) on the right cosets of the subgroupgenerated by a transposition. Then G has a regular subgroup H of index 2 isomorphic toAlt(4). This permutation group is not compact: by using Fukuda's program [4] we found162 extreme points of the corresponding polytope whereas only 24 of them are integral.5.2. In paper [6] it was shown that the triangle graphs Tn are compact for n � 4 andare not compact for all n � 6. The compactness of T5, the complement to Petersen'sgraph, was an open problem. Nothing was known about the compactness of the Johnsongraph Jn;k for k � 3.Let us denote by J(n; k), 1 � k � n=2, the adjacency algebra of the Johnson schemewith parameters n and k, i.e. the centralizer algebra of the action of Sym(n) on the setof all k-elements subsets of [1; n]. It is known (see [2]) that J(n; k) is a commutativehomogeneous cellular algebra of dimension k+1. The adjacency matrix of the Johnsongraph Jn;k belongs to the standard basis of the algebra J(n; k) and generates it as amatrix algebra.Theorem 5.3 The cellular algebra J(n; k) is compact i� k = 1 or (n; k) = (4; 2).Proof. Since J(n; 1) = S(n) and S(n) is compact (see section 3), we assume k � 2.Besides, J(4; 2) �= S(2) o S(3). By theorem 4.2 the last algebra is compact. Thus weassume in addition that n � 5.Let us denote by R the adjacency relation of the Johnson graph Jn;k:R = f(S; S0) : S; S0 � [1; n]; jSj = jS0j = k; jS \ S0j = k � 1g: (13)and by A its adjacency matrix. Then A is a basis matrix of the algebra J(n; k) (seeabove). Let us prove the following statement:8g 2 Sym(n) 9S � [1; n] : jSj = k; (S; Sg) 62 R: (14)Let g 2 Sym(n) and F = fv 2 [1; n] : vg = vg be the set of all �xed points of g. IfjF j � k, then any k-subset S of F satis�es (14). Otherwise, since n � 5, there exist twodistinct points u; v such that fug; vgg \ fu; vg = ;. Since k � 2, there exists a k-subsetS of [1; n] for which u; v 2 S and ug; vg 62 S. Then jS \ Sgj � k � 2 which implies that(S; Sg) 62 R and proves (14).Due to the commutativity of the algebra W = J(n; k), the matrix 1dA belongs toDS(W ) where d is the degree of R. To prove the non-compactness of W it su�ces tocheck that 8g 2 G 9u 2 V : Au;ug = 0 (15)where G = Aut(W ) and A = (Au;v). If n � 2k +1, then G = Sym(n) (see Lemma 2.1.3in Appendix 2 of [2]) and (15) follows from (14). If n = 2k, then G = Sym(n) � f1; tgwhere t is the permutation moving a k-subset of [1; n] to its complement. For g 2 Sym(n)we reason as above. If g = ht with h 2 Sym(n), then the inequality (15) for it is the13



consequence of the analog of statement (14) with Sg replaced by its complement (in theproof we have to choose a k-subset S containing u; v; ug; vg). This completes the proofof the theorem.It follows from the theorem that the triangle graph Tn = Jn;2 is not compact forn � 5. Since Petersen's graph is the complement to T5, we get the following statement.Corollary 5.4 Petersen's graph is not compact.5.3. For a positive integer n let us denote by H(n) the centralizer algebra of thepermutation group G(n) which is the wreath product of Sym(2) and Sym(n) acting on theset f0; 1gn. Clearly,H(n) is a homogeneous algebra. According to [3] Aut(H(n)) = G(n)for all n. Certainly, H(n) coincides with the adjacency algebra of the Hamming schemewith parameters n; 2 (see [2]). Notice that H(n) is generated as a matrix algebra by theadjacency matrix of the n-dimensional cube.Theorem 5.5 The cellular algebra H(n) is compact i� n � 3.Proof. It is easy to see that the algebras H(1);H(2) and H(3) are isomorphic toS(2), S(2) oS(3) and S(4)
