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Abstract

Keeping in mind the generalization of Birkhoff’s theorem on doubly stochastic
matrices we define compact cellular algebras and compact permutation groups.
Arising in this connection weakly compact graphs extend compact graphs intro-
duced by G. Tinhofer. It is proved that compact algebras are exactly the central-
izer algebras of compact groups. A developed technique enables to get non-trivial
examples of compact algebras and groups as well as completely identify com-
pact Frobenius groups and the adjacency algebras of Johnson’s and Hamming’s
schemes. In particular, Petersen’s graph proves to be not compact, which answers
the question by C. Godsil. A simple polynomial-time isomorphism test for the
class of compact cellular algebras (weakly compact graphs) is presented.
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1 Introduction

The starting point of this paper is Birkhoft’s theorem on doubly stochastic matrices:
each doubly stochastic matrix is a convex combination of permutation matrices. This
theorem establishes the following property of the symmetric group: the extreme points
of the polytope of doubly stochastic matrices contained in the enveloping algebra of its
permutation representation coincide with the permutation matrices corresponding to
the elements of the group. We call a permutation group compact if it has the property
cited above. The characterization of compact groups is the essence of a permutation
group approach to the generalization of Birkhoft’s theorem. Note that a compact group
is necessarily 2-closed, i.e. coincides with the maximal subgroup of the symmetric group
having the same 2-orbits.

Another, more combinatorial approach to generalize Birkhoft’s theorem was proposed
in [11]. Namely, let us associate to an undirected graph I' the set DS(I") of all doubly
stochastic matrices commuting with its adjacency matrix. Then Birkhoft’s theorem
states in fact that for complete graph I' the following equality holds:

DS(I') = Conv(Aut(I')), (1)

i.e. the polytope DS(I') coincides with the convex hull of the permutation matrices
corresponding to the automorphisms of I'. The graphs for which the last equality holds
were called Birkhoff’s graphs in [13] and compact ones in [12]. An important property of
compact graphs consists in the fact that their isomorphism can be tested in polynomial
time by a variant of refinement procedure.

Comparing the two approaches one can observe that the notion of compact graph
is too restrictive. Indeed, there is a simple procedure discovered by B. Weisfeiler and
A. Lehman (see [14]) which corresponds to a graph I' a coherent configuration C' =
C(I') such that Aut(C') = Aut(I') (as to coherent configurations see [7]). Moreover,
DS(C) € DS(I') where DS(C') is the set of all doubly stochastic matrices centralizing
the adjacency algebra of C'. Keeping in mind the combinatorial approach one can replace
the class of compact graphs by a larger class of weakly compact ones, i.e. those for which
the condition (1) is satisfied with I replaced by C'. Note that the isomorphism of weakly
compact graphs can still be tested in polynomial time (see section 6). It can be shown
that the automorphism group of a weakly compact graph is compact. On the other hand,
there exist compact groups (for instance, some regular ones) which can not be obtained
in such a way. This suggests to consider the class of compact coherent configurations
(compact cellular algebras) as the largest class of compact combinatorial objects.

Let us denote by Maty the full matrix algebra over C on a finite set V, i.e. the set
of all complex matrices whose rows and columns are indexed by the elements of V. A
subalgebra W of Maty is called cellular (coherent) if it is closed under the Hadamard
(componentwise) multiplication, the Hermitian conjugation and contains the identity
matrix [y and the all one matrix Jy. Each cellular algebra contains a uniquely deter-
mined linear base consisting of {0,1}-matrices summing to Jy-, which enables to view it
as the adjacency algebra of a coherent configuration.

The automorphism group Aut(W) of the cellular algebra W consists by definition of
all permutations g of V such that the permutation matrix corresponding to ¢ central-



izes W. We say that W is compact if
DS(W) = Conv(Aut(W))

where DS(W) is the polytope of all doubly stochastic matrices centralizing W. As
an example of a compact algebra one can take a semiregular one, i.e. the centralizer
algebra of semiregular permutation group (theorem 3.3). It turns out (theorem 3.4) that
a compact cellular algebra is necessarily Schurian, i.e. coincides with the centralizer
algebra of its automorphism group. Thus the two approaches to the generalization of
Birkhoft’s theorem merge. Namely, there is a 1-1 correspondence

W= Aut(W), G— Z(G)

between compact cellular algebras and compact permutation groups where Z(() is the
centralizer algebra of the group G.

The main purpose of the paper is to study the properties of compact algebras and
groups from both theoretical and algorithmic points of view. We start with studying
the structure of a compact cellular algebra by means of combinatorial operations such
as fixation, factorization and restriction. In the permutation group language the first
of these results states that a setwise stabilizer of a compact group is also compact
(theorem 3.7). The second result provides the compactness of the induced action of a
compact permutation group on the orbits of each its normal subgroup (theorem 3.8). It
is interesting that a transitive constituent of a compact group is not necessarily compact.
This follows from the fact that a permutation group having a faithful regular orbit is
compact (theorem 3.10).

In section 4 we are interested in the algebraic operations preserving compactness.
In particular, we show that the direct and wreath products of cellular algebras are
compact if and only if each its operand is compact (theorem 4.1 and theorem 4.2). The
case of the tensor product proved to be more complicated. We give an example of two
compact cellular algebras the tensor product of which is not compact. However, the
tensor product of a compact algebra and a semiregular one is compact (theorem 4.3).

