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Abstract

Let K be algebraically or real closed field, A a finite dimensional assotia-
tive K —algebra with the unity element and V' a finitely generated A—module.
An algorithm of polynomial complexity is described in the paper which de-
composes V into the direct sum V = @;crV; of indecomposable A-modules
Vi. In particular an algorithm is suggested for constructing all the projective
non—-isomorphic indecomposable A-modules. Also an algorithm of polyno-
mial complexity is constructed which given two A—modules Vi and V. decides
whether Vi is isomorphic to V2 and if it is the fact constructs this isomorphism.

As an application the following results are obtained. Let A4,..., A, and

1,..., Al be two families of n x n-matrices with coefficients from K. An
algorithm of polynomial complexity is described in the paper which decides
whether there exists a nonsingular (respectively orthogonal) n x n-matrix S
with coefficients from K such that SA;S™! = A’ for all 1 < i < m and if it is

the fact this algorithm constructs such a matrix S.
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Introduction

The aim of this paper is to construct polynomial-time algorithms for for decom-
posing finitely generated modules (or representation) over associative algebras with
the unity element into the direct sums of indecomposable modules (representations).
The cases of algebraically or real closed ground fields are considered. Such a de-
composition is unique up to the order of the direct summands due to the theorem
of Krull-Schmidt which is valid in this situation [?]. We solve also in polynomial
time the problem of isomorphism of two finitely generated modules over an algebra.
Our presentation is self-contained in its algorithmic part and uses only some results
about projective modules over an algebra A in its mathematical background which

can be found in [?].

In the theory of representations of finite dimensional algebras both irreducible
and indecomposable representations are considered. Irreducible representations cor-

respond to simple modules over algebras.

The module is called indecomposable if it is a nonzero module and it can not be
represented as a direct sum of two nonzero submodules. Indecomposable modules
or representations can be characterized by the fact that their algebras of endomor-
phisms are local, 1.e. all irreversible endomorphisms of indecomposable modules are
nilpotent [?]. Each irreducible module is indecomposable. In the case when the
considered algebra is semisimple each indecomposable module is irreducible and
projective. The case of semisimple algebras and modules over them was considered

in many papers. The references see in [?].

Many problems (similar to decomposing finitely generated modules into the
direct sum) related to semisimple algebras over the field of rational numbers are
hard from the point of view of the theory of complexity and at least as difficult
as factoring integers [?]. So we bound ourself by the case of algebraically and
real closed ground fields. Randomized and deterministic algorithms for semisimple
algebras over R and C and modules over these algebras were constructed in [?],
[?], [?]. The known deterministic algorithm, according to [?], for decomposing of a
module over such a semisimple algebra used the reductions to the case of algebras
over finite fields and the theory of lattices in a semisimple algebra over a field of

algebraic numbers.

We suggest in Section 1 deterministic algorithms for decomposing modules over
semisimple algebras over algebraically and real closed fields which are straitghfor-
ward and uses only linear algebra. We include this material in the paper also since
we need the exact and detailed information in next sections about this decomposi-

tion.

Further, in Section 2 we consider projective modules over an arbitrary finite
dimensional algebra A with the unity element. Let 98 = 9(A) be the radical of
the algebra A. Tt is known [?] that there exists a bijective correspondence between

the classes of isomorphic indecomposable projective A—modules and the classes of



isomorphic simple A/9R-modules. A polynomial-time algorithm is described for
constructing representatives of all classes of isomorphic indecomposable projective
A-modules under the mentioned correspondence. We show that one can decide
within the polynomial time whether a given A—module is projective. Besides that
a polynomial-time algorithm is suggested for decomposing of a given projective

module into the direct sum of indecomposable projective modules.

Decomposition of an algebra into the direct sum of projective ideals requires lift-
ing of idempotents from its semisimple reduction modulo the radical. This construc-
tion can be considered as a generalization of Hensel’s lemma. A polynomial-time
algorithm for this construction is described in Section 2 when the field of definition
of the reduction of these idempotents is an extension (the same for all of them) of
a polynomial degree of the initial field of definition of the algebra. But when the
reductions of idempotents have different fields of definition with a big composite
field this construction does not wok directly in polynomial time. In Section 3 an

algorithm for lifting idempotents in this situation i1s described.

In Section 4 the required polynomial-time algorithm for decomposition of arbi-
trary finitely generated A—modules into the direct sum of irreducible is described.
Considering the algebra of endomorphisms of the given module we reduce the gen-

eral case to the case of projective modules.

Further, in Section 5 an algorithm of polynomial complexity is constructed for
the problem of the isomorphism of finitely generated A—modules, and even a more
general result is obtained here. The isomorphism constructed is defined over the
field of definition of the considered modules. In other words one can construct
within the polynomial time the isomorphism (if it exists) of modules over algebras

over a field which 1s a finite extension of Q or a finite field, see Theorem 2 below.

In Section 6 we consider applications of the results obtained to the problem
of similarity of families of matrices, see Theorem 4 below Note that the solved in
Section 6 problem of similarity of families of matrices is a particular case of the
following well Edmond’s problem. Given a subspace W of the space of square
matrices over a field, decide within a polynomial time whether the determinant is

not identical zero on W.

In Section 7 a polynomial-time algorithm is constructed for the problem of

orthogonal similarity of families of matrices, see Theorem 5 below.

Now we give the precise statements. Let H be the field of rational numbers Q
or a finite field of ¢ elements, the characteristic char(H) = p (so p is a prime or
zero); the field k = H(#) where 0 is algebraic over the field H with the minimal
polynomial F € H[Z] and leading coefficient lcz F of F is equal to 1. We shall
consider two cases. In the first case denote by K = k the algebraic closure of k. In
the second case suppose that k is a real field, i.e.  is a real root of ' and denote

by K = k the real closure of k, see e.g. [?].



Let A’ be an associative k-algebra which is given by its basis {A;}1<i<n and
multiplication table
Ah= 3 I 1<ii<n
1<s<n
where all cl(f]) € k. Let the K—algebra A = A’ ®; K. In this situation we shall say
that A is defined over the field k and is given by its k—structure. We shall use the

similar definition also for extensions k; of &k instead of %.

If it 18 not specially mentioned the modules and the ideals considered in the
paper are left modules and the ideals. Let V' be a finitely generated A’—module
which is given by its basis {v;}1<;j<m and by the multiplication table giving the

action of A’ on V':

vi= 3 A asisnasi<m
1<s<m

where all dl(f]) € k. Let the A-module V = V' @, K. In this situation we shall
say that the module V is defined over the field k& and is given by its k-structure.
The homomorphism Vi — V5 of two A—modules defined over k is defined over &
if and only if it is induced by the homomorphism V{ — V3 of k—structures by the
extension of scalars. We shall use the similar definition also for extensions kq of k
instead of k.

Set Hy = Z if H = Q and Hy = H if H is a finite field. We shall represent an
arbitrary polynomial f € k[X] in the form

_ 1 0 09X
! o Zi:OSJ;egf !
where ag,a; € Hy, gcdiyj(ao,aiyj) = 1. Define the length I(a) of a € Hy by the
formula I(a) = min{s € Z: |a| < 2°~ '} if Hy = Z and l(a) = min{s € Z : ¢ < 2°}
if H is a finite field with ¢ elements. The length I(f) of coefficients from Hy of
the polynomial f is defined to be the maximum of length of coefficients from Hy
of polynomials ag, a; ; and in the similar way one can define {(f) for a polynomial

f € k1[X] where the field k; = H (1) and the element #; are analogous to &k and ;

in particular one can do it when k; 1s algebraic over k.
We shall suppose that we have the following bounds

degy(F) < di, [(F) < My U(c}*)) < M 1(d")) < M3
for 4, j, s.

The size L(f) of the polynomial f such as above is defined to be the product of
[(f) to the number of all the coefficients from Hy of f in the dense representation.

Thus, we have

L(F) < &, My, L(c{¥)) < diMa, L(d)) < di M5 .

Now we can formulate our results.



THEOREM 1. Let the algebra A and the module V' be as above. Then one can
construct within the time polynomialin dy, M, My, Mz, n, m and the characteristic

of the field &k the 1somorphism of the decomposition into the direct sum
V o~ @i V7

where all V; are indecomposable A—modules, 1 < ¢; € Z, I is a finite set. The
module V; is defined over over a separable extension K; of k& which is constructed.
The degree [K; : k] <m® if K = k and [K; : k] < m3,if K = k. Besides that, the

representation of V; by its K;—structure is constructed for every ¢ € I.

Now consider two A—modules V; and V5 similar to V' and defined by their k—
structures V; and Vj. Let d(lfgyj and d(sz,j be similar to dl(f]) and satisfy to the same
estimations for deg, and the lengths of coefficients from Hy as dl(f])

THEOREM 2. One can decide within the time polynomial in dy, M;, Ms,
Ms, n,m and the characteristic of the field & whether the A—modules V] and V;
are 1somorphic and if it is the fact to construct the isomorphism between them.
Besides that, one can construct such an isomorphism defined over the field &, i.e.

this isomorphism is given by the isomorphism of A’-modules V/ and Vj.

THEOREM 3. Let the algebra A and the module V be as above. Then one
can decide within the time polynomial in dy, My, M5, M3, n,m whether V is a
projective A—-module. One can construct within the time polynomial in dy, d2, M7,
My, n and the characteristic of the field k& the system of representatives & of all

classes of isomorphic indecomposable projective A—modules, herewith #8 < n.

Let Ay,..., Ay and By, ..., By, be two families of rxr—matrices with coefficients
from the field k. Let Az = (aiyjlyh)lfjlyhfr’ Bi = (biyjlyh)lfjlyth where all the
coefficients a; j, ;., bi j, ;. € k. Let all a; ;, ;., bi j, ;, satisfy to the same estimations

for the lengths of coefficients from Hy as dl(f])

THEOREM 4. Let two families Ay, ..., Ay, and By, ..., By, of rxr-matrices
with coefficients from the field & be given. Then within the time polynomial in d,
My, My, Ms, n,m,r and the characteristic of the field & one can decide whether
there exists a nonsingular rxr—matrix S with coefficient from K such that SA; 57! =
B; for all 1 < ¢ < m and if it 1s the fact can construct such a matrix S. Besides

that, such a matrix S can be constructed with coefficients from &.

Let K be real closed. The square matrix A with coefficients from K is orthogonal
if and only if AAT = E where AT is transposed to A and F is the unity matrix.

THEOREM 5. Let k be a real ordered field and K real closure of k. Let two
families A1, ..., A, and By, ..., By, of rxr—matrices with coefficients from the field
k be given. Then within the time polynomial in di, My, Ms, M3, n,m,r one can
decide whether there exists an orthogonal r x r—matrix .S with coefficient from K
such that SA;S~! = B; for all 1 < ¢ < m and if it is the fact can construct such a

matrix S.



