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IntroductionThe aim of this paper is to construct polynomial{time algorithms for for decom-posing �nitely generated modules (or representation) over associative algebras withthe unity element into the direct sums of indecomposable modules (representations).The cases of algebraically or real closed ground �elds are considered. Such a de-composition is unique up to the order of the direct summands due to the theoremof Krull{Schmidt which is valid in this situation [?]. We solve also in polynomialtime the problem of isomorphism of two �nitely generated modules over an algebra.Our presentation is self{contained in its algorithmic part and uses only some resultsabout projective modules over an algebra � in its mathematical background whichcan be found in [?].In the theory of representations of �nite dimensional algebras both irreducibleand indecomposable representations are considered. Irreducible representations cor-respond to simple modules over algebras.The module is called indecomposable if it is a nonzero module and it can not berepresented as a direct sum of two nonzero submodules. Indecomposable modulesor representations can be characterized by the fact that their algebras of endomor-phisms are local, i.e. all irreversible endomorphisms of indecomposable modules arenilpotent [?]. Each irreducible module is indecomposable. In the case when theconsidered algebra is semisimple each indecomposable module is irreducible andprojective. The case of semisimple algebras and modules over them was consideredin many papers. The references see in [?].Many problems (similar to decomposing �nitely generated modules into thedirect sum) related to semisimple algebras over the �eld of rational numbers arehard from the point of view of the theory of complexity and at least as di�cultas factoring integers [?]. So we bound ourself by the case of algebraically andreal closed ground �elds. Randomized and deterministic algorithms for semisimplealgebras over R and C and modules over these algebras were constructed in [?],[?], [?]. The known deterministic algorithm, according to [?], for decomposing of amodule over such a semisimple algebra used the reductions to the case of algebrasover �nite �elds and the theory of lattices in a semisimple algebra over a �eld ofalgebraic numbers.We suggest in Section 1 deterministic algorithms for decomposing modules oversemisimple algebras over algebraically and real closed �elds which are straitghfor-ward and uses only linear algebra. We include this material in the paper also sincewe need the exact and detailed information in next sections about this decomposi-tion.Further, in Section 2 we consider projective modules over an arbitrary �nitedimensional algebra � with the unity element. Let R = R(�) be the radical ofthe algebra �. It is known [?] that there exists a bijective correspondence betweenthe classes of isomorphic indecomposable projective �{modules and the classes of2



isomorphic simple �=R{modules. A polynomial{time algorithm is described forconstructing representatives of all classes of isomorphic indecomposable projective�{modules under the mentioned correspondence. We show that one can decidewithin the polynomial time whether a given �{module is projective. Besides thata polynomial{time algorithm is suggested for decomposing of a given projectivemodule into the direct sum of indecomposable projective modules.Decomposition of an algebra into the direct sum of projective ideals requires lift-ing of idempotents from its semisimple reduction modulo the radical. This construc-tion can be considered as a generalization of Hensel's lemma. A polynomial{timealgorithm for this construction is described in Section 2 when the �eld of de�nitionof the reduction of these idempotents is an extension (the same for all of them) ofa polynomial degree of the initial �eld of de�nition of the algebra. But when thereductions of idempotents have di�erent �elds of de�nition with a big composite�eld this construction does not wok directly in polynomial time. In Section 3 analgorithm for lifting idempotents in this situation is described.In Section 4 the required polynomial{time algorithm for decomposition of arbi-trary �nitely generated �{modules into the direct sum of irreducible is described.Considering the algebra of endomorphisms of the given module we reduce the gen-eral case to the case of projective modules.Further, in Section 5 an algorithm of polynomial