The technique developed in sections 3 and 4 is applied to the characterization of
compact objects in various families of cellular algebras and permutation groups (sec-
tion 5). We prove (theorem 5.1) that each permutation group having a regular Abelian
subgroup of index 2 is compact. This generalizes a result from [10] which in our terms
means that dihedral groups are compact. We completely describe compact adjacency
algebras of Johnson’s and Hamming’s schemes (theorem 5.3 and theorem 5.5). In par-
ticular, it turns out that Petersen’s graph is not compact (corollary 5.4), which answers
a question from [6]. Finally we completely identify compact graphs and algebras of the
Platonic solids (theorem 5.7) and characterize compact Frobenius groups (theorem 5.8).
The last implies that the minimum degree of a non-compact cellular algebra equals 7.

Section 6 is devoted to algorithmic aspects of compact algebras and groups. We
present a polynomial-time algorithm which constructs the automorphism group and a
canonical labeling of a compact cellular algebra (theorem 6.2). A key point here is
the description of the k-orbits of a compact group by means of the Weisfeiler-Lehman
algorithm.



Some open problems concerning compact algebras and groups are discussed in sec-
tion 7.

Notation. As usual by C and R we denote the complex field and the real field
respectively.

Throughout the paper V' denotes a finite set with n = |V| elements. By relations
on V me mean subsets of V x V. If E is an equivalence (i.e. reflexive, symmetric and
transitive relation) on V', then V/E denotes the set of all equivalence classes modulo .

The algebra of all complex matrices whose rows and columns are indexed by the
elements of V' is denoted by Maty, its unity (the identity matrix) by [y and the all
one matrix by Jy. For U C V the algebra Maty is in a natural way identified with a
subalgebra of Maty .

For U,U" C V we denote by Jy s the {0,1}-matrix with 1’s exactly at the places
belonging to U x U’.

If A € Maty, then AT denotes the transpose and A* the Hermitian conjugate matrix.

If ¢ : V= V' is a bijection, then A¥ denotes the image of a matrix A with respect
to the natural algebra isomorphism from Maty to Maty: induced by ¢.

The group of all permutations of V' is denoted by Sym(V). If ¢ € Sym(V), then P,
denotes the permutation matrix corresponding to ¢g. For S C Sym(V) we set

PS:{Pgi gES}

and denote by Conv(.S) the convex hull of Ps.
For integers {,m with [ < m by [[, m] we denote the set {{,{+1,...,m}.

2 Cellular algebras

All undefined below terms concerning permutation groups can be found in [16].
2.1. By a cellular algebra on V we mean a subalgebra W of Maty for which the
following conditions are satisfied:

(Cl) Iy, Jv € W;
(C2) VAeW: A eW;
(C3) VA, BeW: AoBeW,

where Ao B is the Hadamard (componentwise) product of matrices A and B. It follows
from (C2) that W is a semisimple algebra over C.

FEach cellular algebra W has a uniquely determined linear basis R = R(W) (the
standard basis of W) consisting of {0,1}-matrices such that

SR=Jy and RER & R €R.

ReR

Set Cel(W) ={U C V: Iy € R}. Each element of Cel(W) is called a cell of W. It is
easy to see that
v= J U (disjoint union).

UeCel(W)



The algebra W is called homogeneous if | Cel(W)| = 1.
For U,U" € Cel(W) set Ry ={R€R: RoJyy = R}. Then

R = U Ruu (disjoint union).

U,U'eCel(W)

Moreover, for R € Ry the number of 1’s in the uth row (resp. vth column) of the
matrix R does not depend on the choice of u € U (resp. v € U’). This number is
denoted by dy:(R) (resp. din(R)).

For each cell U € Cel(W) we view the subalgebra IyW Iy of W as a cellular algebra
on U. It is denoted by Wy and called the homogeneous component of W corresponding
to U. The basis matrices of Wy are in 1-1 correspondence to the matrices of Ry .

2.2. A large class of cellular algebras comes from permutation groups as follows
(see [14]). Let G < Sym(V) be a permutation group. Then its centralizer algebra
Z(G) C Maty is a cellular algebra on V. Its standard basis consists of the adjacency
matrices of the 2-orbits of (. In particular, the cells of Z((') coincide with the orbits
of G.

A cellular algebra W is called semiregular if d;,(R) = dy(R) = 1 for all R € R(W).
A homogeneous semiregular algebra is called regular. It is easy to see that semiregular
(regular) algebras coincide with centralizer algebras of semiregular (regular) permutation
groups.

Two cellular algebras W and W’ on V and V' are called isomorphic if W¥¢ = W’ (as
sets) for some bijection ¢ : V' — V' called an isomorphism from W to W’. Clearly, ¢
induces a bijection between the sets R(W) and R(W’). The group of all isomorphisms
from W to itself contains a normal subgroup

Aut(W) ={p e Sym(V)| A¥ = A, Ae W}

called the automorphism group of W. If W = Z(Aut(W)), then W is called Schurian.
It follows from [16] that there exist cellular algebras which are not Schurian (see also
3)).

2.3. Let E be an equivalence on V. Set Iy = Y pev/pJu/|U]. Tt is easy to see that
the linear map

g Matv/E — Matv, eyur ;JU,U’ (2)
[U1]U]
where erpr is a matrix unit of Maty,g, is an injective ring homomorphism preserving
the orthogonality with respect to the Hadamard multiplication, ig(ly/g) = Ir and
Im(@E) = [E Matv [E
Let now W be a cellular algebra on V and E be an equivalence of W, i.e. Ip € W.
Set
W/E =i (IgWg).
Then W/E is a subalgebra of Maty, g isomorphic to IgW g as a matrix algebra. It
can be proved that W/FE is really a cellular algebra on V/E called the factoralgebra of

the algebra W modulo FE. Moreover, its basis matrices are multiples of the matrices



Since the matrix I centralizes Pyuyw), each g € Aut(W) induces a permutation of
the set V//E which clearly belongs to Aut(W/FE). This defines a group homomorphism

o Aut(W) — Aut(W/E), (3)

the kernel of which coincides with the subgroup of Aut(W) leaving each class of E fixed.