1 Algorithms for semisimple algebras and modules

over them

The material of this section is known, see [?],[?], [?]. But for the completeness and
since our representation of input data is slightly different from the considered earlier

we shall sketched the required results with the proofs.

Let an algebra A and a finitely generated A—module V be given, see introduction.
Suppose additionally that the algebra A is semisimple, i.e. the radical ;8 = R(A) =
0. In this case by the structural theorems about semisimple algebras and modules

over them, see e.g. [?],
A= @z’eIAi (1)

where all A; are simple algebras over K and [ is a finite set. Further, V = ®;cfA;V
where each A;V is A-module and A;—module. Besides that, A;V is an isotypical
module or equal to zero, i.e. A;V ~ US* where U; is a (uniquely defined up to
isomorphism) simple A;—module, 0 < ¢; € Z for all i € I. So we have the decompo-

sition of V into the direct sum of simple (and indecomposable) modules

V & e Ust 2)

We have A ~ A’®y, K and we shall identify A and A’®g K using this isomorphism.

To construct (1) denote by 7 = Z(A) = {¢ € A : Ay = Me V1 < i < n} the
center of the algebra A. Similarly 7/ = Z(A') = {c € A : ¢\ = eV <i<n}is
the center of the algebra A’. So we have Z(A) ~ Z(A') @ K, dimg 7' < n.

Compute the k—basis ¢;,j € J of Z' and a primitive element ¢ of the separable
commutative algebra 7' over k. Thus, the isomorphism 7' = k[c] ~ k[Z]/(f(7Z))
is constructed where f is minimal polynomial of ¢ over k such that the leading
coefficient lczf = 1. We have deg, f < n. The algorithm for constructing a
primitive element is similar to the case when 7' is a field, see e.g. [?]. So ¢ =
EjeJ zjcj where all z; € Z, |zj| < n?. Factor f = [ics, i where f; are irreducible
over k polynomials with lcz f; = 1 for all . Denote by H; = {n € k : fi(n) = 0}
the set of roots of the polynomial f; in the algebraically closed field k.

Suppose that deg, f > 1. Then for every ¢ € [; and n € H; denote f, =
f(Z1)/(Z1 — n) € k[n][Z1]) where Z; is a new variable. Set 9 = Z; mod f, €
kn|[Z1]/(f,)- Note that k—algebras k[n, 1] are isomorphic over k for different n €
H;. We have dimy, k[n, 7] < n(n—1)/2.

At first, consider the case when K = k. So the elements of H; are conjugated

over k. We have

z=0'onK=K[Z)/(f(2) = [[ II E121/(Z=n) =~ ] TI *ml@wm k. (3)
i€l neH; i€l neH;

Then

I+ @wn K =~ k20 () @k K
n'€H;n'#n



and therefore,

7" @k kn] ~ k][ Z1]/ () * k[n),
Z = k[[Z1)/(fy) @xpm) K % k[n] @ppy) K.

Thus, for every ¢ € Iy and n € H; solving a linear system over the field k[n]
construct the central idempotent e, € Z' @i k[n] C A’ @k k[n] C A such that
enZ = k[n] @xpy) K under isomorphism (3). Set A, = Ae, and Aj = A'e,; and
construct a k[n]-basis of Aj. Then Aj is a simple k[n]-algebra, A, is a simple K-
algebra, A, = A; @) I for every for every i € I and 1’ € H; and we have the

A~T] I M

i€l neH,;

isomorphism

which gives isomorphism (1) after changing the set of indices. Tt is proved addition-
ally that each simple algebra A, is defined over the field k5] and the element 5 has

minimal polynomial f;, over k with deg, f; <n,t € I1.

Now consider the case when K = 7{?, in particular char(k) = 0. Compute positive
integers z1, 2z < P(n) for a polynomial P such that the element & = z1(n + 1) +
zam1)1 is a primitive element of the subalgebra k[n+n1, nn1] of separable commutative
algebra k[n,n1] for every i € I} and n € H;. Compute the minimal polynomial ®;
of the element & € k[n, n1] over k. We have deg ®; < n(n — 1)/2.

REMARK 1. Additionally we require that G.C.D.(JTics, @i, f) = 1 (there
exist always z1, 22 < P(n) such that this additional condition is satisfied). Note
that the last condition about G.C.D. will be required later only for defining the set
I of indices which must be different. One can do not require the fulfillment of this

condition but choose another denotations for the set of indices I later.

Compute the representation

n+m=51(¢) = Z 51,567 € k[¢1],

0<j<deg @
=S = D 5267 € R[ET
0<j<deg @

where all s1 5,80 ; € k. Factor ®; = HjEJ,
polynomials with le;®; = 1 for all i € 1, j € J;. We have deg ®; < n(n —1)/2.

®; where ®; are irreducible over k&

Set H;:Hiﬂ% and
Ei={ek: ®;(¢) =0&51(€)? — 455(€) < 0},

Set the field k[¢,n'] = k[€][Z]/(Z% — S1(€)Z + So(&)) where ' = Z mod Z? —
S1(6)Z 4 S2(&). The roots of ® and therefore, the elements of =; can be given by
their approximations in Q[/—1] with precision 2-M:1P(7) for some polynomial P.



For arbitrary n € H; \ H! denote by 7 its conjugate over k. Now we have

Z =7 @ K~K[Z]/(f(Z)) ~
[Licr,ILyen K121/(Z =) x iy mycmam K12 (Z =n)(Z =7))) ~
[ier,(Iyen K121/ (Z = n) < T1je g, Tees, K12]1/(2° = S1(€)Z + S2(€))) ~
Hiell(nneH; k(n] @xpgy K % HjeJ, ngzj kiE,n'] @rpg K)

(4)

Similarly to the considered case of algebraically closed field construct for every
i € I and € H} the central idempotent e, € Z' @ k[n] C A’ @ k[n] C A such
that e, 7 = k[n] @x[,) K under isomorphism (4). Set A, = Ae, and Aj = A'e,
and construct a k[n]-basis of Aj. Then A} is a simple k[n]-algebra, A, is a simple
K-algebra, A; = A} @y K, ie. Ay is defined over k[n]. The center of A; is k[n],
the center of A, is K = k[n] @ppy K

Further, in a similar way for every ¢ € I, j € J; and £ € E; construct the
central idempotent e € Z' @y, k[€] C A @y k[€] C A such that e Z = k[¢, '] Qpe) K
under isomorphism (4). Set A¢ = Aeg and Ay = A’e¢ and construct a k[¢]-basis of
A¢. Then Aj is a simple k[¢]-algebra, A; is a simple K-algebra, A¢ = Af Qg K,
i.e. Ag is defined over k[¢]. The center of Ag is k[¢, 7], the center of A is K =
Kn'] = k[¢, '] @yje) K. Construct a k[¢, 5']-basis of A;. Denote by @ the minimal
polynomial of the element & over & with leading coefficient lc® = 1. So we have

deg® < n(n—1)/2.
If p € H; \ H! and 7 is conjugated to 5 over k then define also the nonzero
idempotents e, ex € A®x K D A such that en +ey = e¢ where £ = e, + ey + ze, 65
Therefore, we have the isomorphism
A~ TTCIT A < TT I Ae)
iel, neH! jedi €€E;
which gives isomorphism (1) after changing the set of indices.

The described above construction of the decomposition of A into the direct

product can be effect also in the case when deg f = 1. It is trivial in this case.
Set

I= UHZ» if K=k
i€l

r=JuivuJ s it K =k

1€l jEJ;

Set ; = H; if K = %k and F; = H!U UjEJ, By if K = k. So we have in the both

cases
I= U E;
i€l

and

Thus, isomorphism (1) is constructed and we can suppose that every A; is defined
over a finite extension k; of the field k, k; C K, i.e. A; = Al ®5, K where A} is a



simple k; algebra. The field k; (which is k[n] or k[£] in denotations of (3) and (4))
and the k;—basis of the algebra A} C A’®y k; are constructed for every ¢ € I. Denote
by kf the center of Af (which is k[n] or k[£,%']) in denotations of (3) and (4)). Then
Al is a simple central kj-algebra and A; is a simple central k! @5, K-algebra (note
that k! @y, K = K-algebra if k; = k[] and k! @, K = K if k; = k[¢] in denotations
of (3) and (4)). The field &k} and the ki-basis of the algebra A} C A’ @ k] are

constructed for every ¢ € I.

We have A = A'@, K and A@g K = A’@y K. Hence, the Galois group Gal(K/k)
acts in the natural way on A and the Galois group Gal(K /k) acts on A@g K. These

actions are trivial on A’.

Now let A" be an L-structure of a submodule A (of A) defined over the field L
which i1s an extension of k. Then every embedding ¢ : L — K over k is extended
uniquely till the embedding A’ — A which we shall also denote without ambiguity
by . This embedding ¢ : A" = A is such that o(a) = a® for a € A’ where
o € Gal(K/k) is an arbitrary element for which the restriction &|p = o. The
embedding ¢ : A’ — A does not depend on the choice of & since A’ is invariant
relatively to the Galois group Gal(K/L).

REMARK 2. For every i € I and for every embedding o : k; — K of fields
over k there exists j € [ such that i = 57 and there exists u € I; such that ¢, 5 € F,,
under our choice of the sets of indices. Besides that we have for such ¢, 5 € E, that
(A})? = A and for the idempotents ef = ¢;.

REMARK 3. Setforie I the algebra A; = @©;ep,A;. The central idempotent
corresponding to the algebra A; is equal in the both cases to ZjeH, e = ZjeE, €;.
So the algebras A;, ¢ € I; are defined over the field & and Eieh A; 2 A. The
k—structures for the algebras A;, ¢« € I; and this isomorphism defined over the field
k can be constructed within the polynomial time as it follows from the construction

described.

Now our aim will be to construct for every i € I the simple A;—module Uj;.
Note that A; ~ U™ where 1 < m; € Z. Construct a k;—basis of the Al-module
A C A By ks

Let {X; j}1<j<n,; be the ki—basis of A} constructed with the multiplication table
and defining the algebra A}. So we have the regular representation j : A; = My, (K)
of the algebra A; given by the basis {Ai j}1<j<n,-

If K = k then by the the Wedderbern theorem we have A; ~ M, (K) where
M, (K) is the matrix algebra over K of the order m; = +/ni and the simple module

over A; is isomorphic to the space of columns K™¢.

If K = k then by the Wedderbern theorem, see e.g. [?], we have A; ~ M, (D;)
where My, (D;) is a matrix algebra of the order m; over the division algebra D
over K and the simple module over A; is isomorphic to the space of columns DJ™.
Besides that, A; is identified with the algebra of endomorphisms Homp, (D¢, D™*)

of the right D;—vector space D;"*. Further, we have one of the following cases



(i) D; =K,
(il) D; = K[V-1]=K,

(iii) D; = H(K) where H(K) is the algebra of the Hamiltonian quaternions over
K, i.e. this algebra has the basis 1,1, j,ij over K with the multiplication table

i*=j? = -1 ij= —ji,

Set dimg D; = d; where d; > 0. Then d; is equal to 1,2 or 4 according to cases (i),
(ii) or (iii). We have n; = m?d;. Set also D; = K, d; = 1 if K = %. Note that the
case (ii) holds if and only if k] # k;, i.e. when Z(A;) = k[£, 0] for some & and %’ in
(4). So we can always decide whether (iii) holds.