complexity is constructed forthe problem of the isomorphism of �nitely generated �{modules, and even a moregeneral result is obtained here. The isomorphism constructed is de�ned over the�eld of de�nition of the considered modules. In other words one can constructwithin the polynomial time the isomorphism (if it exists) of modules over algebrasover a �eld which is a �nite extension of Q or a �nite �eld, see Theorem 2 below.In Section 6 we consider applications of the results obtained to the problemof similarity of families of matrices, see Theorem 4 below Note that the solved inSection 6 problem of similarity of families of matrices is a particular case of thefollowing well Edmond's problem. Given a subspace W of the space of squarematrices over a �eld, decide within a polynomial time whether the determinant isnot identical zero on W .In Section 7 a polynomial{time algorithm is constructed for the problem oforthogonal similarity of families of matrices, see Theorem 5 below.Now we give the precise statements. Let H be the �eld of rational numbers Qor a �nite �eld of q elements, the characteristic char(H) = p (so p is a prime orzero); the �eld k = H(�) where � is algebraic over the �eld H with the minimalpolynomial F 2 H[Z] and leading coe�cient lcZF of F is equal to 1. We shallconsider two cases. In the �rst case denote by K = k the algebraic closure of k. Inthe second case suppose that k is a real �eld, i.e. � is a real root of F and denoteby K = ek the real closure of k, see e.g. [?].3



Let �0 be an associative k{algebra which is given by its basis f�ig1�i�n andmultiplication table �i�j = X1�s�nc(s)i;j �s; 1 � i; j � nwhere all c(s)i;j 2 k. Let the K{algebra � = �0 
k K. In this situation we shall saythat � is de�ned over the �eld k and is given by its k{structure. We shall use thesimilar de�nition also for extensions k1 of k instead of k.If it is not specially mentioned the modules and the ideals considered in thepaper are left modules and the ideals. Let V 0 be a �nitely generated �0{modulewhich is given by its basis fvjg1�j�m and by the multiplication table giving theaction of �0 on V 0: �ivj = X1�s�md(s)i;j vs; 1 � i � n; 1 � j � mwhere all d(s)i;j 2 k. Let the �{module V = V 0 
k K. In this situation we shallsay that the module V is de�ned over the �eld k and is given by its k{structure.The homomorphism V1 ! V2 of two �{modules de�ned over k is de�ned over kif and only if it is induced by the homomorphism V 01 ! V 02 of k{structures by theextension of scalars. We shall use the similar de�nition also for extensions k1 of kinstead of k.Set H0 = Zif H = Q and H0 = H if H is a �nite �eld. We shall represent anarbitrary polynomial f 2 k[X] in the formf = 1a0Xi X0�j<degf ai;j�jXi ;where a0; ai 2 H0; gcdi;j(a0; ai;j) = 1. De�ne the length l(a) of a 2 H0 by theformula l(a) = minfs 2Z: jaj < 2s�1g if H0 =Zand l(a) = minfs 2Z: q � 2sgif H is a �nite �eld with q elements. The length l(f) of coe�cients from H0 ofthe polynomial f is de�ned to be the maximum of length of coe�cients from H0of polynomials a0; ai;j and in the similar way one can de�ne l(f) for a polynomialf 2 k1[X] where the �eld k1 = H(�1) and the element �1 are analogous to k and �;in particular one can do it when k1 is algebraic over k.We shall suppose that we have the following boundsdegZ(F ) < d1; l(F ) < M1 l(c(s)i;j ) < M2 l(d(s)i;j ) < M3for i; j; s.The size L(f) of the polynomial f such as above is de�ned to be the product ofl(f) to the number of all the coe�cients from H0 of f in the dense representation.Thus, we have L(F ) < d1M1; L(c(s)i;j ) < d1M2; L(d(s)i;j ) < d1M3 :Now we can formulate our results. 4



THEOREM 1. Let the algebra � and the module V be as above. Then one canconstruct within the time polynomial in d1,M1,M2,M3, n;m and the characteristicof the �eld k the isomorphism of the decomposition into the direct sumV ' �i2IV "iiwhere all Vi are indecomposable �{modules, 1 � "i 2 Z, I is a �nite set. Themodule Vi is de�ned over over a separable extension Ki of k which is constructed.The degree [Ki : k] � m6, if K = ek and [Ki : k] � m3, if K = k. Besides that, therepresentation of Vi by its Ki{structure is constructed for every i 2 I.Now consider two �{modules V1 and V2 similar to V and de�ned by their k{structures V 01 and V 02 . Let d(s)1;i;j and d(s)2;i;j be similar to d(s)i;j and satisfy to the sameestimations for degt� and the lengths of coe�cients from H0 as d(s)i;j .THEOREM 2. One can decide within the time polynomial in d1, M1, M2,M3, n;m