An equivalence E of W is called centralif IpA = Alg for all A € W. It is easy to see
that in this case each class of I is contained in a cell of W. The factoralgebras modulo
equivalences satisfying the last condition were introduced and studied in [14].

2.4. The set of all cellular algebras on V' is put in order by inclusion. The algebra
Maty is obviously the greatest element of the set. The least one is the simplex S(V),
i.e. a cellular algebra with two basis matrices [y and Jy — Iy. We write W < W’ if W
is a subalgebra of W".

Given X C Maty, the cellular closure of X, i.e. the smallest cellular algebra contain-
ing X, is denoted by [X]. If W is a cellular algebra on V', then W[X] denotes [W U X].
We use notation W, and Wy if X = {I;n}, v € V, and X = {Iy}yev/p where E is
an equivalence on V respectively. Finally, we write [A] and W[A] instead of [{A}] and
WA,

3 Compactness

3.1. For an arbitrary set X C Maty let us denote by DS(X) the set of all doubly
stochastic matrices of Maty commuting with each matrix of X.

Definition 3.1 The set X is called compact if all extreme points of DS(X) are integral.
We say that X is weakly compact if the set [X] is compact.

Note that the set of all integral extreme points of DS(X) coincides with the set
{P, : ¢ € Aut(X)} where Aut(X) = {¢g € Sym(V) : A9 = A, A € X}. So the
compactness of X means that there are no other extreme points. Certainly, if X is a
cellular algebra, the compactness of X is equivalent to its weak compactness.

Proposition 3.2 A compact sel is weakly compact.

Proof. Let X C Maty be a compact set and W = [X] be its cellular closure.
Then, clearly Aut(X) = Aut(W), DS(X) D DS(W). So DS(W) C Conv(Aut(W))
due to the compactness of X. On the other hand, since Pyuyw) C DS(W), we have
DS(W) D Conv(Aut(W)), which completes the proof.m

An undirected graph I is called compact (weakly compact), if the set { Ar} is compact
(weakly compact) where Ar is the adjacency matrix of I'. Note that this definition of
compact graph coincides with that of [12]. Proposition 3.2 shows that a compact graph
is weakly compact. The converse statement is not true. A counterexample is given by
any regular graph I' for which [Ap] = Maty where V' is the vertex set of I'. Nevertheless
in a number of cases the weak compactness of a graph [' implies its compactness. This
happens, for instance, if [Ar] coincides with the matrix algebra generated by Ar. The
last condition is clearly satisfied for a connected distance-regular graph I'.

3.2. It follows from the definition that the study of weak compactness is reduced
to the study of compact cellular algebras. The simplest example of a compact cellular



algebra is Maty. It follows from Birkhoft’s theorem on doubly stochastic matrices that
the symplex S(V) is also compact.

Theorem 3.3 A semiregular (in particular, reqular) cellular algebra is compact.

Proof. The automorphism group of semiregular algebra W' is a semiregular permutation
group and the corresponding permutation matrices are pairwise orthogonal with respect
to the Hadamard multiplication. Since any matrix commuting with all matrices of W
is a linear combination of these permutation matrices, the compactness of W follows.m

In [5] it was proved that a compact distance-regular graph is distance-transitive. In
our terms this means that the cellular algebra of a compact distance-regular graph is
Schurian. We generalize this statement as follows.

Theorem 3.4 A compact cellular algebra is Schurian.

Proof. Let W be a cellular algebra on V. Set
C(W)={AeMaty: AB=BA, Be W}.

According to [15] the algebra C(W) is semisimple and C(C(W)) = W.
Lemma 3.5 C(W) is spanned by the set DS(W).
Proof. Let A be a real matrix belonging to C(W). Then Aly = [y Afor all U € Cel(W),

whence it follows that A is a block-diagonal matrix with blocks corresponding to the
cells of W. Moreover, since A commutes with all matrices Jy g, U, U € Cel(W), we
see that the row (column) sums of the matrix A coincide. So there exist o, 3 € R such
that oA + BJw € DS(W). Since the algebra W is defined over R, so is C(W'), which
completes the proof.m

Let now W be a compact cellular algebra. Then by lemma 3.5

C(W) = Env(Aut(W))

where in the right side the enveloping algebra of permutation group Aut(W) stands.
Taking into account that W is a semisimple algebra over C, we get

W = C(C(W)) = C(Env(Aut(W))) = Z(Aut(W)).

This proves that W is Schurian.m
The last theorem shows that the combinatorial approach to Birkhoft’s theorem gives
no compact combinatorial objects different from centralizer algebras of compact groups.

Definition 3.6 A permutation group G is called compact if each doubly stochastic ma-
triz contained in Env(G) is a conver combination of Py, g € (.

It should be noted that the class of compact groups can be viewed as the largest class
of permutation groups for which the analog of Birkhoft’s theorem on doubly stochas-
tic matrices is valid. It easily follows from the definition that each compact group is
necessarily 2-closed, i.e. coincides with the automorphism group of some subset of Maty .

Theorem 3.4 shows that there is a 1-1 correspondence (W — Aut(W), G — Z(G))

between compact cellular algebras and compact permutation groups on V. So all the



results of the paper can be formulated both for compact groups and compact algebras.
In each case we choose the way more suitable for us.