Suppose also without loss of generality, extending in advance if it is necessary
the field H, that it contains sufficiently many elements, namely, more than P(n)
elements for some polynomial P. Let a = ZlSjsnz a;A; ; € Al be anonzero element
such that all coefficients a; € Hy and have small sizes {(a;) < O(logn) if Hy = Z.
In the case when K = k choose such an element a. In the case when K = k we shall
specify later (when the case K = k will be considered completely) how to choose a.

So let @ be given.

Compute the characteristic polynomial x1 € k;[Z] of the matrix j(a) € M,,(K).
Factor y; over k;. Similarly to that it was by constructing isomorphisms (3) and
(4) for every irreducible over k; factor y2 of the polynomial x; construct the set of
irreducible over K factors xs|x2 with leading coefficient lcys = 1. So the degree
of x3 1s 1 or 2 and the last case may occur only when K = k. More precisely,
construct for every xs the field k[C] D ki (it depends on x3) generated by the
coefficients of xs, k;[(] C K, c.f. constructing k[£] above. The element ( is given
over the field k; by its minimal polynomial ¥; € k;[Z] with lcz¥ = 1. Denote
K; = ki[C] Set W(xs) = {# € A; : x3(j(a))x = 0} the annulator of x3(j(a)) and
d(x3) = dimg W(xs). Set d(a) = min, |y, d(x3).

The multiplicity of every root of y; is no less than m; = \/m > \/Ni/2. So the
degree of the minimal polynomial of the matrix j(a) is no more than v/n;d; < 21/n.
Hence, degV¥; < 2n if K = k and degW; < /n; if K = k. Therefore, the degree
[Ki: k] <ndif K=k and [K; 1 k] <n®/2if K = F.

REMARK 4. 1If K = k then we shall suppose also that we choose polynomials
x3 such that additionally the following condition is satisfied. If ¢,5 € I and the
embedding k; — K of fields over k are such that j = ¢ (see Remark 2) than
W? = W¥; i.e the coefficients of polynomials ¥; and ¥; are conjugated by o.

Note also that W (x3) is defined over K;. Namely, set W' (x3) = {# € Af@y, K; :
xs(j(a))z = 0}. Then W(xs) = W' (xs) @k, K and d(x3) = dimg, W' (x3). So all
d(x3) and therefore d(a) can be computed within the polynomial time. Compute
d(a) and denote by x some factor ys for which d(a) = d(x) and fix x. So the field
generated by the coefficients of y 1s K; C K.
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Show that d(a) > m;d; and m;d; |d(a). Set U;(x) = {x € U; : x(j(a))x = 0}
the annulator of x(j(a)). Then W(x) ~ U;(x)™ and W(x), Ui(x) are nonzero
right linear spaces over D;. Therefore, dimg U;(x) > d; and d(a) > dimg W(x) =
m; dimg Us (x) = myd; dimp, Uy (x) > myd;. The required assertion is proved.

Suppose that if K = k then d(a) > m; = /n; ; if K = k then d(a) =
m; max{2,d;} = 2./n; and (i) or (iii) holds. In this case we shall construct a
new element a’ similar to a such that d(a’) < d(a) if it exists. If K = k we shall

show that a’ exists in our assumptions. If K = k and o’ exists in our assumptions
then (i) holds and we shall show that conversely if (i) holds then o’ exists.

To construct «' compute the K;—basis e of the space W’(x). Compute an addi-

tional family of vectors €’ such that e, e’ is a K;—basis of the algebra A} ®, K;

Set the subalgebra
C'={r e A @ K; : W (x) Cc W ()}

The condition W' (x) C W'(x) is equivalent to the fact that ze € W'(y) for every
element e from the basis e. This is equivalent to the fact that all the coefficients in
the elements from e’ of the representation of the vector ze in the basis e, e’ are zeros
for every element e from e. So solving the linear system relatively to the coefficients

in the representation of « in the basis of A} ®, K; compute the K;—basis of the

algebra C'.

So W'(x) is C'-module. Denote by C’(x) the image of the trough homomor-
phism
J1 o C" = Hompg, (W' (x), W (x)) ~ Mya) (K3)

and construct the basis over K; of C'(x) C M) (K;) (recall that the basis of W’(x)
was chosen above). We have W(x) ~ U;(x)™ and U;(x) C U; is a right vector
subspace over D; of the simple module U;. In particular, dimg U;(x) = d(a)/(m;d;).
Further, A; is identified with the algebra of endomorphisms Homp, (U;, U;) of the
right D;—vector space U;.

Therefore, the algebra C' = C' @k, K ~ {x € My, (D;) : 2U;(x) C Ui(x)}
and C(x) = C'(x) ®x, K ~ Mgay/(m;a,)(Di). Therefore, our assumption that
d(a)/m; > 1if K =k and d(a)/m; = max{2,d;} implies dimg, C'(x) > 1 if K = k

and dimg, C'(x) =4 if K = k.
LEMMA 1.

(a) If K = k one can construct within the polynomial time an element b € C'(x)
such that b & 1-K; where 1 is the unity element of C'(y) if K = k,

(b)y If K = k then one can decide within the polynomial time whether there
exists an element b € C’(x) such that the minimal polynomial of the matrix
b € My(a)(K;) over K; is not equal to a linear polynomial or square polynomial
with negative discriminant. More precisely, such an element b exists if (i) holds
and does not exists if (iii) holds. One can construct b if it exists within the

polynomial time.
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PROOF. We need only to prove (b). Compute an element ¢ € C’(x) such
that 1, ¢ are linearly independent over K;. So the minimal polynomials of ¢ over
K; is not linear. Hence, we can suppose without loss of generality (otherwise the
required b can be constructed) that this minimal polynomial is a square polynomial
with negative discriminant. Replacing ¢ by ¢ —v -1 with appropriate v € K; we can
suppose without loss of generality that ¢? = —1; - 1 where v; > 0. Now compute
an element d € C’'(x) \ K;[¢]. This is possible since dimg, C'(x) = 4. Similarly we

can suppose without loss of generality that d? = —vs - 1 where v > 0.

Now our aim is to prove that we can suppose without loss of generality (otherwise
the required b can be constructed) that cd + de = 0. Indeed, consider the element
c+7d € C'(x) where 7 € K;. Similarly as it was above we can suppose without loss
of generality that (c+ 7d — 7 - 1)> = 75 - 1, 75 < 0 for uniquely defined 7,7 € K;

depending on 7. So we have
(=1 — var? — 1)1 —=2m(c+ 7d) + 7(cd + dc) = 0.

If there exist two different 7 for which 7 # 0 we get from here a contradiction that
1, ¢, d are linearly dependent over K;. Therefore, ¢d + dc = 75 - 1 where 73 € K;.
Further, note that c¢d & K;[¢]. So replacing d by c¢d in our consideration we can
suppose without loss of generality that ¢(cd) 4+ (¢d)e = 74 - 1 where 73 € K;. But
on the other hand ¢(ed) + (ed)e = ¢*d + (75 - 1 — de)e = m3¢. Therefore, 73 = 74 = 0
and our assertion is proved. So we have got that the subalgebra K;[c,d] C C'(x)
has the basis 1, ¢, d, ed and is a quaternions algebra and hence (iii) holds. In this
case one get immediately that there exists no 6. In other cases one can construct
the required element b. Therefore, C'(x) = C'(x) ®k, K is not isomorphic to the

quaternions algebra. Hence, (i) holds. The Lemma is proved.

Suppose that b is constructed. Solving a linear system compute the set £ of the
elements b’ € C” such that j; (') = b. Note that the factor space (A} @, K;)/W'(x)

is C'-module. So we have the natural homomorphism
J2 + €' — Hompg, (A @k, Ki) /W' (x), (A] @k, Ki) /W (X))

Choose an element h € Hgy which is different from all roots of the characteristic
polynomial of the matrix 6. Show that there exists 6" € £ such that j2(6") = h -1
where 1 is the identity isomorphism of (A; @, K;)/W’(x). Indeed, extending the
field we get that A;/W(x) =~ (U;/U;(x))™, the image of j, ®x, K is isomorphic
to M, (D;) where r; = m; — d(a)/(m;d;) and the natural homomorphism C' —
C(x) x M,,(D;) is an epimorphism defined over the field K;. Our assertion is proved.
Thus, again solving the K;-linear system relatively to parametric coefficients in the

representation of £ as an affine subspace of €, compute such an element " € L.

One gets immediately from the construction described that d(b”’) < d(a). Let
K = k. In this case set g = b" if (i) holds and g = a if (iii) holds. Thus, we have
d(g) = m;d; in the considered cases.
LEMMA 2. Let K = k. Let u,v € A% be nonzero elements and ¢ € K;. Then
d(u 4+ tv) < min{d(u),d(v)} for all excepting of at most P(n) elements ¢t € K; for

some polynomial P.
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PROOF. Let K((T)) be the field power series in 7' with algebraic closure

K((T)) and ordy : K((T)) = QU{oo} be the order function such that ordy (7)) = 1.
Set Ky = m There exists an irreducible over K; factor ¥, lc(¥) = 1 of the
characteristic polynomial of the element (j ®x K1)(u + Tv) such that ordyp(a) > 0
for every coefficient a of the polynomial x — X¥. So if A is a nonzero minor (i.e.
submatrix with nonzero determinant) of the maximal order of the matrix x(u) then
the corresponding minor A of the matrix X(u + Tv) is also nonzero. Therefore,
d(u 4+ Tv) < d(u). From here by specialization we get that d(u + tv) < d(u) for
all excepting of at most Pi(n) elements ¢ € K; for some polynomial P; Similarly
considering over series in 1/7" we get that d(u + tv) < d(v) for all excepting of at

most Pa(n) elements ¢ € K; for some polynomial P». The Lemma is proved.

Now let K = k. Let b = Zlgjgn,b}//\ivj € AL, b"/ € k;. Using Lemma 2
replace successively the coefficients by b4, ... by coefficients a},ah,... € Hp with
l(aj) < O(logn) such that for every 1 <'s < n; it is satisfied

d( Y ahig+ D W) < d@”).
1<j<s 5<j<n;
Set ' = 37 <j<pn, @3Aij. Now return to the beginning of the procedure described
where the element a was chosen. Replace a by a’ and apply this procedure recur-
sively. Hence, finally we shall construct an element a as above such that d(a) = m;.

Set g = a.