S(2) respectively. So the compactness of them follows fromtheorem 4.2 and theorem 4.3 and the compactness of the simplex. Let us consider thealgebra W = H(4). It is easy to see that W=E �= S(4) oS(2) where E is the equivalenceof W with classes of cardinality 2. Then due to theorem 3.8 the algebra W is notcompact, since jAut(W )j = 244! = 384 and Aut(W=E) = (4!)22 = 1152.Let n � 5. Set W = H(n) and W 0 to be the centralizer algebra of the action ofSym(n) on the set 2[1;n] (naturally bijective to f0; 1gn) of all subsets of [1; n]. Below wewill show that W 0 is a non-compact cellular algebra. It will imply that so is W , sinceotherwise by theorem 3.7 W 0 �= Wv, v 2 f0; 1gn, and the algebra W 0 would be compact.Let us consider the algebra W 0. Index the cells of W 0 by the numbers 0; 1; : : : ; n sothat the kth cell consists of all k-subsets of [1; n]. SetA =Xg Pg � �I2[1;n]where g runs over all elements of Aut(W 0) corresponding to the transpositions of Sym(n)and � = �n2� � k0(n � k0) with k0 = bn2 c. Note that the elements of the matrix Aare non-negative integers, since the Hadamard product of A and the unity of the kthhomogeneous component of W 0 is a multiple of this unity with the coe�cient k0(n �k0) � k(n � k) which is not negative for all k. Since jS \ Sgj � jSj � 1 for any setS � [1; n] and a transposition g 2 Sym(n), the restriction of A to the k0th cell of W 0 isa multiple of the adjacency matrix of the relation R de�ned in (13) (with k = k0). Aswe saw in proving theorem 5.3 no multiple of this matrix belongs to DS(W0) where W0is the k0th homogeneous component of W 0 (coinciding with J(n; k0)).Note that the matrix A0 = 1aA belongs to DS(W 0) for some a. On the other handA0 62 Conv(Aut(W 0)), since the restriction of A0 to the k0th cell of W 0 does not belongto Conv(Aut(W0)). Thus W 0 is not compact.Remark 5.6 Let S be a nonempty subset of [0; n]. Denote by W 0S the centralizer algebraof the action of Sym(n) on the subsets of [1; n] the cardinality of which belongs to S.Then W 0S is compact i� either S � f0; 1; n� 1; ng or n = 4 and 2 2 S, 1; 3 62 S. Indeed,14



for n � 5 this was in fact proved in the theorem. For n � 3 it is trivial. If n = 4, thenit su�ces to check that the algebra Wf1;2g is not compact. This can be done for instanceby Fukuda's program [4].5.4. Let us turn into the compactness problem of the Platonic solids graphs. It isknown (see [1]) that all of them are distance-regular (even distance-transitive) graphs.So their compacntess is equivalent to that of the corresponding cellular algebras (seesubsection 3.1).Theorem 5.7 The graphs of the tetrahedron, the octahedron and the cube are compact,the graphs of the dodecahedron and the icosahedron are not compact.Proof. It is clear that the cellular algebra of the tetrahedron is isomorphic to S(4),whence its compactness follows. The cellular algebras of the octahedron and the cubeare isomorphic to S(2) o S(3) and S(4) 
 S(2). Thus their compactness follows fromtheorem 4.2 and theorem 4.3 respectively.Let us �nally consider the dodecahedron and the icosahedron. In the both casesdenote by W the corresponding cellular algebra and by E its antipodal equivalence theclasses of which are pairs of vertices at maximal distance. In the case of the dodecahe-dron W=E is isomorphic to the cellular algebra of Petersen's graph which is not compactby corollary 5.4. So W is not compact by theorem 3.8. In the case of icosahedron W=Eis isomorphic to S(6). So the non-compactness of W also follows from theorem 3.8 aftertaking into account the fact that jAut(W )j = 120 whereas jAut(W=E)j = 720.5.5. A transitive permutation group G � Sym(V ) is called Frobenius group (see [9])if it is not regular and Gu;v = f1g for all distinct u; v 2 V . By the Frobenius theorem Ghas a normal regular subgroup H called the Frobenius kernel of G. In [9] it was shownthat H is Abelian if its index in G is even.Theorem 5.8 A Frobenius group G � Sym(V ) is compact i� jGvj = 2, v 2 V .Proof. If jGvj = 2, then the compactness of G follows from theorem 5.1 and theresult cited above. Let jGvj � 3. It follows from the de�nition that for all k 2 GXg2HkPg = JV and Pg � Pg0 = 0 , Hg = Hg0 (16)where H is the Frobenius kernel of G. Since jGvj � 3, there exist k; k0 2 G n H suchthat Hk 6= Hk0 and k; k0 2 Gv. SetA = Xg2HknfkgPg + Pk0 � P1:By the choice of k and k0 and (16) all the elements of A are non-negative integers andA � P1 = 0. Let us check that for the pair (G;A) condition (15) is satis�ed, whence thenon-compactness of G will follow. Indeed, by (16) if g 62 H n f1g, then Pg � P1 6= 0, elsePg � Pk 6= 0.The theorem enables us to state that the minimal n for which a non-compact cellularalgebra on n points exists, is equal to 7. Indeed, it implies that the semidirect productof cyclic groups of order 7 and 3, acting on 7 points is not compact. Since this groupis 2-closed, its centralizer algebra is also not compact. On the other hand, due to [8]15