3.3. As it is shown in section 5 there are examples of non-compact cellular algebras
for all n > 7. Each of them is an overalgebra of a simplex. So in general an overalgebra
of a compact algebra is not necessarily compact. However, there is a simple way to
construct compact overalgebras.

Theorem 3.7 Let W < Maty be a compact cellular algebra. Then for each equivalence
E on'V the algebra W is also compact. In particular, the algebra Wly) is compact for
alU CV.

Proof. Let A € DS(Wg). Then A € DS(W) and so by the compactness of W we

have
A= > MNP, DA =1, A >0.
gEAut(W) g

Since A is a block-diagonal matrix whose blocks coincide with the classes of E, the
inequality A, > 0 implies that g leaves fixed each class of F, i.e. ¢ € Aut(Wg). Thus
A € Conv(Aut(Wg)).m

3.4. It is easy to see that the factor of a regular cellular algebra modulo its central
equivalence is also regular and hence a compact one. This observation can be generalized
to all compact cellular algebras as follows.

Theorem 3.8 Let W < Maty be a compact cellular algebra. Then for each central
equivalence E of W the factoralgebra W/ E is also compact. Moreover, a natural group
homomorphism pg : Aut(W) — Aut(W/E) is a surjection.

Proof. Let A € DS(W/FE). Then ig(A) € DS(W) where ig is the injection (2).
Indeed, since F is a central equivalence of W, each its class is contained in some cell of W.
Besides, A is a block-diagonal matrix with blocks corresponding to the cells of W/E.
So the matrix ig(A) is also block-diagonal with blocks corresponding to the cells of W,
whence it follows that it is doubly stochastic. Finally, since ig(W/E) = I[gW g and
ig(A)lg = Ipig(A) = ig(A), for any B € W we have

i5(A)B = ip(A)uB = in(A)in(B) = ig(AB)=
= ig(BA) = ip(B)ip(A) = Blgig(A) = Blg(A),

where B = iz' (IgB) € W/E.
It follows from the compactness of W that

in(A)= S NP, S =1, A >0

gEAut(W) g

Multiplying the both sides by Ig and using the definitions of 15 and g (see (3)) we get
ip(A) = Z A (Pylp) = Z AgiE(Pog(g))-
g g

So by the injectivity of i the matrix A belongs to Conv(pg(Aut(W))). This proves the
both statements of the theorem (the second one by setting A = P,, h € Aut(W/FE)).m



Remark 3.9 The statement of the theorem is no longer true if £ is not central. Indeed,
each homogeneous Schurian algebra W is isomorphic to a factoralgebra of the centralizer
algebra of the regular representation of Aut(W). However, as we will see in section 5,
there exist homogeneous Schurian algebras which are not compact.

It follows from theorems 3.7 and 3.8 that if W is a compact cellular algebra and
F is its central equivalence, then the algebras Wy and W/ FE are also compact. As the
example of the icosahedron shows (see proof of theorem 5.7), the converse statement is
not true.

3.5. The restriction of a cellular algebra to a cell can be viewed as some kind
of factorization. The following statement shows that a homogeneous component of a
compact cellular algebra is not necessarily compact (see also remark 3.9).

Theorem 3.10 A permutation group having a faithful reqular orbit is compact.

Proof. Let G < Sym(V) be a permutation group satisfying the hypothesis of the the-
orem and W be its centralizer algebra. Then W has a cell Uy such that the algebra Wy,
is regular and G = Aut(Wy,). So dyw(R) = 1 for all R € Ry, v, U € Cel(W).

Let A € DS(W). Then by the compactness of Wy,

Ao Jy, = Z Ag Py, Z)‘g’ =1, Ay 20. (4)
g/

g'€Aut(Wy,)

Let us prove that
A= Z Ao(a) Py (5)

geG

where ¢ : G — Aut(Wy,) is the restriction isomorphism. Denote by A’ the difference
between the left and the right sides of (5). Then A" € C(W) and A’ o Jy, = 0 by (4).
So for each U € Cel(W) and R € Ry, v we have

RAj, = RA' = A'R = A, R = 0
where A, = A’ o Jy. Since dy(R) = 1, it follows that A;;, = 0 for all U, i.e. A’ = 0.
This proves (5).m
4 Operations preserving compactness

4.1. Let Wi < Maty, and W, < Maty, be cellular algebras. Following [14] let us define
their direct sum being a cellular algebra on the disjoint union of V; and V3, by

WABW, = [R(W1) UR(W,)).

It is easy to see that Aut(W;BW;) is isomorphic to Aut(W;) x Aut(Ws).
Theorem 4.1 The cellular algebra WiBW; is compact iff so are Wi and W,.
Proof. It immediately follows from the definition that

DS(WiBWs;) = DS(Wy) + DS(Ws), PrueowiBw,) = Paueny) + Pauewy)



(as sets) and the sums are direct. So the theorem follows. =

Certainly, the definition of the direct sum and the theorem can be extended to an
arbitrary number of summands.

4.2. Let us define the wreath product of cellular algebras Wy < Maty,, Wy < Maty,
being a cellular algebra on the set V; x V5, by

Wil Wy = [R(Wy) @ Iy, U Jy, @ R(W3)]

where @ denotes the Kronecker product of matrices. It can be verified that Aut(W;1Ws;)
is isomorphic to the wreath product of Aut(W;) and Aut(Ws;). For homogeneous W,
and Wy our definition is compatible with that of [14].