Thus, we have d(g) = m;d; in all the considered cases. Replace a by ¢ in our
considerations above and conserve all other denotations. Choose an arbitrary el-
ement 0 # w € W/(x) and construct the K;—basis of the module (A} @k, K;)w.
Show that U] = (A} ®, K;)w is a simple A} @k, K;—module and U/ @k, K is a
simple A;—module. Indeed, it is sufficient to prove the last statement. We have
dimp, U;(x) = 1, i.e. U;(x) is one dimensional right vector space over D;. There-
fore, all nonzero elements of U;(x) have the same annulator m C A; and generate
the simple module U;. Hence, all nonzero elements of W(x) = U;(x)™* have the an-
nulator m. Thus, U/ @k, K ~ A;/m ~ U; and our assertion is proved. Additionally
it 1s proved that U; is defined over the field K;.

Thus, we have constructed the module U; in the case when K = k. Consider
the case when K = k. If (ii) holds then A} is k! algebra and A; is k! ®p, K—algebra
and k! ®p, K ~ k. So applying the algorithm from the case when K = k, see
above, we shall construct the simple A;—module U; also when (ii) holds. If (i) or
(iii) holds then set AY = A! @k, ki[v/—1]. We have K[/—1] = K, the K-algebra
AY O, [/=T] K is simple. Apply the algorithm from the case when K = k, see
above, replacing A%, ki, ¢, x, W/(x) by AY, ki[v/—1], ¢, X", W"(x""). So we shall
construct a nonzero element a € A} C AY and corresponding linear polynomial x”,
le(x") = 1, such that dimy, [ =g W (X") = /ni. T (" € K then (i) holds, set
g = a and construct as it was above for the element g the simple module U;. If
¢" & K then denote by Y the conjugate over K polynomial to x. Set v = x"'x"
and construct the field K; generated by the coefficients of x. Then x is a polynomial
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with coefficients from K and dimg, W’ (x) = dimy, /=g (W (X") + W' (X)) =
2dimy, /=1y W"(x") = 2/ni. Therefore, d(a) < 2,/n;. Compute d(a), see above.
If d(a) < 2,/n; then again (i) holds, set ¢ = @ and construct as it was above
for the element g the simple module U;. If d(a) = 2,/n; then apply to a the
algorithm described for the case K = k. Thus, we have finished the description of

the algorithm for constructing the simple module U;.
Compute the annulator m’ C A} ®j, K; of the module U/.

Now let be given a A—module V| see Introduction. Our aim is to construct an
isomorphism A;V ~ US* defined over the field K;. First of all note that A;V =~
(AL @, K;)(V' @k K;)) @k, K and therefore the module A;V is defined over Kj.
Construct a K;—basis of the Al ®;, K;—module V" = (A} @i, K;)(V' @i K;) C
V' @ K;. Set V'(m') = {ve V" : m'v = {0}} and compute a K;—basis fi,..., fs,
of V/(m'). Then A, f, ~ U; for every 1 < v < s; and V' = Zl<v<s,(A;’ @k, Ki)fv,
V = Zlﬁvssl/\ifj. Compute the minimal set I; C {1,.. .,5;}_such that V" =
Z'UEIz (AL @y, K;)fo. Then AV = @jer,A; fy is the required decomposition into the

direct sum of simple modules.

For every ring A denote by A° the ring with the opposite multiplication, i.e.
there exists an isomorphism of additive groups A — A°, @ — a° such that (ab)® =
b°a® for all a,b € A. We can identify (Homy, (U;, U;))° = D;. Construct the algebra
(Homy/ (U{,U]))° = D;. So Dj is a division algebra over K; and D} @k, K ~ D;.

In the case when K is a real field the vectors f,, v € I; can be chosen more
canonically. Namely, let d = d; = dimg D;. Note that V" (m’) is a right vector
space over D;. Construct an orthonormal K;-basis fi,..., fs, of V/(m) such that
fiav1, fjaxz, -, f(j41)a 1s @ basis of fjqq1 D} for every 0 < j < s;/d. The required
set [ ={l,d+1,2d+1,...,(s;/d—1)+ 1}. We shall suppose later that the vectors

fv, v € I; are chosen in such a way when K is a real field.

We shall suppose further without loss of generality that if V. = A then f; = w and
1 € 1;,1.e. f1is a generator of U;. Further, the idempotent e; = ZjEI,
idempotents e; , € A;f,. Hence ¢; , € A} ®, K; for all v. Denote eli) = eiq1 € Us.
So U; = Ael?. Denote by viv : Ui = A;fy, the constructed isomorphism which is
given by the formula Af; — Af, for A € A. Set egl) = 'ym(e(i)) forallve I;,iel.
(4)

So ey’ € A f, is an idempotent which has the same annulator as e, v € I;, i € I.

€i,v Where

REMARK 5. Suppose that V = Athenif K =k, i,j € land ¢ : k; — K is an
embedding over k such that ¢ = j then, see Remark 2, it follows from Remark 4 and
the described algorithm that there exists an embedding o1 : K; — K over k& which
extends o such that e;; =¢e;, and 'yz; = ;0 (in the sense that v, , (2)7* = v;,(27")
for all 2 € U/) for all v. In particular (¢{"))7t = ()

Show that the natural projection V' — A;V is defined over the field K;. Indeed,
the module Zje[,j;éi A; is defined over the field k; as it was proved above. Hence,
the module (Zjelj# AV ~ Ejelj;éi A;V is defined over the field K;. The

required assertion follows from here immediately.
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Note also that one can construct within the polynomial time the isomorphism
A = My, (D;). Indeed, we can identify (Homy, (Us, U;))° = D; and therefore,

z

A; ~ (Homa, (A;, Ay))° =~ (Homa, (U™, U™))° ~ .
(Mml(HOHlAl(UZ', UZ)))O ~ Mml((HOHlAl(UZ', UZ))O) = Mm,(Dz)

The fourth 1somorphism in this sequence 1s induced by transposition of matrices.
These natural isomorphisms are defined over the field K;. Therefore, they can be

constructed within the polynomial time.

2 Algorithms for projective modules over algebras

Our aim 1s to prove Theorem 3 and construct an algorithm for decomposition of

projective modules into the direct sum of indecomposable.

Let A and A’ be as in the Introduction. Compute, see [?], [?] the radical
R = R(A') of the algebra A’. Then the algebra A’/PR(A’) is semisimple and hence,
the algebra A/(R' @y K) =~ (A'/R) @i K is also semisimple, see e.g. [?]. Denote by
R = JR(A) the radical of the algebra A. Then R = ' @, K under our identifications

of tensor products with subspaces of A, see Section 1.

Compute the semisimple algebra N = AN /R ie. compute a k-basis of this
algebra with its multiplication table, c.f. Introduction. This basis is simultaneously
a basis of K—algebra A = A/ under our identifications. Denote by 7 : A — A/9R

the natural projection.

Apply the algorithm from Section 1 to the semisimple algebra A’ and construct
the decomposition

K = @ieIKi (5)

similar to (1) where the simple algebra A; is defined over the field k;, see Section 1.

Further, construct an isomorphism

KZ' ~ @Z'E[Uim’. (6)
similar to (2) with V replaced by A;. So U; is a simple A;—module defined over a
field K;, see Section 1. Denote P; = U; for every i € I.

According to the construction from Section 1 the module R; = Zje[,j;éi A @
Uf’_l is defined over the field K; and P; § R; ~ A. The module R; defined by
its K;—structure and the isomorphism P; § R; ~ A can be constructed within the
polynomial time, see Section 1. Further we shall suppose without loss of generality
that P; @ R; = K, i.e. that P; and R; are submodules of A defined over K;.

We need an auxiliary algorithm. In input of this algorithm a finite extension L of
the field &, an idempotent ¢ € A’ ®y L, idempotents g, € K/®k L, 1 << raregiven
such that §; 7;, = 0 for any different 1 <4y #dy <randg=g¢modR =3, .. T
Hence, see [?], W = Agq is projective ideal of A defined over L, the modules @Z_:_ Ag;
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are projective ideals of A, 1 < i < r, and we have the decomposition W/RW =
69199@2» of the module W = W/SRW into the direct sum of its submodules Q;,
1<e<r.

In output of this algorithm we get idempotents ¢; € A’ @, L, 1 < ¢ < r such
that ¢;,¢;, = 0 for any different 1 < i1 #£is <7, ¢ => 1, ¢ and ¢ mod R =7
for all 1 < ¢ < r. Hence, the modules @); = Ag; are projeczi\je ideals of A, 1 < ¢ < 7,
and we have the decomposition W = @©1<;<,¢; of the module W into the direct

sum of its submodules @; such that such that 7(Q;) = @Q;/RQ; = Q;, 1 < i< r.
The working time of this algorithm is polynomial in the size of input.
To describe this algorithm prove the following lemma.

LEMMA 3. Lett, Ct; C %R beidealsof A and 7 @ A/r, — A, T, @ At —
A/t, be natural projections. Let Pi<i<r@1,i = W/t, W where @1 ; are submodules
of W/t; W defined over the field L and m1(Q1 ;) = @, for 1 < i < r.. Then there exist
submodules Q5 ; of W/taW defined over the field L such that ®1<;<,Q2; = W/taW
and m 2(Q2,:) = @ forall 1 <i <r.

PROOF. We shall suppose without loss of generality that to = {0}. There
exists, see e.g. [?], projective modules Q; defined over L (i.e. their L-structures are
projective modules) such that Q;/RQ; ~ Q, over L.

Show that there exists an isomorphism W — @1<;<,); defined over L. Indeed,
since W and @©1<;<,{); are projective modules defined over L and 69199@2» =W
there exist homomorphisms o : W — @1<i<- Qs and § 1 $1<i<,Q; — W defined
over L such that a0 =1—07 and foa = 1 — oy where 1 denotes here the identity
isomorphisms of ©1<;<,(); and W respectively, the images Imoy C 9‘{(@199622'),
Imoy C RW. Therefore, o1 and o3 are nilpotent endomorphisms of ©1<;<,¢); and
A respectively. Therefore, a o § and 3 o a are isomorphisms. Hence, the kernels
Kerar = Ker = {0} and the images Ima = ®1<i<,Q;, Im@ = W. The required

assertion is proved.

We shall suppose further without loss of generality that ); are submodules
of A defined over L. We shall identify W/t;WW = ®1<i<,Qi/t1Q;. Note that
Qi/t1Q; =~ Q1 ; since these modules are projective A/t;—modules and the reductions
modulo PR/r; of these modules coincide. Hence, there exists an isomorphism ~; :
A/t1 = A/t induced by the considered isomorphisms Q;/t1Q; ~ @14, 1 <1 < 7.
There exists a homomorphism of modules v : W — W such that y;om 2 = 71 207.
Analogously to that it was above for the homomorphism « it is proved that ~ is an

isomorphism. Now set (2 ; = v(Q;) for all 1 <7 < r. The lemma is proved.