and the characteristic of the �eld k whether the �{modules V1 and V2are isomorphic and if it is the fact to construct the isomorphism between them.Besides that, one can construct such an isomorphism de�ned over the �eld k, i.e.this isomorphism is given by the isomorphism of �0-modules V 01 and V 02 .THEOREM 3. Let the algebra � and the module V be as above. Then onecan decide within the time polynomial in d1, M1, M2, M3, n;m whether V is aprojective �{module. One can construct within the time polynomial in d1, d2, M1,M2, n and the characteristic of the �eld k the system of representatives S of allclasses of isomorphic indecomposable projective �{modules, herewith #S � n.Let A1; : : : ; Am and B1; : : : ; Bm be two families of r�r{matrices with coe�cientsfrom the �eld k. Let Ai = (ai;j1;j2)1�j1;j2�r , Bi = (bi;j1;j2)1�j1;j2�r where all thecoe�cients ai;j1;j2 ; bi;j1;j2 2 k. Let all ai;j1;j2 ; bi;j1;j2 satisfy to the same estimationsfor the lengths of coe�cients from H0 as d(s)i;j .THEOREM 4. Let two families A1; : : : ; Am and B1; : : : ; Bm of r�r{matriceswith coe�cients from the �eld k be given. Then within the time polynomial in d1,M1, M2, M3, n;m; r and the characteristic of the �eld k one can decide whetherthere exists a nonsingular r�r{matrix S with coe�cient fromK such that SAiS�1 =Bi for all 1 � i � m and if it is the fact can construct such a matrix S. Besidesthat, such a matrix S can be constructed with coe�cients from k.Let K be real closed. The square matrixA with coe�cients fromK is orthogonalif and only if AAT = E where AT is transposed to A and E is the unity matrix.THEOREM 5. Let k be a real ordered �eld and K real closure of k. Let twofamiliesA1; : : : ; Am and B1; : : : ; Bm of r�r{matrices with coe�cients from the �eldk be given. Then within the time polynomial in d1, M1, M2, M3, n;m; r one candecide whether there exists an orthogonal r�r{matrix S with coe�cient from Ksuch that SAiS�1 = Bi for all 1 � i � m and if it is the fact can construct such amatrix S. 5



1 Algorithms for semisimple algebras and modulesover themThe material of this section is known, see [?],[?], [?]. But for the completeness andsince our representation of input data is slightly di�erent from the considered earlierwe shall sketched the required results with the proofs.Let an algebra � and a �nitely generated �{module V be given, see introduction.Suppose additionally that the algebra � is semisimple, i.e. the radical R = R(�) =0. In this case by the structural theorems about semisimple algebras and modulesover them, see e.g. [?], � = �i2I�i (1)where all �i are simple algebras over K and I is a �nite set. Further, V = �i2I�iVwhere each �iV is �{module and �i{module. Besides that, �iV is an isotypicalmodule or equal to zero, i.e. �iV ' U "ii where Ui is a (uniquely de�ned up toisomorphism) simple �i{module, 0 � "i 2Zfor all i 2 I. So we have the decompo-sition of V into the direct sum of simple (and indecomposable) modulesV ' �i2IU "ii : (2)We have � ' �0
kK and we shall identify � and �0
kK using this isomorphism.To construct (1) denote by Z = Z(�) = fc 2 � : c�i = �ic 81 � i � ng thecenter of the algebra �. Similarly Z 0 = Z(�0) = fc 2 �0 : c�i = �ic 81 � i � ng isthe center of the algebra �0. So we have Z(�) ' Z(�0)
k K, dimk Z0 � n.Compute the k{basis cj ; j 2 J of Z 0 and a primitive element c of the separablecommutative algebra Z 0 over k. Thus, the isomorphism Z 0 = k[c] ' k[Z]=(f(Z))is constructed where f is minimal polynomial of c over k such that the leadingcoe�cient lcZf = 1. We have degZ f � n. The algorithm for constructing aprimitive element is similar to the case when Z0 is a �eld, see e.g. [?]. So c =Pj2J zjcj where all zj 2Z, jzjj < n2. Factor f = Qi2I1 fi where fi are irreducibleover k polynomials with lcZfi = 1 for all i. Denote by Hi = f� 2 k : fi(�) = 0gthe set of roots of the polynomial fi in the algebraically closed �eld k.Suppose that degZ f > 1. Then for every i 2 I1 and � 2 Hi denote f� =f(Z1)=(Z1 � �) 2 k[�][Z1] where Z1 is a new variable. Set �1 = Z1 mod f� 2k[�][Z1]=(f�). Note that k{algebras k[�; �1] are isomorphic over k for di�erent � 2Hi. We have dimk k[�; �0] � n(n� 1)=2.At �rst, consider the case when K = k. So the elements of Hi are conjugatedover k. We haveZ = Z 0
kK ' K[Z]=(f(Z)) ' Yi2I1 Y�2HiK[Z]=(Z��) ' Yi2I1 Y�2Hi k[�]
k[�]K: (3)Then Y�02Hi;�0 6=� k[�0]
k[�0] K ' k[�][Z1]=(f�)
k[�] K6



and therefore, Z0 
k k[�] ' k[�][Z1]=(f�) � k[�];Z ' k[�][Z1]=(f�)
k[�] K � k[�]