Let us denote by E the equivalence on Vi x V4 defined by the coincidence of the
second coordinates. Then K is an equivalence of Wil W5, the restriction of Wy 1 W, to
any class of F is isomorphic to W; and

(Wl 2 WQ)/E — WQ, (Wl 2 WQ)E — Wlﬁﬂ o EWl . (6)

N—_—— ———
v, times

Theorem 4.2 The cellular algebra W11 Wy is compact iff so are Wi and W,.
Proof. Let algebras Wi and W, be compact and A € DS(W) where W = Wy} Wi,

We view A as a block matrix each block A, ,, u,v € V3, of which is a matrix of Maty,.
Since A commutes with F, we see that the row (column) sums of the matrix A,,
coincide. Let us denote this number by a,, and consider the matrix A= (o )uwevs-
Clearly, A is a doubly stochastic matrix of Maty,. The condition of commuting A with
each matrix Jy, @ R, R € R(W>) shows that the matrix A centralizes the algebra W,
je. Ae DS(Ws). It follows from the compactness of W5 that

A= > NP, A =1, A >0 (7)
g

gEAut(Wy)

Let us define a block matrix A = (guw)uwe% belonging to Maty, xv, by

- -1 : .
A — au,u? lf auﬂ/ 7£ 07
u, v

0, otherwise.

It follows from the definition that either ;Lw =0 or ;Lw is a doubly stochastic matrix
of Maty,. By a straightforward checking we get from (7) that

A= Z AgAg (8)

gEAut(Wy)

where A, = Ao (Jv, @ P,). Since each block of the matrix A commutes with all matrices
of Wi, each nonzero block of A, belongs to DS(W;), and so it is a convex combination
of the permutation matrices corresponding to the automorphisms of W;. So

Ag= > mPay, =1, >0 (9)
2

heGy?

10



where Gy = Aut(W;) and (h; g) = ({hw}tver,; g) is the permutation of Vi x V, given by

(u,v)(h?g) - (uhvwg)‘

Since the permutation (h; g) belongs to Gy 1 Aut(Wy) = Aut(W), it follows from (8) and
(9) that A € Conv(Aut(W)).

Conversely, let W be a compact cellular algebra. Then by theorem 3.7, the second
equality of (6) and theorem 4.1 the algebra W is compact. Let us denote by FEy the
coarsest central equivalence of W containing in £. Then

W/ Es = Matcew,) W2 = Matcew,) @W.
It is easy to see that for any finite set S
DS(MatS ®W2) - [S ® DS(W2)7 PAut(Mats®W2) - [S ® PAut(Wg)' (10)

Thus the compactness of W3 follows from the compactness of W/ Ey (see theorem 3.8).m
4.3. Following [14] let us define the tensor product of cellular algebras W; < Maty,
and Wy < Maty, being a cellular algebra on V; x V5, by

Wi @ Wy = [R(Wy) @ R(Ws)].

It can be verified that Aut(W; @ W) is isomorphic to Aut(W;) x Aut(Ws). It should
be mentioned that the cellular algebra W, @ W5 as a matrix algebra coincides with the
tensor product of the matrix algebras W; and W,. It immediately follows from the
definition that Wi 1 Wy, < W), @ W,.

The tensor product of compact cellular algebras is not necessarily compact. For
example we by using Fukuda’s program (see [4]) found 1116 extreme points of the
polytope DS(S(3) ® S(3)) whereas | Aut(S(3) @ S(3))] = 36. However the following

statement holds.

Theorem 4.3 Let W, be a semireqular cellular algebra. Then the algebra Wi @ Wy is
compact iff so is Wi.

Proof. Since each semiregular algebra is isomorphic to the tensor product of a regular
algebra and a full matrix algebra, we can assume that the algebra W is regular (see

(10)).
Let Wi be a compact cellular algebra and A € DS(W) where W = Wy @ W,. Then

A= Z Au,v @ Cu,uy Au,v € Matvl

RIS

where e, , is the matrix unit of Maty, corresponding to (u,v). Since A commutes with

all matrices Iy, ® R, R € R(W,), we have
Auo = Apnn, hed
where G = {h € Sym(V3) : P, € R(Wy)}. So
A= > A,0P, A, € Maty,,

gEAut(Wy)

11



since {Fy : g € Aut(Wy)} = {Xreqeurn @ u,v € Va} due to the regularity of W5,
By using the fact that A commutes with all matrices from Wy @ Iy, we conclude that
A, € DS(Wy) for all g. By the compactness of W, we see that A, € Conv(Aut(W)).
Therefore A € Conv(Aut(W)).

Conversely, suppose W to be a compact cellular algebra. Let us denote by F the
equivalence on V; x V, defined by the coincidence of the first coordinates. Since W is
homogeneous, F is a central equivalence of W. Thus the compactness of W; follows
from theorem 3.8 and the equality W/E = W;.m

5 Examples

5.1. We start with describing an infinite family of compact cellular algebras and per-
mutation groups. The following statement generalizes the result proved in [10].

Theorem 5.1 Let GG be a permutation group having an Abelian regular subgroup H of
index 2. Then G s compact.

Proof. Let G < Sym(V) and H be the corresponding regular subgroup. Clearly, H
is a normal subgroup of G and G = H UtH where t € G, for some v € V, 1* = 1. Set

T=d, S=tT.

veV

According to [16, Ch. 4] identify V with H so that v" corresponds to h € H. Here  is
identified with a subgroup of Sym(H) so that
hg:{hg, %ngH;
(tht)hl, lfg = thl, hl € H.
In particular, h* = tht for all h € H.