Now let 1 < j € Z. Consider the natural projection m; : A/ — A, Let
1 < jo € Z be maximal such that %=1 #£ {0}. Our aim is to construct consequently
for j = 1,2,...,jo submodules Q; ; C W/ W defined over the field L such that
Di<i<r@ij = A/ and 7;(Qi ;) = Q;, 1 < i <r. Let gmod R =3 c.c,qij €
A/ where ¢;; € Q; 4, 1 < i < r. Then (A/R)q; = Q;; and qiy‘;é A/
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are idempotents such that ¢;, jg;,; = 0 for any different 1 < ¢ # i3 < 7, see
[?]. Conversely, if ¢; ; € A/9/ are idempotents such that ¢ mod R/ = >, ... ¢i,
¢, ,4is,; = 0 for any different 1 < ¢y # iy < r and 7;(¢; ;) = ¢i1 then we can set
(A/9%9)qi; = Qqj for all 1 <4 < r. So it is sufficient to construct idempotents
gi; € A/ such that ¢ mod R = 3" ..., ¢ij, 9iyj¢is; = O for any different
1 <iy #iy <rand w(gi;) = ¢ for all 1_§_z <r.

Construct for j = 1,2,... the factor algebras A/fR/ and compute jo. Note
that ;1 = @Q;. Hence, construct gi,1 for all 1 < ¢ < r. We shall construct for
every 0 < j < jo, 1 < ¢ < r elements g ; € R/ (one have R® = A) such that
qi; = 20§s<j €i,s mod M7 for every 1 < j < jo, 1 <i < r. Solving a linear system
over the field L construct elements £; 0 € A such that ¢;; = &, mod R. Now
suppose that ¢; ;1 and all ¢; ,, 0 <s < j—1,1 < ¢ < r are constructed for some

1 < j < jo and show how to construct ¢; ; and &; ;1.

By Lemma 3 applied to t; = %9~ t5 = 9% and by the described above connec-
tion between idempotents and projective modules there exist u; € /=1, 1 <i<r
such that

( Z €ir,s iy )( Z Eins Fuiy) ER, 1<y #iy <,

0<s<j—1 0<s<j—1
2 j .
( g is + ui)” — g €i,s — Uy €W, 1<i<r,
0<s<j—1 0<s<j—1

Z( Z 6i,s+ui)—qe9‘i‘7.

1<i<r 0<s<j—1
Hence, equivalently
€iy,0Uiy + Uiy Eip 0 = — g €iy,51Eiq,5, MOd R,

0<s1,52<j—1,514+s2<5 -1
1<idy #ip <y

€i,0t; + Uigs 0 — Uy = — g €i,51Ci,55 T g £i,s mod R,
0<s1,52<j—1,514+s2<5 -1 0<s<j—1

1<e<r

E Uy = q — E E €i,s mod SR/
1<i<r 1<i<r 0<s<j—1

in A/9%. Solving a linear system over the field L compute some elements u; mod
M7, 1 < i < r. Solving a linear system over the field L compute the required
elements ¢; ;1 € A7 1 by the condition u; = €ij—1 mod R, 1 <i<r. It follows
immediately by induction from the construction described that the size L(g; ;) <
(7 — DYP1(Mydin) + P2(Midin) for all ¢, j for some polynomials Py, Pa. Therefore,

all ¢; ; and ¢; ; can be constructed within the polynomial time.

Now construct the required modules Q; = Ag; ;, defined by their L-structures.

The auxiliary algorithm is described.

Now apply the auxiliary algorithm to the decomposition P; @ R; = A, i € I

where P; and R; are submodules of A defined over K;, see above. So construct the
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decomposition P; & R; = A where P; and @); are projective ideals of A defined over
the field K; such that 7(P;) = P;/RP; = P; and n(R;) = R;/RR; = R; foralli € [
and an idempotent e() € A’ @ K; such that P; = Ae() R; = Al = e(i)). The
K;-structure of P; is P/ == Alel),

REMARK 6. We shall suppose that by solving linear systems in the described
construction we take conjugated solutions for systems with conjugated coefficients.
Therefore, if K = k, the dices 1,7 € I, an embedding ¢ : k; — K over k , an
embedding oy : K; — K over k are such that (see Remark 5) i = j and o, extends

o then (e(i))a1 — W),

Now let V be an arbitrary A—module from Introduction defined by its k—structure
V’. Our aim is to decide whether V is a projective A—module and if it is the fact
to construct an isomorphism

V ~aP.

Construct the epimorphism 7y : A” — V defined over the field k. This is
possible since the generators {v;}1<;j<m of V are known, see Introduction. Solving

a linear system construct a basis over k of the space of homomorphisms
Homu/ (V', V') = {r € Homy (V', V') : 7(Niv;) = Ni7(v;)VI <i<n, 1 <j<m}.

Hence, the space of homomorphisms Homy (V, V) = Homp (V' V') @ K. Simi-
larly construct a basis over k of the space of homomorphisms Homy/ (V' (A))™).
Hence Homp(V,A™) = Homa/ (V' (A)") @, K. Therefore, Homy(V, V), and
Hompy (V, A™) are defined over k. TFurther construct the homomorphism defined
over k

v © Homy (V,A™) — Homy (V, V)

induced by 7y .

Now V is projective if and only if the identity isomorphism 1y of V belongs to
Im 7y .. Solving a linear system over k we can decide whether 1y € Im 7y . and if
1t 1s the fact construct an element o € F;i(lv). Thus we can decide within the

polynomial time whether V' is projective.

Let V be a projective module. Using Section 1 construct the isomorphism
¥ : V/RV ~ @®ierP;' and the natural projections ¥; : V/RV — P;' defined over
the field K, see Section 1. Consider the natural homomorphism defined over the
field K;

p : Homy (V, PF*) — Homy (V/RV, P} ).

Since V is a projective module there exists a homomorphism v; : V' — P/* such
that v; mod R = 7;, i.e. 3 € p~1(¥;). Solving linear systems over the fields K;

construct homomorphisms ~v; for all ¢ € I.

We claim that the homomorphisms +;, ¢ € I define the isomorphism v : V —
@ier P77, Indeed, we have v mod R = 7. Now similarly to that it was in the proof
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of Lemma 3 for the isomorphism of A and P; & @); we get that + is an isomorphism
(defined over the composite of all fields K;, i € T).

Now let be given two projective modules V; and V5 defined over the field k.
Construct for them the isomorphisms v; : V; ~ @ieIP;j", j = 1,2. The modules
V1 and V5 are isomorphic over K if and only if £ ; = g2 ; for all ¢ € I and if it is the
case we have the isomorphism between them v5 ' o4, defined over the composite of
all fields K, i € I. We shall show later in Section 5 how to obtain the isomorphism
between these modules defined over the field &.

3 Decomposition of an algebra into the direct sum
of projective ideals which is good with respect

to the action of the Galois group.

Let A be as in previous Section and (5), (6) are satisfied and constructed.

We shall suppose that the set of indices I has the structure described in Section 1,
i.e. that

I=|JHif K=F, (7)
1€l
I=JwulJE)if K=k, (8)
1€l jEJ;

and

I=\JE (9)

i€l

where E; = H/ UU;¢c5,=; for every ¢ € I;. Further, the sets H,, u € I can be con-
structed within the polynomial time. Denote the central idempotents corresponding
to the elements of i € H, or i € I by & (in Section 1 they were denoted e;). If
u € I; then the algebra A, is constructed and defined by the central idempotent
Ty = ZiEHu € = ZiEEu 2. The algebra A, is defined over the field k for every
u € I;. Denote the idempotents corresponding to the elements of v € I;; ¢ € [ by
€, 55“ (in Section 1 they were denoted e; ,, egi)) and the modules corresponding
to A;fy by Wm. In particular denote by gl = €;1 the idempotent defining the
module P;. The isomorphisms P; — Wi,v constructed in Section 1 denote by Vi
(in Section 1 they were denoted %; ,).

Note that now #1; = ¢; and we shall suppose that I; = {1,... &;}. We conserve

other denotations from Section 1 and Section 2.

We have A = A'@, K and A@g K = A’@y K. Hence, the Galois group Gal(K/k)
acts in the natural way on A and the Galois group Gal(K /k) acts on A@x K. These

actions are trivial on A’.

Now let A" be an L-structure of a submodule A (of A) defined over the field L

which i1s an extension of k. Then every embedding ¢ : L — K over k is extended
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uniquely till the embedding A’ — A which we shall also denote without ambiguity
by . This embedding ¢ : A" = A is such that o(a) = a® for a € A’ where
o € Gal(K/k) is an arbitrary element for which the restriction &|p = o. The
embedding ¢ : A’ — A does not depend on the choice of & since A’ is invariant
relatively to the Galois group Gal(K/L).

In Section 2 the projective ideals P; of an algebra A and an an isomorphism
YA = Bier P (10)
(one should set here V = A) were constructed.

The aim of this section is to construct projective ideals W; ., 1 <v < g, €1

of A satisfying to the following properties. that

(1) Wiy is defined over the field K; for all 1 <v <¢g;, i€ 1.

(ii) the isomorphisms v; , : P; — W;, defined over the field K; are constructed
forall 1 <wv<eg; i€l

(i) A = ZKUQME] Wiy as a sum of submodules of A (it follows from (10) by

comparison of dimensions over K that this sum is a direct sum of submodules).

(iv) Let 1 = Zlgvga,,iel eiv € A, where ¢; , € W; . Denote also ZlSUSa, €ip =
e; for every ¢ € I and ZiEEu e; = e, for every u € I1. Then

(a) e;0 € A @p K; and ¢;,, modR =&, for all 1 < v < ¢g;,i € I, hence
VVi,v/m,v NR = Wi,v;

(b) if K = k, the indices 7,5 € I, an embedding o : k; — K over k , an
embedding ¢y : K; — K over k are such that (see Remark 5) 7 = j,
5;; =€;, for all v and o1 extends o then e;; =e;, foralll <v<g,
and 971 = 70, i.e. 50 (271) = 750 (2)7* for every @ € PY;

(c) e € A @y ki and ¢; mod R = & for every i € I, therefore the ideal
W; = Zl<v<€l Wi = Ae; is defined over the field k; and W; /W;NR = A;

(d) if ¢, € T and an embedding o : k; — K of fields over k are such that
Jj =17, see Remark 2, then ¢; = ¢7;

(€) ey € A and e, mod R = &, for every u € I;, therefore the ideal W, =
ZiEEu W; = Ae,, is defined over the field k, and W, /W, NR = A,.

To effect this construction at first apply the auxiliary algorithm to the decom-
position A= @UEHKU, i.e. to the idempotents 1 € A and €, € Aue I, and
construct all the required in (e) ideals W, defined over k& and idempotents e, € A’
such that W, = Ae, and e, mod R = €, for all u € I;.

Consider at first the case when K = k.