k[�] K:Thus, for every i 2 I1 and � 2 Hi solving a linear system over the �eld k[�]construct the central idempotent e� 2 Z 0 
k k[�] � �0 
k k[�] � � such thate�Z = k[�] 
k[�] K under isomorphism (3). Set �� = �e� and �0� = �0e� andconstruct a k[�]{basis of �0�. Then �0� is a simple k[�]{algebra, �� is a simple K{algebra, �� = �0� 
k[�] K for every for every i 2 I1 and �0 2 Hi and we have theisomorphism � ' Yi2I1 Y�2Hi ��which gives isomorphism (1) after changing the set of indices. It is proved addition-ally that each simple algebra �� is de�ned over the �eld k[�] and the element � hasminimal polynomial fi, over k with degZ fi � n, i 2 I1.Now consider the case when K = ek, in particular char(k) = 0. Compute positiveintegers z1; z2 � P(n) for a polynomial P such that the element �0 = z1(� + �1) +z2��1 is a primitive element of the subalgebra k[�+�1; ��1] of separable commutativealgebra k[�; �1] for every i 2 I1 and � 2 Hi. Compute the minimal polynomial �iof the element �0 2 k[�; �1] over k. We have deg �i � n(n� 1)=2.REMARK 1. Additionally we require that G.C.D.(Qi2I1 �i; f) = 1 (thereexist always z1; z2 � P(n) such that this additional condition is satis�ed). Notethat the last condition about G.C.D. will be required later only for de�ning the setI of indices which must be di�erent. One can do not require the ful�llment of thiscondition but choose another denotations for the set of indices I later.Compute the representation� + �1 = S1(�0) = X0�j�deg� s1;j�0j 2 k[�0];��1 = S2(�0) = X0�j�deg� s2;j�0j 2 k[�0]where all s1;j ; s2;j 2 k. Factor �i = Qj2Ji �j where �j are irreducible over kpolynomials with lcZ�j = 1 for all i 2 I1; j 2 Ji. We have deg �j � n(n� 1)=2.Set H0i = Hi \ ek and�j = f� 2 ek : �j(�) = 0&S1(�)2 � 4S2(�) < 0g:Set the �eld k[�; �0] = k[�][Z]=(Z2 � S1(�)Z + S2(�)) where �0 = Z mod Z2 �S1(�)Z + S2(�). The roots of � and therefore, the elements of �j can be given bytheir approximations in Q[p�1] with precision 2�M1P(n) for some polynomial P.7



For arbitrary � 2 Hi nH0i denote by � its conjugate over k. Now we haveZ = Z0 
k K ' K[Z]=(f(Z)) 'Qi2I1(Q�2H0i K[Z]=(Z � �)�Qf�;�g�HinH0i K[Z]=((Z � �)(Z � �))) 'Qi2I1(Q�2H0i K[Z]=(Z � �)�Qj2JiQ�2�j K[Z]=(Z2 � S1(�)Z + S2(�))) 'Qi2I1(Q�2H0i k[�]
k[�] K �Qj2JiQ�2�j k[�; �0]
k[�] K) (4)Similarly to the considered case of algebraically closed �eld construct for everyi 2 I1 and � 2 H0i the central idempotent e� 2 Z 0 
k k[�] � �0 
k k[�] � � suchthat e�Z = k[�] 
k[�] K under isomorphism (4). Set �� = �e� and �0� = �0e�and construct a k[�]{basis of �0�. Then �0� is a simple k[�]{algebra, �� is a simpleK{algebra, �� = �0� 
k[�] K, i.e. �� is de�ned over k[�]. The center of �0� is k[�],the center of �� is K = k[�]
k[�] KFurther, in a similar way for every i 2 I1, j 2 Ji and � 2 �j construct thecentral idempotent e� 2 Z0
k k[�] � �0
k k[�] � � such that e�Z = k[�; �0]
k[�]Kunder isomorphism (4). Set �� = �e� and �0� = �0e� and construct a k[�]{basis of�0�. Then �0� is a simple k[�]{algebra, �� is a simple K{algebra, �� = �0� 
k[�] K,i.e. �� is de�ned over k[�]. The center of �0� is k[�; �0], the center of �� is K =K[�0] = k[�; �0]
k[�] K. Construct a k[�; �0]{basis of �0�. Denote by � the minimalpolynomial of the element � over k with leading coe�cient lc� = 1. So we havedeg � � n(n� 1)=2.If � 2 Hi n H 0i and � is conjugated to � over k then de�ne also the nonzeroidempotents e�; e� 2 �
KK � � such that e�+ e� = e� where � = e�+ e�+ ze�e�.Therefore, we have the isomorphism� ' Yi2I1(Y�2H0i �� � Yj2Ji Y�2�j ��)which gives isomorphism (1) after changing the set of indices.The described above construction of the decomposition of � into the directproduct can be e�ect also in the case when deg f = 1. It is trivial in this case.Set I = [i2I1Hi if K = kand I = [i2I1(H0i [ [j2Ji �j) if K = ek:Set Ei = Hi if K = k and Ei = H 0i [Sj2Ji �j if K = ek. So we have in the bothcases I = [i2I1EiThus, isomorphism (1) is constructed and we can suppose that every �i is de�nedover a �nite extension ki of the �eld k, ki � K, i.e. �i ' �0i 
ki K where �0i is a8



simple ki algebra. The �eld ki (which is k[�] or k[�] in denotations of (3) and (4))and the ki{basis of the algebra �0i � �0
kki are constructed for every i 2 I. Denoteby k0i the center of �0i (which is k[�] or k[�; �0]) in denotations of (3) and (4)). Then�0i is a simple central k0i{algebra and �i is a simple central k0i 
ki K{algebra (notethat k0i
kiK = K{algebra if ki = k[�] and k0i
kiK = K if ki = k[�] in denotationsof (3) and (4)). The �eld k0i and the k0i{basis of the algebra �0i � �0 