It follows from the definitions that in the above notation i € S if and only if there
exists k € H for which A = k- (k")~!. Thus the commutativity of H implies that S is a
subgroup of H. Let us prove that

S P -Y P, (1)
geSs geT
For h € H we have (h,h') = (h,h") where b’ = k(k")™* € S with & = h~'. Thus
P03 es Py = P Since S is a subgroup of H, the same is true with ¢ replaced by any
element of T'. So the matrix in the right side of (11) is not changed multiplied by the
matrix in the left side. Since |S| = |T'|, the equality (11) follows.

Let A be a doubly stochastic matrix belonging to Env(G). Then

A=> NP, A, € R (12)

g€G
Without loss of generality assume that the number of negative A, in (12) is minimal
possible. Let Ay, < 0 for some gg € . We can also assume that go = 1, since otherwise

A can be replaced by P,-1A. Then

A= Z )‘9P9+2()‘9+|)‘1|)Pg+2()‘g_|)‘1|)Pg-

gEG\(SUT) g€eSs geT
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Since P, o P # 0 for all ¢ € T, we see that A, — |[A| = A, + A1 > 0. On the other
hand, the coefficient at 1 of the last decomposition equals 0. So the number of negative
coefficients of this decomposition is less that of decomposition (12). This contradicts to
the choice of the latter.m

Remark 5.2 The condition of the commutativity of H is essential. Indeed, let G be the
permutation group arising from the action of Sym(4) on the right cosets of the subgroup
generated by a transposition. Then G has a regular subgroup H of index 2 isomorphic to
Alt(4). This permutation group is not compact: by using Fukuda’s program [{] we found
162 extreme points of the corresponding polytope whereas only 2 of them are integral.

5.2. In paper [6] it was shown that the triangle graphs T,, are compact for n < 4 and
are not compact for all n > 6. The compactness of T, the complement to Petersen’s
graph, was an open problem. Nothing was known about the compactness of the Johnson
graph J, ; for k > 3.

Let us denote by J(n, k), 1 <k < n/2, the adjacency algebra of the Johnson scheme
with parameters n and k, i.e. the centralizer algebra of the action of Sym(n) on the set
of all k-elements subsets of [1,n]. It is known (see [2]) that J(n, k) is a commutative
homogeneous cellular algebra of dimension k + 1. The adjacency matrix of the Johnson
graph .J, ; belongs to the standard basis of the algebra J(n,k) and generates it as a
matrix algebra.

Theorem 5.3 The cellular algebra J(n, k) is compact iff k =1 or (n, k) = (4,2).

Proof. Since J(n,1) = S(n) and S(n) is compact (see section 3), we assume k > 2.
Besides, J(4,2) = S(2) 1 5(3). By theorem 4.2 the last algebra is compact. Thus we
assume in addition that n > 5.

Let us denote by R the adjacency relation of the Johnson graph J,, 4:

R=1{(S58): 58 cClln], |S|=|5 =k |SNS|=k—1}. (13)

and by A its adjacency matrix. Then A is a basis matrix of the algebra J(n,k) (see
above). Let us prove the following statement:

Vg € Sym(n) 35 C [1,n]: |S| =k, (S,57) & R. (14)

Let ¢ € Sym(n) and F' = {v € [1,n] : v9 = v} be the set of all fixed points of g. If
|F'| > k, then any k-subset S of F' satisfies (14). Otherwise, since n > 5, there exist two
distinct points u, v such that {u?,v9} N {u,v} = 0. Since k > 2, there exists a k-subset
S of [1,n] for which w,v € S and w9, v9 € S. Then |S N SY <k — 2 which implies that
(5,599) ¢ R and proves (14).

Due to the commutativity of the algebra W = J(n, k), the matrix éA belongs to
DS(W) where d is the degree of R. To prove the non-compactness of W it suffices to
check that

VgeGIueV: A,w=0 (15)

where G = Aut(W) and A = (A,.). If n > 2k + 1, then G = Sym(n) (see Lemma 2.1.3
in Appendix 2 of [2]) and (15) follows from (14). If n = 2k, then G = Sym(n) x {1,}
where ? is the permutation moving a k-subset of [1, n] to its complement. For g € Sym(n)
we reason as above. If ¢ = ht with o € Sym(n), then the inequality (15) for it is the
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consequence of the analog of statement (14) with 5S¢ replaced by its complement (in the
proof we have to choose a k-subset S containing u, v, u?,v?). This completes the proof
of the theorem.m

It follows from the theorem that the triangle graph T, = .J,; is not compact for
n > 5. Since Petersen’s graph is the complement to Ts, we get the following statement.

Corollary 5.4 Petersen’s graph is not compact.

5.3. For a positive integer n let us denote by H(n) the centralizer algebra of the
permutation group G which is the wreath product of Sym(2) and Sym(n) acting on the
set {0,1}". Clearly, H(n) is a homogeneous algebra. According to [3] Aut(H(n)) = G
for all n. Certainly, H(n) coincides with the adjacency algebra of the Hamming scheme
with parameters n, 2 (see [2]). Notice that H(n) is generated as a matrix algebra by the
adjacency matrix of the n-dimensional cube.

Theorem 5.5 The cellular algebra H(n) is compact iff n < 3.

Proof. It is easy to see that the algebras H(1), H(2) and H(3) are isomorphic to
S(2), S(2)15(3) and S(4) @ S(2) respectively. So the compactness of them follows from
theorem 4.2 and theorem 4.3 and the compactness of the simplex. Let us consider the
algebra W = H(4). It is easy to see that W/E = 5(4)15(2) where E is the equivalence
of W with classes of cardinality 2. Then due to theorem 3.8 the algebra W is not
compact, since | Aut(W)| = 2%4! = 384 and Aut(W/E) = (41)*2 = 1152.