Now for every u € I; and a fixed index iy € H,, denote 7, = ZiEHu itio e € K,

Siy = @iEHu,i;éiuKi = Ag;,. Hence, the idempotents €y 0;y € N ®p ki, and the
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modules A;,, S;, are defined over the field k;,. Apply the auxiliary algorithm to
to the module W, and the decomposition A, = KZ'D &) ?Z'D, i.e. to the idempotents
ew €A, €,,7q;, € N ®p ki, and construct the idempotents €;,,¢;, € A such that

ey = €y + qiy, €iy = €1, mod R, G; = ¢;, mod R.

Set %D = Wue, = Aéi,. Siy = Wuqi, = Agi,. So we get the decomposition

W, = WU ¢ S;, where W;. and S;, are defined over the field k;,.

ip

Set ¢; = €7, ¢; = ¢ and W = Wué;, = A¢;. S;, = Wugs, = Ags, for every
¢ € H, and an embedding ¢ : k;, — K of fields over k such that ¢ = ¢§. So we
have the isomorphism W, = W; & S; and natural projections 7; : W, — W; and
nl Wy — S; defined over the field &; for every i € Hy, u € I.

We can not claim now that the sum of projective ideals ZiEHu ﬁZ is a direct sum.

But still similarly to that it was for the isomorphism v there exists an isomorphism
Yu - Wu — @iEHuVVi (11)

which is induced by the natural projections W,, — %, i € Hy (the direct sum here

is an external abstract direct sum).

Now our aim is to construct using (11) the required in (c) ideals W; satisfying
to (d). Define the action of the Galois group Gal(K /k) on the module @z’eHuﬁz n
the following way if (A\;)iem, € @z’eHuﬁz and 7 € Gal(K /k) then set

(M)iem, = A o-1)ier, -

Thus v, is invariant relative to the action of the Galois group Gal(K /k), i.e. y(A7) =
y(AN)7 for any A € W, and 7 € Gal(K /k).

Consider the natural projection

w o Wy — @jEHu,j¢in~

Set Kerm; = W;. Then W7 = W; for every 7 € Gal(K /k;). Therefore, W; is de-
fined over the field k; for every i € H,. Besides that, W;/W,; "R = A Further,
ZiEHu W; = Wy and this sum of submodules is a direct sum since =, 1s an iso-
morphism. Note that ZjeHu,j;éi W; = 5; = Kern; for every ¢ € H,. So we have

W, = W; @ S; as a direct sum of submodules.

Denote by W/ (respectively S;) the k;—structure of W; (respectively S;) and by

K3

W/ the k—structure of W, for every i € H,. Then we have
Wi=( () Kerd)n (W, ox ki) =
JEH,j#i
() ((S; @k, kli, 31) O (W @k ki)
JEH,j#i
Here k[, j] is a composite of the fields k; = k[i] and k; = k[j] over k and S; @4, k[4, j],
W! @y, k; are subspaces of W/ @y k[i, j] considered as vector space over k. Thus,

compute all the different non—isomorphic over k; composites k[i, j] of the fields
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ki = k[i] and k; = k[j] over k and all the different subspaces (S; @&, k[Z,j]) N
(W, ®% ki) C W), @ ki. Finally computing their intersection obtain the required
W/ forallie Hy,uel.

Compute the idempotents e; € W; and e} € S; from the condition e; + ¢} = e,
foralli € H,, u € I7.

Thus, we have by the construction described e; € A’ @ k; and e; mod R = €;
for every i € I, the ideal W; = Ae; is defined over the field k; and W;/W; "R = A;.
Further, if ¢,5 € I and an embedding ¢ : k; — K of fields over & are such that
j =17, then ¢; = ¢7 for all i € H,, v € I. Hence, W; and ¢; satisfy to (¢) and (d)
for all e € H,, u € I;. Besides that, ZiEHu e; = ey, foralluel.

So for every u € I; fix an index ¢ € H,, and apply the auxiliary algorithm to the

idempotents e; € A, €,€; ,, 1 < v < ¢&; which define the decomposition

A= Bico<e Wi
Thus, construct the idempotents e; , € A’ @ K; such that Zl<v<€l eiw = e and

eiv =¢ymodRforalll <v<e. Set Wi = Wies o = Ay foralll <v ey

So we obtain the decomposition
Wi = @1§v§a,m,v
where all W; ,, are defined over the field Kj.

Similarly to how it was for the isomorphism v in Section 2 construct the required

isomorphisms 7; , from the condition that v; , mod R = Vi

If j € I, an embedding ¢ : k; = K over k , an embedding o7 : K; — K over
k are such that i = j, €/} = €, for all v and oy extends o then set e} = ¢; ,,

L =0 forall 1 <wv<e.

Thus (a), (b), (), (d) and (e) are satisfied. Hence, (i), (ii), (iii), (iv) are satisfied.

The construction for the case K = k is completed.

Now consider the case when K = k. Apply the algorithm for the case K = k to
the algebra A @ K and the corresponding idempotents €,, &, u € I, i € H,. So
we get the idempotents ey, €;, u € I, ¢ € H,. Now for every j € Jy, u € 1 set
e; = e;, +e;, if and only if j = ¢y + iy + ziq iy for 41,42 € Hy, see (8) and Section 1.
The idempotent e; € A’ @y, k[i1, 12] and it is invariant relatively to the action of the
Galois group Gal(k[i1,i2]/k;). Hence, e; € A’ @y k;. Define W, = Ae,, W; = Ae;,
foralli € Fy, u € I7.

Now for every ¢ € E,,, u € I} apply the auxiliary algorithm to the idempotents
ei €A, 8,4, 1 <v < g which define the decomposition

A = Bi<o<e Wi
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Thus, construct the idempotents e; , € A’ @ K; such that Zl<v<€l eiw = e and
eiv =¢ymodRforalll <v<e. Set Wi = Wies o = Ay foralll <v ey

So we obtain the decomposition
Wi = @1§v§a,m,v
where all W; ,, are defined over the field Kj.

Similarly to how it was for the isomorphism v in Section 2 construct the required

(1)

isomorphisms 7; , from the condition that v; , mod %(é(i)) =€y’ .

Thus (a), (c), (d) and (e) are satisfied. Hence, (i), (ii), (iii), (iv) are satisfied.

The construction for the case K = k is also completed.

4 Decomposition into the direct sum of indecom-

posable modules.

Let V be a A-module defined over the field &, see Introduction. Our aim is to

construct the decomposition

Vo v (12)

i€l
from Theorem 1 and to prove it. By the Krull-Schmidt theorem, see e.g. [?], this

isomorphism 1s unique up to isomorphisms and a permutation of direct summands.
Construct the algebra of endomorphisms of the module V'
E = Homy (V, V) C Homg (V, V)
defined by 1ts k—structure
E" =Homy/(V', V') C Homy (V',V').

Apply the construction from Sections 3 and 4 to the algebra E. So we get the pro-
jective ideals and idempotents of E. We change A for £ and use other denotations

from (i)—(iv), (a)—(e) of Section 4 for these projective ideals and idempotents of E.

Thus the family of orthogonal idempotents ¢; ,, 1 < v < &, ¢ € [ is a family of

orthogonal projections, i.e. this family defines the isomorphism of A—modules
V — ®ier Di<v<e; Vi,v (13)

where V;, = €; (V) and (13) is induced by the projections e;, : V. — ¢; ,(V),
1 <wv <eg, i€l The direct sum in (13) is a sum of submodules of V.

Each module V; , is defined over the field K;. Each module V; , is indecompos-
able, 1 <wv <¢;, i€l Indeed, if V; , = V' & V" is a direct sum of submodules V’
and V' of V then the projections to V/ and V" define the idempotents ¢/, e” € F
such that e; , = ¢’ + ¢, This defines the decomposition of the E-module W; , ~ P;
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into the direct sum of two its submodules. But P; is an indecomposable projec-
tive module. Therefore, ¢/ = 0 or ¢’/ = 0 and then V/ = 0 or V' = 0, ie. V is

indecomposable as it was required.

We shall show that Vi, ,, ~ V;, ., if and only if ¢y = ¢3 and construct this
isomorphism. Suppose that i1 = ¢35 = ¢. Set v;1 = v. Recall that P; = Fel) for the
idempotent (). Denote by p; (respectively p; o) the projection E — P;, A — Ae(?)
(respectively E — W, A — /\egi)). Set also V; = () (V).

Show how to construct an isomorphism V; ~ V; ..

Since F; and W; , are isomorphic projective modules the projective £-modules
E(1- e(i)) and F(1— egi)) are also isomorphic and defined over the field K;. So we
can construct an isomorphism 4; , between E(1 — e) and E(1 — egi)) similarly to
that it was for the isomorphism v in Section 2. Further, construct an isomorphism

p of the module £ which is the direct sum of v; , and d;y. So Y30 0ps = piwop

and pl|p, = Ys0-

Hence

eDp(1) = p(e) = 50 (")) = (iw 0 pi) (1) = (piw 0 p)(1) = p(1)el”

where 1 € E is identity isomorphism of V. Note that u(1) is invertible element of
E since p is an isomorphism of the F-module E to itself. So el = p(1)~tetpu(1).

Now define an isomorphism v; , : V; = Vi, by the formula v — p(1)~!(v) for
v € V;. The isomorphism v; ,, is defined over the field K;. Similarly the isomorphism

Vi, v, 18 constructed. Therefore V;, o, ~ V;, ., ~ Vi over the field K; if 41 = i3 = 1.

REMARK 7. One can construct similarly to Section 3 the isomorphisms Vi
satisfying additionally to the following property. If K = k, i,j € I, an embedding

o : ki — K over k | an embedding o1 : K; — K over k are such that 7 = j,
5?1 —

= o1 __ .
i = € for all v and o extends o then Viy = Viu-

Conversely, suppose that there exists an isomorphism v : V;, ,, — V5,4, of
A-modules. Then there exists an isomorphism v : V. — V of the A—module V

which is a direct sum of v and another isomorphism (similarly to that it was for

gill) = 6’5/22) = v. Define the isomorphism of E-

)
modules y : E — E by the condition u(1) = v~

Hence, voe ov and 7|
3 clin)
vl

One see immediately that
w(Wi,v,) = Wi, w,, 1.e. E-modules W;, ,, and W, ,, are isomorphic. Therefore

P;, ~ P;, and hence 71 = i, see Section 2.

Thus we have constructed the required isomorphism (12).

5 Algorithms for the problem of the isomorphism

of modules.

., From the Krull-Schmidt theorem an the result of the previous section we get the
following criteria of the isomorphism of two A—modules V; and V5 defined over the
field & such as in the Introduction.
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Construct isomorphisms

Vi YoV (14)
i€l
and
Vet e YV (15)
JjeJ
The modules Vi and V5 are isomorphic if and only if #7 = #J and there exists a
bijection 7 : I — J such that Er(i) = 2¢;. An isomorphism between V; and Vs (if
they are isomorphic) defined over a composite of fields of definition of all V;, ¢ € T

and V;, j € J can be also constructed. But we shall construct more than that.