k k0i areconstructed for every i 2 I.We have � = �0
kK and �
KK = �0
kK. Hence, the Galois group Gal(K=k)acts in the natural way on � and the Galois group Gal(K=k) acts on �
KK . Theseactions are trivial on �0.Now let A0 be an L{structure of a submodule A (of �) de�ned over the �eld Lwhich is an extension of k. Then every embedding � : L ! K over k is extendeduniquely till the embedding A0 ! � which we shall also denote without ambiguityby �. This embedding � : A0 ! � is such that �(a) = ae� for a 2 A0 wheree� 2 Gal(K=k) is an arbitrary element for which the restriction e�jL = �. Theembedding � : A0 ! � does not depend on the choice of e� since A0 is invariantrelatively to the Galois group Gal(K=L).REMARK 2. For every i 2 I and for every embedding � : ki ! K of �eldsover k there exists j 2 I such that i = j� and there exists u 2 I1 such that i; j 2 Euunder our choice of the sets of indices. Besides that we have for such i; j 2 Eu that(�0i)� = �0j and for the idempotents e�i = ej .REMARK 3. Set for i 2 I1 the algebra �i = �j2Ei�j . The central idempotentcorresponding to the algebra �i is equal in the both cases toPj2Hi ej =Pj2Ei ej.So the algebras �i, i 2 I1 are de�ned over the �eld k and Pi2I1 �i ' �. Thek{structures for the algebras �i, i 2 I1 and this isomorphism de�ned over the �eldk can be constructed within the polynomial time as it follows from the constructiondescribed.Now our aim will be to construct for every i 2 I the simple �i{module Ui.Note that �i ' Umii where 1 � mi 2 Z. Construct a ki{basis of the �0i{module�0i � �i 
k ki.Let f�i;jg1�j�ni be the ki{basis of �0i constructed with the multiplication tableand de�ning the algebra �0i. So we have the regular representation j : �i !Mni(K)of the algebra �i given by the basis f�i;jg1�j�ni.If K = k then by the the Wedderbern theorem we have �i ' Mmi (K) whereMmi (K) is the matrix algebra over K of the order mi = pni and the simple moduleover �i is isomorphic to the space of columns Kmi .If K = ek then by the Wedderbern theorem, see e.g. [?], we have �i ' Mmi (Di)where Mmi (Di) is a matrix algebra of the order mi over the division algebra Diover K and the simple module over �i is isomorphic to the space of columns Dmii .Besides that, �i is identi�ed with the algebra of endomorphisms HomDi (Dmii ; Dmii )of the right Di{vector space Dmii . Further, we have one of the following cases9



(i) Di = K;(ii) Di = K[p�1] = K;(iii) Di = H(K) where H(K) is the algebra of the Hamiltonian quaternions overK, i.e. this algebra has the basis 1; i; j; ij over K with the multiplication tablei2 = j2 = �1, ij = �ji,Set dimK Di = di where di > 0. Then di is equal to 1; 2 or 4 according to cases (i),(ii) or (iii). We have ni = m2i di. Set also Di = K, di = 1 if K = k. Note that thecase (ii) holds if and only if k0i 6= ki, i.e. when Z(�i) = k[�; �0] for some � and �0 in(4). So we can always decide whether (iii) holds.Suppose also without loss of generality, extending in advance if it is necessarythe �eld H, that it contains su�ciently many elements, namely, more than P(n)elements for some polynomialP. Let a =P1�j�ni aj�i;j 2 �0i be a nonzero elementsuch that all coe�cients aj 2 H0 and have small sizes l(aj) < O(logn) if H0 = Z.In the case when K = k choose such an element a. In the case when K = ek we shallspecify later (when the case K = k will be considered completely) how to choose a.So let a be given.Compute the characteristic polynomial �1 2 ki[Z] of the matrix j(a) 2Mni(K).Factor �1 over ki. Similarly to that it was by constructing isomorphisms (3) and(4) for every irreducible over ki factor �2 of the polynomial �1 construct the set ofirreducible over K factors �3 j�2 with leading coe�cient lc�3 = 1. So the degreeof �3 is 1 or 2 and the last case may occur only when K = ek. More precisely,construct for every �3 the �eld ki[�] � ki (it depends on �3) generated by thecoe�cients of �3, ki[�] � K, c.f. constructing k[�] above. The element � is givenover the �eld ki by its minimal polynomial 	i 2 ki[Z] with lcZ	 = 1. DenoteKi = ki[�] Set W (�3) = fx 2 �i : �3(j(a))x = 0g the annulator of �3(j(a)) andd(�3) = dimKW (�3). Set d(a) = min�3j�2j�1 d(�3).The multiplicity of every root of �1 is no less thanmi =pni=di � pni=2. So thedegree of the minimal polynomial of the matrix j(a) is no more than pnidi � 2pn.Hence, deg	i � 2n if K = ek and deg 	i � pni if K = k. Therefore, the degree[Ki : k] � n3 if K = ek and [Ki : k] � n3=2 if K = k.REMARK 4. If K = k then we shall suppose also that we choose polynomials�3 such that additionally the following condition is satis�ed. If i; j 2 I and theembedding ki ! K of �elds over k are such that j = i� (see Remark 2) than	�i = 	j i.e the coe�cients of polynomials 	i and 	j are conjugated by �.Note also thatW (�3) is de�ned over Ki. Namely, setW 0(�3) = fx 2 �0i