Let n > 5. Set W = H(n) and W’ to be the centralizer algebra of the action of
Sym(n) on the set 214" (naturally bijective to {0,1}") of all subsets of [1,7]. Below we
will show that W’ is a non-compact cellular algebra. It will imply that so is W, since
otherwise by theorem 3.7 W/ = W, v € {0,1}", and the algebra W’ would be compact.

Let us consider the algebra W’. Index the cells of W’ by the numbers 0,1,...,n so
that the kth cell consists of all k-subsets of [1,n]. Set

A=Y P, = My
g

where g runs over all elements of Aut(W’) corresponding to the transpositions of Sym(n)
and A = (g) — ko(n — ko) with kg = [%]. Note that the elements of the matrix A
are non-negative integers, since the Hadamard product of A and the unity of the kth
homogeneous component of W’ is a multiple of this unity with the coefficient ko(n —
ko) — k(n — k) which is not negative for all k. Since |S N S9 > |S| — 1 for any set
S C [1,n] and a transposition g € Sym(n), the restriction of A to the koth cell of W’ is
a multiple of the adjacency matrix of the relation R defined in (13) (with k = ko). As
we saw in proving theorem 5.3 no multiple of this matrix belongs to DS(W;) where W
is the koth homogeneous component of W’ (coinciding with J(n, ko)).

Note that the matrix A’ = %A belongs to DS(W’) for some a. On the other hand
A" ¢ Conv(Aut(W’)), since the restriction of A’ to the koth cell of W’ does not belong
to Conv(Aut(Wy)). Thus W’ is not compact.m

Remark 5.6 Let S be a nonempty subset of [0,n]. Denote by W the centralizer algebra
of the action of Sym(n) on the subsets of [1,n] the cardinality of which belongs to S.
Then W is compact iff either S C{0,1,n—1,n} orn=4and2 € S, 1,3 ¢ S. Indeed,
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forn > 5 this was in fact proved in the theorem. For n <3 it is trivial. If n =4, then
it suffices to check that the algebra Wy 5y is not compact. This can be done for instance
by Fukuda’s program [4].

5.4. Let us turn into the compactness problem of the Platonic solids graphs. It is
known (see [1]) that all of them are distance-regular (even distance-transitive) graphs.
So their compacntess is equivalent to that of the corresponding cellular algebras (see
subsection 3.1).

Theorem 5.7 The graphs of the tetrahedron, the octahedron and the cube are compact,
the graphs of the dodecahedron and the icosahedron are not compact.

Proof. It is clear that the cellular algebra of the tetrahedron is isomorphic to S(4),
whence its compactness follows. The cellular algebras of the octahedron and the cube
are isomorphic to S(2) 1 S(3) and S(4) @ S(2). Thus their compactness follows from
theorem 4.2 and theorem 4.3 respectively.

Let us finally consider the dodecahedron and the icosahedron. In the both cases
denote by W the corresponding cellular algebra and by F its antipodal equivalence the
classes of which are pairs of vertices at maximal distance. In the case of the dodecahe-
dron W/ FE is isomorphic to the cellular algebra of Petersen’s graph which is not compact
by corollary 5.4. So W is not compact by theorem 3.8. In the case of icosahedron W/ E
is isomorphic to S(6). So the non-compactness of W also follows from theorem 3.8 after
taking into account the fact that | Aut(W)| = 120 whereas | Aut(W/FE)| = 720.

5.5. A transitive permutation group G < Sym(V') is called Frobenius group (see [9])
if it is not regular and G, , = {1} for all distinct u,v € V. By the Frobenius theorem ¢
has a normal regular subgroup H called the Frobenius kernel of GG. In [9] it was shown
that H is Abelian if its index in (G is even.

Theorem 5.8 A Frobenius group G < Sym(V') is compact iff |G,| =2, v e V.

Proof. If |G| = 2, then the compactness of G follows from theorem 5.1 and the
result cited above. Let |G| > 3. It follows from the definition that for all £ € G

> Pp=Jy and PjoPy,=0 & Hg=Hqg (16)

gEHE

where H is the Frobenius kernel of (. Since |G| > 3, there exist k, k' € G\ H such
that Hk # HE' and k, k' € GG,. Set

A: Z Pg—|—Pk/—P1.
gEHR\{k}

By the choice of k and k" and (16) all the elements of A are non-negative integers and
Ao Py =0. Let us check that for the pair (G, A) condition (15) is satisfied, whence the
non-compactness of G will follow. Indeed, by (16) if ¢ ¢ H \ {1}, then P, o P, # 0, else
P,0 P, #0.m

The theorem enables us to state that the minimal n for which a non-compact cellular
algebra on n points exists, is equal to 7. Indeed, it implies that the semidirect product
of cyclic groups of order 7 and 3, acting on 7 points is not compact. Since this group
is 2-closed, its centralizer algebra is also not compact. On the other hand, due to [§]
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all cellular algebras on n points are Schurian for n < 8. So it suffices to check that all
2-closed permutation groups of degree at most 6 are compact. However the centralizer
algebras of these groups can be constructed from simplexes, regular algebras and the
algebras of undirected cycles by the compactness preserving operations described in
sections 3 and 4.

6 Algorithms

6.1. Throughout the section we assume that V' = [1, n] and deal with cellular algebras W
on V the basis matrices of which are numbered by positive integers (colors) 1,..., s where
s = |R(W)|. The color of v € V with respect to W is defined to be the color of the
matrix Iy € R(W) where U is the cell of W containing v. Under isomorphism of such
algebras we mean an ordinary cellular algebra isomorphism preserving the colors of the
basis matrices.