all cellular algebras on n points are Schurian for n � 8. So it su�ces to check that all2-closed permutation groups of degree at most 6 are compact. However the centralizeralgebras of these groups can be constructed from simplexes, regular algebras and thealgebras of undirected cycles by the compactness preserving operations described insections 3 and 4.6 Algorithms6.1. Throughout the section we assume that V = [1; n] and deal with cellular algebrasWon V the basis matrices of which are numbered by positive integers (colors) 1; : : : ; s wheres = jR(W )j. The color of v 2 V with respect to W is de�ned to be the color of thematrix IU 2 R(W ) where U is the cell of W containing v. Under isomorphism of suchalgebras we mean an ordinary cellular algebra isomorphism preserving the colors of thebasis matrices.Given a cellular algebra W on V and A 2 MatV , we put in order the set of thebasis matrices of the algebra W [A] according to the Weisfeiler-Lehman algorithm forconstructing cellular closure, so that the following property holds (see [14, Ch.M]):(W-L) if g 2 Sym(V ) is an isomorphism from W to W 0 and Ag = A0, then g is also anisomorphism from W [A] to W 0[A0].The standard basis of W [A] (with the order) can be constructed by this algorithm inpolynomial time from W and A. In this way we put in order the basis matrices of thealgebra Wv, v 2 V , and inductively of the algebras Wv1;:::;vk = (Wv1;:::;vk�1)vk .6.2. Let us describe the k-orbits of the automorphism group of a compact cellularalgebra on V , i.e. the orbits of the induced action of this group on V k, k � 1.Let W be a cellular algebra on V and (c1; : : : ; ck) be a k-tuple of positive integers.We say that (c1; : : : ; ck) is W -admissible if there exists a k-tuple (v1; : : : ; vk) 2 V k suchthat for each i 2 [1; k] the color of vi with respect to Wv1;:::;vi�1 equals ci. The set of allthese (v1; : : : ; vk) is denoted by S(c1; : : : ; ck). It is clear that S(c1; : : : ; ck) is a union ofthe k-orbits of Aut(W ).Proposition 6.1 Let W � MatV be a compact cellular algebra. A subset S of V k is ak-orbit of Aut(W ) i� S = S(c1; : : : ; ck) for some W -admissible tuple (c1; : : : ; ck).Proof. Let (c1; : : : ; ck) be a W -admissible tuple and (v1; : : : ; vk); (v01; : : : ; v0k) 2S(c1; : : : ; ck). Let us show by induction on i that there exists gi 2 Aut(W ) such thatgi is an isomorphism from Wv1;:::;vi�1 to Wv01;:::;v0i�1. The induction base is provided bysetting g1 = 1. Let the isomorphism gi be already constructed and u = vgii . Then thecolors of u and v0i with respect to Wv01;:::;v0i�1 coincide by the de�nition of S(c1; : : : ; ck)and due to the fact that gi is an isomorphism of colored algebras. By theorem 3.7 andtheorem 3.4 there exists h 2 Aut(Wv01;:::;v0i�1) such that uh = v0i. According to (W-L)gi+1 = gih is the required isomorphism from Wv1 ;:::;vi to Wv01;:::;v0i.Conversely, let S be a k-orbit of Aut(W ) and (v1; : : : ; vk) 2 S. For each i 2 [1; k]de�ne ci to be the color of vi with respect to Wv1;:::;vi�1 . Then the tuple (c1; : : : ; ck)is W -admissible and (v1; : : : ; vk) 2 S \ S(c1; : : : ; ck). By the �rst part of the proofS = S(c1; : : : ; ck). 16