kiKi :�3(j(a))x = 0g. Then W (�3) = W 0(�3)
Ki K and d(�3) = dimKi W 0(�3). So alld(�3) and therefore d(a) can be computed within the polynomial time. Computed(a) and denote by � some factor �3 for which d(a) = d(�) and �x �. So the �eldgenerated by the coe�cients of � is Ki � K.10



Show that d(a) � midi and midi j d(a). Set Ui(�) = fx 2 Ui : �(j(a))x = 0gthe annulator of �(j(a)). Then W (�) ' Ui(�)mi and W (�), Ui(�) are nonzeroright linear spaces over Di. Therefore, dimK Ui(�) � di and d(a) � dimKW (�) =mi dimK Ui(�) = midi dimDi Ui(�) � midi. The required assertion is proved.Suppose that if K = k then d(a) > mi = pni ; if K = ek then d(a) =mimaxf2; dig = 2pni and (i) or (iii) holds. In this case we shall construct anew element a0 similar to a such that d(a0) < d(a) if it exists. If K = k we shallshow that a0 exists in our assumptions. If K = ek and a0 exists in our assumptionsthen (i) holds and we shall show that conversely if (i) holds then a0 exists.To construct a0 compute the Ki{basis e of the space W 0(�). Compute an addi-tional family of vectors e0 such that e; e0 is a Ki{basis of the algebra �0i 
ki KiSet the subalgebraC0 = fx 2 �0i 
ki Ki : xW 0(�) � W 0(�)g:The condition xW 0(�) � W 0(�) is equivalent to the fact that xe 2W 0(�) for everyelement e from the basis e. This is equivalent to the fact that all the coe�cients inthe elements from e0 of the representation of the vector xe in the basis e; e0 are zerosfor every element e from e. So solving the linear system relatively to the coe�cientsin the representation of x in the basis of �0i 
ki Ki compute the Ki{basis of thealgebra C0.So W 0(�) is C0{module. Denote by C0(�) the image of the trough homomor-phism j1 : C0 ! HomKi(W 0(�);W 0(�)) ' Md(a)(Ki)and construct the basis overKi of C0(�) �Md(a)(Ki) (recall that the basis ofW 0(�)was chosen above). We have W (�) ' Ui(�)mi and Ui(�) � Ui is a right vectorsubspace overDi of the simple moduleUi. In particular, dimK Ui(�) = d(a)=(midi).Further, �i is identi�ed with the algebra of endomorphisms HomDi(Ui; Ui) of theright Di{vector space Ui.Therefore, the algebra C = C 0 
Ki K ' fx 2 Mmi (Di) : xUi(�) � Ui(�)gand C(�) = C 0(�) 
Ki K ' Md(a)=(midi)(Di). Therefore, our assumption thatd(a)=mi > 1 if K = k and d(a)=mi = maxf2; dig implies dimKi C0(�) > 1 if K = kand dimKi C0(�) = 4 if K = ek.LEMMA 1.(a) If K = k one can construct within the polynomial time an element b 2 C0(�)such that b 62 1�Ki where 1 is the unity element of C0(�) if K = k,(b) If K = ek then one can decide within the polynomial time whether thereexists an element b 2 C0(�) such that the minimal polynomial of the matrixb 2Md(a)(Ki) overKi is not equal to a linear polynomial or square polynomialwith negative discriminant. More precisely, such an element b exists if (i) holdsand does not exists if (iii) holds. One can construct b if it exists within thepolynomial time. 11



PROOF. We need only to prove (b). Compute an element c 2 C0(�) suchthat 1; c are linearly independent over Ki. So the minimal polynomials of c overKi is not linear. Hence, we can suppose without loss of generality (otherwise therequired b can be constructed) that this minimal polynomial is a square polynomialwith negative discriminant. Replacing c by c�� �1 with appropriate � 2 Ki we cansuppose without loss of generality that c2 = ��1 � 1 where �1 > 0. Now computean element d 2 C0(�) nKi[c]. This is possible since dimKi C0(�) = 4. Similarly wecan suppose without loss of generality that d2 = ��2 � 1 where �2 > 0.Now our aim is to prove that we can suppose without loss of generality (otherwisethe required b can be constructed) that cd+ dc = 0. Indeed, consider the elementc+�d 2 C0(�) where � 2 Ki. Similarly as it was above we can suppose without lossof generality that (c+ �d� �1 � 1)2 = �2 � 1, �2 < 0 for uniquely de�ned �1; �2 2 Kidepending on � . So we have(��1 � �2�2 � �2) � 1� 2�1(c + �d) + � (cd+ dc) = 0:If there exist two di�erent � for which �1 6= 0 we get from here a contradiction that1; c; d are linearly dependent over Ki. Therefore, cd + dc = �3 � 1 where �3 2 Ki.Further, note that cd 62 Ki[c]. So replacing d by cd in our consideration we cansuppose without loss of generality that c(cd) + (cd)c = �4 � 1 where �3 2 Ki. Buton the other hand c(cd) + (cd)c = c2d+ (�3 � 1� dc)c = �3c. Therefore, �3 = �4 = 0and our assertion is proved. So we have got that the subalgebra Ki[c; d] � C0(�)has the basis 1; c; d; cd and is a quaternions algebra and hence (iii) holds. In thiscase one get immediately that there exists no b. In other cases one can constructthe required element b. Therefore, C(�) = C 0(�) 