By the Deuring-Noether theorem [?] if V7 and V5 are isomorphic over an al-
gebraic extension of the field & then there exists an isomorphism Vi ~ V5 defined
over k. Our aim now is to construct such an isomorphism if it exists and to prove
Theorem 2.

Construct the algebra of endomorphisms of the module V}
E = Homy (V1, V1) C Homg (V1, 17)
defined by 1ts k—structure
E’ = Homa/ (V{, V{) C Homg (V{, V).
Further, construct the space of homomorphisms
V = Homy (V2, V1) C Homg (Va, V1)
which 1s a F—module defined over k by its k—structure

V/ = HOH]A/(Vzl, Vll) C Homk(VZ/, Vll)

If Vi ~ V5 then F ~ V as E-module.

LEMMA 4. IfVi~V,andd: E — V is an isomorphism of F-modules defined
over k then §(1) : V2 — V7 is an isomorphism of A-modules defined over k.

PROOF. Denote ¢’ = Kerd(1) and C" = Imé(1). We have the exact sequence
0-C"5Voa—=C"=0
which gives the exact sequence
0 — Hompy (C”, Va) — Homy (Va, Va) — Homy (C7) Va).

In this sequence the homomorphism Homp (Va, Va) — Hompy (CY, V4) is nonzero if C’
is nonzero. Therefore, dimg Homy (C”, V2) < dimg Homy (Va, V2) and the equality
takes place if and only if C’ = {0}, i.e. if and only if (1) is an isomorphism.

Each homomorphism 8 € Homy (V2, V1) can be uniquely represented in the form
B = aod(1) where o € Homp(V1, V7). Hence the honomorhism Homy (Va, V1) —
Homy (C”, V1), B — «al¢» is an embedding. Further, we have

Homy (Va, Vo) ~ Homa (Vi, V1) =~ Homy (Va, Vi) < Homa (C, V1) ~ Homy (C”, V5)
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where the first isomorphism takes place since V; ~ V5, the second since 4 is
an isomorphism and the third since V; ~ V5. Hence, dimg Homy(C”,Va) >
dimg Homy (Va, V2). Thus §(1) is an isomorphism. The lemma is proved.

Using the algorithm described in Section 2 decide whether V' is a projective E-
module. If V is not a projective E—module than £ % V and hence V; # V5. If V isa
projective E—module then decide using the algorithm from Section 2 whether there
exists an 1somorphism of E-modules £ ~ V. By the Deuring—Noether theorem if
such an isomorphism exists then there exists also an isomorphism of F—modules
E ~ V defined over k. If £ # V then V; % Vo, If £ ~ V then our aim till the
end of the Section will be to construct such an isomorphism ¢ : £ — V defined
over the field k. Further, if 4(1) is not an isomorphism then Vj % V2 by Lemma 4.
Otherwise, §(1)71 : V; — V4 is the required isomorphism.

Thus we can suppose that £ ~ V and our aim is to construct such an isomor-
phism defined over k. Denote by R the radical of £ and compute $R. Note that
it is sufficient to construct an isomorphism E /R ~ V/RV defined over the field k.
Indeed, if such an isomorphism is constructed then since E and V are projective
modules we can lift this isomorphism till an isomorphism £ — V| similarly to that
it was for the isomorphism v in Section 2. So construct E/9R and V/RV. We shall
suppose further without loss of generality that 98 = {0}, i.e. that E is a semisimple
algebra over the field k.

At first we shall describe a direct method for constructing an isomorphism de-
fined over the field k of two F—modules W7 and W5 defined over the field k when F
is a semisimple algebra. Let E', W] and W} be the k—structures of £, W, and Wa.
Compute a nonzero element h € Hompg: (W7, W3). Since E’ is a semisimple algebra
the modules Im & and Coker h are projective. Therefore, Wi ~ Kerh & Im A and
W ~ Im h @ Coker h. Construct these isomorphisms using the algorithm from Sec-
tion 2. Since E’ is semisimple the modules W{ ~ W3 if and only if Ker A ~ Coker h.
To obtain an isomorphism W] ~ W} it is sufficient now to construct an isomorphism
Ker h ~ Coker h. But dimy Ker h < dimg W/, dimy Coker h < dimg W5. So we can
apply the algorithm under description recursively to Ker A and Coker & instead of
W] and WJ. The description of this direct method is completed. This algorithm
works in the polynomial time if the field £ is finite.

In the case of an infinite field & one should estimate the growth of coefficients
from k in the described construction. But instead of that for the case when £ is
infinite we shall describe an algorithm for constructing an isomorphism between E

and V.

Consider the case when k is an infinite field. Set K = k and effect all the
construction of Section 1 for the algebra F and the module V. Change everywhere
in Section 1 A for E including the denotations with indices and conserve all the
other denotations from this Section (one should not confuse these denotations with

ones from Section 3).
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For every ¢ € H,, I € I construct the isomorphisms E; ~ U/* and V; ~
Ut defined over the field K; are constructed. These isomorphisms induce the
isomorphism

pit By = Vi

defined over the field K; for every ¢ € H,, I € I;. Besides that, see Remark 5,
the isomorphisms p; satisfy to the following property. If ¢,j € H,, an embedding
o : k; = K over k, an embedding o1 : K; — K over k which extends o are such
that ¢ = j, e;;

r € B! @k, K; (recall that E/ is the k;—structure of E;).

=¢e;, then p{* = p; in the sense that p; (x)7* = p;(z7*) for every

We have the isomorphisms Fy ~ @;en, Fi and B,V ~ Gen, F;V which are
given by the same formula z — (e;2)iem, for z € Ey or z € E,V. These isomor-

phisms induce the isomorphism
0 : Homg(FEy, E,V) = @iem, Homg (E;, E;V).
The isomorphism @ defines the projection
0; :Hompg(Fy, F,V) — Homg(FE;, E;V)

for every ¢ € H,. The projection #; is defined over the field k; since it is induced
by the projection E,V — E;V, z — €;z and the inclusion F; — E,, z — 2z which
are defined over the field %;.

Denote by E!, (respectively Ef) the k—structure (respectively k;—structure) of
Ey (respectively E;). Then E!/ V', Homg/ (E!,6 E/V') (respectively E/V' @y ki,
Homg gk, (EL, EX{(V' @ k;)) is the k—structure (respectively k;—structure) of E,V
(respectively F;V, Homg(FE;, E;V)). Tt follows immediately from the considered
construction that if ¢,j € H, and an embedding o : k; — K over k, the element
z € Hompg:(E}, E/ V') are such that {” = j then 6;(2)” = 6;(z) in the sense that
0;(2)(y)? = 6;(2)(y7) for every y € E..

For every u € I effect the following. Fix an index ¢ € H,. Construct the vec-
tor spaces of homomorphisms Hompg (E.,, E, V') and Hompg/g,i, (EL, E{(V' @4 k;)).
Denote by ¢y, 1 < w < a the k-basis of Hompg (E/,, E/,V’) which is constructed.
Construct 0;(¢y) € Hompgig, k, (Bl EL(V' @ ki) for all 1 < w < a. The elements
0;(¢w), | < w < a generate the K;—vector space

Homp gk, (B, E{(V' @k ki) @, K =
HomE’®kK,(EZ/' Rk, K, (Ez/ Rk, [{2)(‘// Rk [{2))

since §; is an epimorphism. So solving a linear system compute a representation

pi = Z /\wgi(ﬁbw)

1<w<a

where A, € K; for all w.
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Now construct integers Xw, 1 < w < a in the following way, c.f. Lemma 2. Let

Ay are constructed for 0 < w < j < a. Show how to construct Xj. Enumerate

t=1,2,.... For the considered value of t compute
pig() =D Mubi($w)) +10:(65) + ( Y Aibi(dw))-
1<w<g j<w<a

Decide whether p; ;(t) is an isomorphism. If p; ;(¢) is an isomorphism set :\; =t,
otherwise, go to the consideration of the next value of t. Note that A; < 14dimyg, V/
since the determinant of the square matrix corresponding to p; ;(t) considered as a

polynomial in ¢ has at most dimg, V;/ zeros.

Set

where A, € K; for all w. Thus, p; is an isomorphism. Set

ﬁu = Z Xw¢w~

1<w<a

Then 6;(p.) is an isomorphism for every j € H, since 8;(p,) = 8;(pu)” = p7 for the
embedding o : k; — K over k such that j = 7. Hence, 8(p,) is an isomorphism.

Therefore, p, is an isomorphism for every u € I;.

We have the isomorphisms F ~ @y, Fy and V >~ @yep, B,V defined over the
field & and given by the same formula z — (ey2)yer, for z € E or z € V. Finally,
using these isomorphism and the direct sum of isomorphisms p,, u € I; construct
the required isomorphism p : I/ ~ V defined over the field k. The case of an infinite
field k& is considered completely. The description of the algorithm of this Section is

completed.

6 The problem of similarity of families of matrices.

Our aim is to prove Theorem 4 from the Introduction. Denote by M, (k) the algebra
of r x r matrices with coefficients from the field k. Compute the k—algebra

N=A{CeM(k):CA = A;C, 1<i<m}
and A’-module
V' ={C e M, (k) : CB; = A;C, 1 <i<m}.

LEMMA 5. The existence of the matrix .S from the formulation of Theorem 4

is equivalent to two conditions

(a) there exists an isomorphism g : A’ = V' is of A’-modules

(b) for every isomorphism g : A" = V"’ of A’~modules p(1) is an invertible matrix.
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Besides that if these conditions are satisfied then one can take S = p(1) in the

formulation of Theorem 4.

PROOF. If S exists then then we have the required isomorphism po : A’ — V/
defined by the condition S = pg(1). Hence (a) is fulfilled. If p is an arbitrary
isomorphism then S = Cpu(1) for some matrix C' € A’ since S € V'. Therefore
#(1) is invertible. Hence (b) is fulfilled. Conversely, suppose that (a) and (b) are
satisfied. Set S = p(1). Then S is the required in the formulation of Theorem 4

matrix. The lemma 1s proved.

Nowset K =k, A=A @ K and V = V'@, K. So A is an algebra defined over
k and V is a A-module defined over k. Apply the algorithm from Section 5 to the
A-modules A and V defined over & and decide whether these modules are isomorphic
over k. Further if it is the fact construct an isomorphism p : A — V' defined over
the field k. Construct the matrix g(1). Decide whether p(1) is an invertible matrix.
If p(1) is an invertible matrix then set S = p(1). By Lemma 5 S is the required
matrix and, conversely, the required matrix S exists only if there exists p and u(1)

is invertible. The algorithm for Theorem 4 is described completely.

7 The problem of similarity of families of matrices

relatively to the orthogonal group

Our aim is to prove Theorem 5 from the Introduction. Denote by M, (k) the algebra
of r x r matrices with coefficients from the field k. Denote by 1" the operation of

transposition of matrices.