Given a cellular algebra W on V and A € Maty, we put in order the set of the
basis matrices of the algebra W[A] according to the Weisfeiler-Lehman algorithm for
constructing cellular closure, so that the following property holds (see [14, Ch.M]):

(W-L) if ¢ € Sym(V) is an isomorphism from W to W’ and A9 = A’ then ¢ is also an
isomorphism from W[A] to W'[A'].

The standard basis of W[A] (with the order) can be constructed by this algorithm in
polynomial time from W and A. In this way we put in order the basis matrices of the
algebra W,, v € V, and inductively of the algebras Wy, .. = Wu, . 0i i )ue-

6.2. Let us describe the k-orbits of the automorphism group of a compact cellular
algebra on V, i.e. the orbits of the induced action of this group on V¥, k > 1.

Let W be a cellular algebra on V' and (e¢y,...,¢x) be a k-tuple of positive integers.
We say that (cq,...,cx) is W-admissible if there exists a k-tuple (vq,...,v;) € V¥ such
that for each ¢ € [1, k] the color of v; with respect to W, . .._, equals ¢;. The set of all
these (vy,...,vx) is denoted by S(eq,...,cx). It is clear that S(cq,...,¢x) is a union of
the k-orbits of Aut(W).

Proposition 6.1 Let W < Maty be a compact cellular algebra. A subset S of V* is a
k-orbit of Aut(W) iff S = S(ex,...,cr) for some W-admissible tuple (cq,. .., ck).

Proof. Let (e1,...,¢x) be a W-admissible tuple and (vq,...,vg), (v],...,0}) €
S(ery...,cr). Let us show by induction on ¢ that there exists g; € Aut(W) such that
¢; 1s an isomorphism from W, .., to WU1~~~W§_1‘ The induction base is provided by
setting g1 = 1. Let the isomorphism g¢; be already constructed and u = v, Then the
colors of u and v; with respect to Wy, ./ coincide by the definition of S(ci,...,cx)
and due to the fact that g; is an isomorphism of colored algebras. By theorem 3.7 and
theorem 3.4 there exists h € AUt(Wug,...,u;_l) such that u" = v!. According to (W-L)
giy1 = g;h 1s the required isomorphism from W, .. to in,...,vl'.'

Conversely, let S be a k-orbit of Aut(W) and (vy,...,v;) € S. For each i € [1, k]
define ¢; to be the color of v; with respect to W,, _.._,. Then the tuple (cy,...,cx)
is W-admissible and (vq,...,vx) € SN S(c1,...,¢;). By the first part of the proof
S =S(ery...,0p)m
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6.3. Proposition 6.1 enables to find a canonical labeling for the class Wy of compact
cellular algebras on V, i.e. a map ¢l : Wy — Sym(V) such that the following condition
is satisfied:

ngWQ = Wf1:W202, Wl,WQEWV
where o; = c[(W;), i = 1,2. This can be done by the following procedure:

for i €[l,n] do
U = {U17...7Ui—1};
¢ = mingev\v (v, Wo, v,y );
o — miH{U cV: C(U, Wul,...,vi_l) = C};
od

where v; = jg_l and ¢(v, Wy, .._,) is the color of v with respect to Wy, ,._,. It is
clear that the permutation o = ¢/(W) is computed in polynomial time.

The above algorithm shows the way to find the group Aut(W) for W € Wy in
polynomial time. If W = Maty, then Aut(W) = {1}. Otherwise, fix a point vy € V for
which W,, # W and construct a generator set of the group Aut(W) recursively from a
generator set of Aut(W,,). The recursion is provided by the equality

Aut(W) = [ Aut(W,y)gs

vEA

where A ={veV: W,2W,}and g, = (W, )cl(W,)"". Note that we really find a
strong generator set of Aut(W). Thus the following statement is proved.

Theorem 6.2 A canonical labeling in the class of compact algebras (weakly compact
graphs) and the automorphism group of a compact algebra (a weakly compact graph) can
be found in polynomial time.

It is well-known that the Graph Isomorphism Problem is equivalent to the Setwise
Stabilizer Problem: given a permutation group GG on V and a set U C V, find the
subgroup of all permutations of G leaving U fixed as a set. Theorem 6.2 shows that in
the class of compact groups this problem can be solved in polynomial time. Indeed, it

suffices to find Aut(W{[ly]) where W = Z((). The compactness of the algebra W/[ly]
is provided by theorem 3.7.

7 Open problems

All primitive compact permutation groups which we know coincide with the natural
representations of symmetric groups or dihedral and cyclic groups of prime degree.
Problem 7.1 Are there any other compact primitive groups?

It is a well-known fact that the structure constants of a cellular algebra do not
determine it up to a cellular algebra isomorphism (see [2]). However, we have no such
examples for compact algebras.

Problem 7.2 [Is it true that two weakly isomorphic compact cellular algebras are iso-
morphic?
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Here under a weak isomorphism of cellular algebras we mean an ordinary algebra iso-

morphism preserving the Hadamard multiplication and the Hermitian conjugation.

In [5] a polynomial-time algorithm for recognizing compact regular graphs with prime

number of vertices was described. Certainly, it also works for homogeneous algebras of
prime degree.

Problem 7.3 Is there an efficient procedure to recognize general compact algebras?

One can easily prove by using the technique of section 6 that this problem is polynomial-

time equivalent to the problem of recognizing compact groups.
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