Ki K is not isomorphic to thequaternions algebra. Hence, (i) holds. The Lemma is proved.Suppose that b is constructed. Solving a linear system compute the set L of theelements b0 2 C0 such that j1(b0) = b. Note that the factor space (�0i
kiKi)=W 0(�)is C0{module. So we have the natural homomorphismj2 : C0 ! HomKi((�0i 
ki Ki)=W 0(�); (�0i 
ki Ki)=W 0(�)):Choose an element h 2 H0 which is di�erent from all roots of the characteristicpolynomial of the matrix b. Show that there exists b00 2 L such that j2(b00) = h � 1where 1 is the identity isomorphism of (�i 
ki Ki)=W 0(�). Indeed, extending the�eld we get that �i=W (�) ' (Ui=Ui(�))mi , the image of j2 
Ki K is isomorphicto Mri (Di) where ri = mi � d(a)=(midi) and the natural homomorphism C !C(�)�Mri(Di) is an epimorphismde�ned over the �eldKi. Our assertion is proved.Thus, again solving the Ki{linear system relatively to parametric coe�cients in therepresentation of L as an a�ne subspace of C0, compute such an element b00 2 L.One gets immediately from the construction described that d(b00) < d(a). LetK = ek. In this case set g = b00 if (i) holds and g = a if (iii) holds. Thus, we haved(g) = midi in the considered cases.LEMMA 2. Let K = k. Let u; v 2 �0i be nonzero elements and t 2 Ki. Thend(u + tv) � minfd(u); d(v)g for all excepting of at most P(n) elements t 2 Ki forsome polynomial P. 12



PROOF. Let K((T )) be the �eld power series in T with algebraic closureK((T )) and ordT : K((T ))! Q[f1g be the order function such that ordT (T ) = 1.Set K1 = K((T )). There exists an irreducible over K1 factor e�, lc(e�) = 1 of thecharacteristic polynomial of the element (j 
K K1)(u+ Tv) such that ordT (a) > 0for every coe�cient a of the polynomial � � e�. So if � is a nonzero minor (i.e.submatrix with nonzero determinant) of the maximal order of the matrix �(u) thenthe corresponding minor e� of the matrix e�(u + Tv) is also nonzero. Therefore,d(u + Tv) � d(u). From here by specialization we get that d(u + tv) � d(u) forall excepting of at most P1(n) elements t 2 Ki for some polynomial P1 Similarlyconsidering over series in 1=T we get that d(u + tv) � d(v) for all excepting of atmost P2(n) elements t 2 Ki for some polynomial P2. The Lemma is proved.Now let K = k. Let b00 = P1�j�ni b00j�i;j 2 �0i, b00j 2 ki. Using Lemma 2replace successively the coe�cients b001 ; b002; : : : by coe�cients a01; a02; : : : 2 H0 withl(a0j) < O(logn) such that for every 1 � s � ni it is satis�edd( X1�j�sa0j�i;j + Xs<j�ni b00j �i;j) � d(b00):Set a0 = P1�j�ni a0j�i;j. Now return to the beginning of the procedure describedwhere the element a was chosen. Replace a by a0 and apply this procedure recur-sively. Hence, �nally we shall construct an element a as above such that d(a) = mi.Set g = a.Thus, we have d(g) = midi in all the considered cases. Replace a by g in ourconsiderations above and conserve all other denotations. Choose an arbitrary el-ement 0 6= w 2 W 0(�) and construct the Ki{basis of the module (�0i 
ki Ki)w.Show that U 0i = (�0i 
ki Ki)w is a simple �0i 
ki Ki{module and U 0i 
Ki K is asimple �i{module. Indeed, it is su�cient to prove the last statement. We havedimDi Ui(�) = 1, i.e. Ui(�) is one dimensional right vector space over Di. There-fore, all nonzero elements of Ui(�) have the same annulator m � �i and generatethe simple module Ui. Hence, all nonzero elements ofW (�) = Ui(�)mi have the an-nulator m. Thus, U 0i 
Ki K ' �i=m ' Ui and our assertion is proved. Additionallyit is proved that Ui is de�ned over the �eld Ki.Thus, we have constructed the module Ui in the case when K = k. Considerthe case when K = ek. If (ii) holds then �0i is k0i algebra and �i is k0i 
ki K{algebraand k0i 
ki K ' k. So applying the algorithm from the case when K = k, seeabove, we shall construct the simple �i{module Ui also when (ii) holds. If (i) or(iii) holds then set �00i = �0i 
ki ki[p�1]. We have K[p�1] = K, the K{algebra�00i 