Show how to compute the k-subalgebras A} (respectively A%) of the algebra
M, (k) generated by the matrices F, Ay, AT ... A, AL (respectively E, B,
BY, ... Bm, BL). Here E denotes the unity element of M, (k). The algorithm
for constructing Aj is the following. Set L; to be the vector subspace of M, (k)
generated by the matrices E, Ay, AT ... A,,, Al and compute the basis L,
1 < j <7y of Ly consisting of some elements of the sequence E, Ay, AT ... A,
AT Further, recursively for i > 1 suppose that L; with its k—basis li;,1<j<ris
constructed. Then if L; # L;_; of ¢ = 1 construct the subspace Ljy1 = LiL;+L; Ly
with its k-basis l;11 5,1 < j < rjpq1. Namely,set [;11 ; = 1; ;if 1 < j < r; and choose
as ljy1,; for r; +1 < j < r;4q some products Uy ;,1; 5, or l; ;.01 5, for 1 < j; < rq,
1 <jy <wry. If Ly = Lj_q then set A} = L;, g = i{. Note that each [; ; is a
product of no more than i elements of the sequence £, Ay, AT ... A, Al and
these expressions of I; ; as products can be obtained from the algorithm. Similarly

the algebra A% is constructed.

Show how to decide whether there exists an isomorphism p : A] — A} such that
p(A;) = B; and p(AT) = BI for all 1 < i < m. This siomorphism exists if and

only if the two conditions are satisfied
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a) thebasisl;, ;,1 < j < r;,,of A} can be obtained by substituting in expressions
0,7 0 2 g
of l;,5, 1 < j < 1y, as products of some elements of the sequence E, Ay,
AT A, AT corresponding elements of the sequence F, By, BY ..., By,
B

(b) the multiplication tables of the basises l;, ;, 1 < j < r,, and ] . 1 <j<wry,

10,J)

colncide.

So we can construct p if it exists. If p does not exist then also there exists no
matrix S from the formulation of Theorem 5. So we shall suppose further that u

exists and constructed explicitely.

Set K = 7{?, Aj = A; @ K, j =1,2. Not that if C' belongs to A} (respectively
A;) then CT also belongs to A’ (respectively Aj), j = 1,2. We have the scalar
product on algebras A;’ and A;, j = 1,2. Namely, if z,y belong to A;’ or A; then
their scalar product is tr(zy’).

LEMMA 6. The k-algebras A;’ are semisimple for j = 1,2. Therefore the
K-algebras A; are also semisimple for j = 1,2.

PROOF. Let x € % where /' is the radical of A%, Then zz” is nilpotent.
)

Therefore, the trace tr(za') = 0. Hence, # = 0 since k is a real field. The lemma

is proved.

Using the algorithm from Section 1 construct the isomorphisms
Aj = DierAji, j=1,2 (16)

where A;; C A; are simple algebras over K. Besides that A;; is defined over the
field k; which is constructed and has the k;—structure A"M such (p®y kZ)(A/Lz) = Alz,z"
Factually it is sufficient to construct (16) for j = 1 and then apply the isomorphism
p O K.

LEMMA 7. The sum in (16) is a direct orthogonal sum of subspaces.

PROOF. Denote by e;: the central idempotent defining A;;, i.e. Aj; = Aej ;.
Then the idempotent e]TJ» € A;; and also Aj; = Ae%. Therefore ¢;; = e]TJ» for all
J,i. Therefore, if 21 € Aj;,, 2 € A;;, than tr(zi2l) = tr(xlejyil(xzej@)T) =

tr(xlejyilejrhxg) = tr(z1e;i, 65,23 ) = tr(0) = 0. The lemma is proved.

Denote by V' the space of columns K" which is Aj—module, j = 1,2. The scalar

product of wy, ws € V is equal to w! ws. Construct the isomorphisms
V> AV =12 (17)
i€l
The similar computation as it was in Lemma 7 for (16) shows that the sum in (17)

is a direct orthogonal sum of subspaces.

Denote by D; the division algebra such that A; ; = My, (D;) by the Wedderbarn
theorem, see Section 1. Using the algorithm from Section 1 construct for the alge-

bras A;; simple module U; ; C A;; defined over the field K; with the annulator m; ;
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also defined over the field K; for all ¢ and j = 1,2. Besides that, the K;—structure
of Uj; (respectively m;;) is Uj; (respectively m} ;) and (u @ K;)(Uy;) = Us,,
(1 @k Ki)(my ;) = my ;. Factually it is sufficient to construct everything for j = 1
and then apply the isomorphism pu ®@p K.

Construct the isomorphisms
ApVi= D Ajifji, i€1,j=1,2 (18)
1<v<e; s

where A; ;fji v 1s a simple A; ;—module defined over the field K;; fii. € (Aj; @,
Ki)(V]/ @x Ki), 1 < v < ej; is an orthonormal system of vectors with the same

annulator m;; C A;; which is given by the K;-structure m},r Besides that,
Z fj,i,vDi = {U € AMV ‘my = {0}} = V]/,/z
1<v<e; s
and Zl<v<ej ) fj,i,0D; is an orthogonal direct sum of subspaces f;;.D);, see Sec-
tion 1.

LEMMA 8. The sum in (18) is a direct orthogonal sum of subspaces.

PROOF. The orthogonal complement (Ajyiijiyv)J‘ C A;;V is an ideal since if
wy € (Ajyiijiyv)J‘, wa € Ajifii0, A €A then AT € A and (/\wl)Twz = wlT(/\Twz) =

0. We have the decomposition into the direct sum
V= (Ajifiin OV & (Ajifiin)t OV,
But Aj,ifj,i,v N Vj/,/i = fj,i,vDi~ Therefore,

(Ajifiin) OV = > Fiiw Di

1<vi<e;,4,v1#v

SInce 3 1<y <o, vizo i Di = (FiiwDi)t in Vi Thus fi40, € (Ajifji0)" for

every vy # v.

Therefore for every vy # v we have Aj;fj; 4, C (Ajyiijiyv)J‘. Hence, the sum

> Ajifiien CAjifiin)t
1<v1<e; 4, v17v
Thus,
S Al = Agifii0)*

1<vi<e;,4,v17#v

since the dimensions of the both sides coincide. The lemma is proved.

Now we get immediately that for the existence of the matrix S required in the

formulation of Theorem 5 it is necessary that e ; = e ; for all 1 € 1.

Show that this condition is also sufficient. So we shall suppose further that e; ; =
e = ¢; for all i € I. Construct the isomorphism v; , € Hompg (A1 f150, A2if2i0),
defined over the field K; such that v; ,(Af1;0) = p(A) fai 0 for every A € A which

exists according to described above.
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LEMMA 9. The homomorphism v; » conserve scalar product, i.e. for every

wi,ws € A1 ;V we have wl wy = (I/Z'yv(wl))TI/iyv(wz)

PROOF. Let e; be an orthonormal basis of Ay ;f; i, such that f;; , is the first
of its elements, j = 1,2. It is sufficient to prove that the matrix ¢ of v;, in the
basises eq, ey is an orthogonal matrix. Let A € A; ;. Denote by ¢1(A) (respectively
©2(A)) the matrix of the homomorphism A+ ; f1 ;0 — A1,if1,i0, 2 — Az (respectively
Aoifoiw = Aoifoin, 2 p(X)z). Then

1/)801(/\) = 802(/\)1/) (19)

for every A € A by the definition of . Further we have ¢;(AT) = ¢;(\)7T for
every A € A since the matrix ¢;(A) is a submatrix of the block-diagonal matrix
diag(e;(A), () which is obtained from A by the the orthogonal transformation of
similarity corresponding to the decomposition (18) into the orthogonal direct sum.

Hence
1/)801(/\)T = 802(/\)T1/)
for every A € A. Therefore,

W ea(A) = er(A)y” (20)

for every A € A. Now (19) and (20) give
1/)T1/)801(/\) = 801(/\)1/)T1/)
for every A € A. Hence 974 is a matrix of some homomorphism
p1 € Homp, (A ifryiw, A1 ifiio)-

But Aqif1; 0 is a simple A;—module. Therefore, Homa, (A1,if1i 0, A1if150) =~ D;.
Thus, the minimal polynomial of the matrix ¥/7 4 over K is linear or square with
a negative discriminant. But all the eigenvalues of the symmetric and therefore
diagonalizable matrix ¥/” ¢ with coefficients from k are non-negative elements of k.
Hence, the minimal polynomial of the matrix 174 over K is linear. Finally, ¥7 ¢ is
the identity matrix since the first column of % is (1,0, ...,0)T due to the fact that

Viuw(fiiw) = f2i0. Thus ¢ is an orthogonal matrix. The lemma is proved.

Now set the isomorphism v € Homg (V, V) to be the direct sum of isomorphisms
vigfort € I, 1 <wv < ¢. By Lemma 9 this homomorphism has an orthogonal
matrix in any orthogonal basis of V. We have v(Aw) = p(A)v(w) or p(MNw =
v(Av~Y(w)) for all A € A and w € V. So one can take as S the matrix of the linear

homomorphism v. Theorem 5 is proved.

REMARK 8. 1t follows from the construction described that the matrix S can
be represented as a product of three orthogonal matrices S = 575253 such that
each coefficient of S7, 55, 53 is from the extension of k of the degree bounded from
above by a polynomial in n, m, r (though the field generated by coefficients of each

of these matrices is of exponential degree in n,m, r in the general case).

REMARIK 9. One can describe in a similar way the algorithms for the problem

of similarity of families of matrices relatively to the unitary and simplectic groups.

32



References

Pierce R. S.: “Associative algebras”, Springer-Verlag, 1982

Rényai L.: “Computations in Associative algebras”, DIMACS SERIES in
Discrete Math. 11, 1993, AMS. pp. 221-243.

Eberly W. M.: “Decomposition of algebras over finite fields and number
fields”, Computational Complexity. 1, 1991, 179-206.

Eberly W. M.: “Decompositions of algebras over R and C”, Computational
Complexity. 1, 1991, 207-230.

Babai L., Rényai L.: “Computing irreducible representations of finite
groups”, Mathematics of Computation. 192, 1990, 705-722.

Bochnak J., Coste M., Roy M.-F.: “Géométrie algébrique réelle”,
Springer—Verlag, Berlin, Heidelberg, New York, 1987.

Chistov A. L.: “Polynomial complexity algorithm for factoring polynomi-
als and constructing components of a variety in subexponential time”, Zap.
Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 137 (1984), pp.
124-188 (Russian) [English transl.: J. Sov. Math. 34 (4) (1986)].

Dickson L.E.: “Algebras and their arithmetics”, University of Chicago, 1923.

Rényai L.: “Computing the structure of finite algebras”, Journal of Symbolic
Computation. 9, 1990, 355-373.

Curtis C. W., Reiner 1. “Representation theory of finite groups and asso-
ctative algebras” John Wiley and Sons, 1966.

33