6.3. Proposition 6.1 enables to �nd a canonical labeling for the classWV of compactcellular algebras on V , i.e. a map cl :WV ! Sym(V ) such that the following conditionis satis�ed: W1 �= W2 , W �11 = W �22 ; W1;W2 2 WVwhere �i = cl(Wi), i = 1; 2. This can be done by the following procedure:for i 2 [1; n] doU := fv1; : : : ; vi�1g;c := minv2V nU c(v;Wv1;:::;vi�1);i��1 := minfv 2 V : c(v;Wv1;:::;vi�1) = cg;odwhere vj = j��1 and c(v;Wv1;:::;vi�1) is the color of v with respect to Wv1;:::;vi�1. It isclear that the permutation � = cl(W ) is computed in polynomial time.The above algorithm shows the way to �nd the group Aut(W ) for W 2 WV inpolynomial time. If W = MatV , then Aut(W ) = f1g. Otherwise, �x a point v0 2 V forwhich Wv0 6= W and construct a generator set of the group Aut(W ) recursively from agenerator set of Aut(Wv0). The recursion is provided by the equalityAut(W ) = [v2�Aut(Wv0)gvwhere � = fv 2 V : Wv �= Wv0g and gv = cl(Wv0)cl(Wv)�1. Note that we really �nd astrong generator set of Aut(W ). Thus the following statement is proved.Theorem 6.2 A canonical labeling in the class of compact algebras (weakly compactgraphs) and the automorphism group of a compact algebra (a weakly compact graph) canbe found in polynomial time.It is well-known that the Graph Isomorphism Problem is equivalent to the SetwiseStabilizer Problem: given a permutation group G on V and a set U � V , �nd thesubgroup of all permutations of G leaving U �xed as a set. Theorem 6.2 shows that inthe class of compact groups this problem can be solved in polynomial time. Indeed, itsu�ces to �nd Aut(W [IU]) where W = Z(G). The compactness of the algebra W [IU ]is provided by theorem 3.7.7 Open problemsAll primitive compact permutation groups which we know coincide with the naturalrepresentations of symmetric groups or dihedral and cyclic groups of prime degree.Problem 7.1 Are there any other compact primitive groups?It is a well-known fact that the structure constants of a cellular algebra do notdetermine it up to a cellular algebra isomorphism (see [2]). However, we have no suchexamples for compact algebras.Problem 7.2 Is it true that two weakly isomorphic compact cellular algebras are iso-morphic? 17



Here under a weak isomorphism of cellular algebras we mean an ordinary algebra iso-morphism preserving the Hadamard multiplication and the Hermitian conjugation.In [5] a polynomial-time algorithm for recognizing compact regular graphs with primenumber of vertices was described. Certainly, it also works for homogeneous algebras ofprime degree.Problem 7.3 Is there an e�cient procedure to recognize general compact algebras?One can easily prove by using the technique of section 6 that this problem is polynomial-time equivalent to the problem of recognizing compact groups.References[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier,Distance-Regular graphs, Springer,Berlin, 1989.[2] E. Bannai and T. Ito, Algebraic Combinatorics I., Moscow, Mir, 1987 (in Russian).[3] I. A. Farad�zev, M. H. Klin, and M. E. Muzichuk, Cellular rings and groups ofautomorphisms of graphs, in: I.A. Farad�zev et al. (eds): Investigations in algebraictheory of combinatorial objects, Kluwer Acad. Publ., Dordrecht, 1994, 1-152.[4] K. Fukuda, cdd Reference manual, Version 0.60, 1996.[5] C. D. Godsil, Compact graphs and equitable partitions, Linear Algebra Appl., toappear.[6] C. D. Godsil, Symmetry and Eigenvectors, Preprint, 1996.[7] D. G. Higman, Coherent algebras, Linear Algebra Appl., 93 (1987), 209{239.[8] A. A. Lehman, On the automorphisms of some classes of graphs, Avtomatika iTelemehanika, 2 (1970), 75{82 (in Russian).[9] D. S. Passman, Permutation Groups, 1968.[10] H. Schreck and G. Tinhofer, A note on certain subpolytopes of the assignmentpolytope associated with circulant graphs, Linear Algebra Appl., 111, (1988), 125{134.[11] G. Tinhofer, Graph isomorphism and theorems of Birkho� type, Computing, 36,(1986), 285{300.[12] G. Tinhofer, A note on compact graphs, Discrete Applied Math., 30, (1991), 253{264.[13] G. Tinhofer, Strong tree-cographs are Birkho� graphs, Discrete Applied Math., 22,(1988/89), 275{288.[14] B. Ju. Weisfeiler (editor), On construction and identi�cation of graphs, SpringerLecture Notes, 558, 1976. 18
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