ki[p�1] K is simple. Apply the algorithm from the case when K = k, seeabove, replacing �0i, ki, �, �, W 0(�) by �00i , ki[p�1], �00, �00, W 00(�00). So we shallconstruct a nonzero element a 2 �0i � �00i and corresponding linear polynomial �00,lc(�00) = 1, such that dimki[p�1][�00 ]W 00(�00) = pni. If � 00 2 K then (i) holds, setg = a and construct as it was above for the element g the simple module Ui. If�00 62 K then denote by �00 the conjugate over K polynomial to �. Set � = �00�00and construct the �eld Ki generated by the coe�cients of �. Then � is a polynomial13



with coe�cients from K and dimKi W 0(�) = dimki[p�1][�00 ](W 00(�00) +W 00(�00)) =2 dimki[p�1][�00 ]W 00(�00) = 2pni: Therefore, d(a) � 2pni. Compute d(a), see above.If d(a) < 2pni then again (i) holds, set g = a and construct as it was abovefor the element g the simple module Ui. If d(a) = 2pni then apply to a thealgorithm described for the case K = ek. Thus, we have �nished the description ofthe algorithm for constructing the simple module Ui.Compute the annulator m0 � �0i 
ki Ki of the module U 0i .Now let be given a �{module V , see Introduction. Our aim is to construct anisomorphism �iV ' U "ii de�ned over the �eld Ki. First of all note that �iV '((�0i 
ki Ki)(V 0 
k Ki)) 
Ki K and therefore the module �iV is de�ned over Ki.Construct a Ki{basis of the �0i 
ki Ki{module V 00 = (�0i 
ki Ki)(V 0 
k Ki) �V 0 
k Ki. Set V 00(m0) = fv 2 V 00 : m0v = f0gg and compute a Ki{basis f1; : : : ; fsiof V 00(m0). Then �ifv ' Ui for every 1 � v � si and V 00 =P1�v�si(�0i 
ki Ki)fv,V = P1�v�si �ifj . Compute the minimal set Ii � f1; : : : ; sig such that V 00 =Pv2Ii(�0i
kiKi)fv . Then �iV = �j2Ii�ifv is the required decomposition into thedirect sum of simple modules.For every ring A denote by A� the ring with the opposite multiplication, i.e.there exists an isomorphism of additive groups A ! A�, a 7! a� such that (ab)� =b�a� for all a; b 2 A. We can identify (Hom�i(Ui; Ui))� = Di. Construct the algebra(Hom�0i(U 0i ; U 0i))� = D0i. So D0i is a division algebra over Ki and D0i 
Ki K ' Di.In the case when K is a real �eld the vectors fv, v 2 Ii can be chosen morecanonically. Namely, let d = di = dimK Di. Note that V 00(m0) is a right vectorspace over Di. Construct an orthonormal Ki{basis f1; : : : ; fsi of V 00(m0) such thatfjd+1; fjd+2; : : : ; f(j+1)d is a basis of fjd+1D0i for every 0 � j < si=d. The requiredset Ii = f1; d+1; 2d+1; : : :; (si=d�1)+1g. We shall suppose later that the vectorsfv, v 2 Ii are chosen in such a way when K is a real �eld.We shall suppose further without loss of generality that if V = � then f1 = w and1 2 Ii, i.e. f1 is a generator of Ui. Further, the idempotent ei = Pj2Ii ei;v whereidempotents ei;v 2 �ifv. Hence ei;v 2 �0i 
ki Ki for all v. Denote e(i) = ei;1 2 Ui.So Ui = �e(i). Denote by i;v : Ui ! �ifv, the constructed isomorphism which isgiven by the formula �f1 7! �fv for � 2 �. Set e(i)v = i;v(e(i)) for all v 2 Ii, i 2 I.So e(i)v 2 �ifv is an idempotent which has the same annulator as e(i), v 2 Ii, i 2 I.REMARK 5. Suppose that V = � then if K = k, i; j 2 I and � : ki ! K is anembedding over k such that i� = j then, see Remark 2, it follows from Remark 4 andthe described algorithm that there exists an embedding �1 : Ki ! K over k whichextends � such that e�1i;v = ej;v and �1i;v = j;v (in the sense that i;v(x)�1 = j;v(x�1 )for all x 2 U 0i) for all v. In particular (e(i))�1 = e(j)Show that the natural projection V ! �iV is de�ned over the �eld Ki. Indeed,the modulePj2I;j 6=i �j is de�ned over the �eld ki as it was proved above. Hence,the module (Pj2I;j 6=i�j)V ' Pj2I;j 6=i�jV is de�ned over the �eld Ki. Therequired assertion follows from here immediately.14



Note also that one can construct within the polynomial time the isomorphism�i ' Mmi (Di). Indeed, we can identify (Hom�i(Ui; Ui))� = Di and therefore,�i ' (Hom�i(�i;�i))� ' (Hom�i(Umii ; Umii ))� '(Mmi (Hom�i(Ui; Ui)))� ' Mmi ((Hom�i(Ui; Ui))�) = Mmi (Di): :The fourth isomorphism in this sequence is induced by transposition of matrices.These natural isomorphisms are de�ned over the �eld Ki. Therefore, they can beconstructed within the polynomial time.2 Algorithms for projective modules over algebrasOur aim is to prove Theorem 3 and construct an algorithm for decomposition ofprojective modules into the direct sum of indecomposable.Let � and �0 be as in the Introduction. Compute, see [?], [?] the radicalR0 = R(�0) of the algebra �0. Then the algebra �0=R(�0) is semisimple and hence,the algebra �=(R0
kK) ' (�0=R0)
kK is also semisimple, see e.g. [?]. Denote byR = R(�) the radical of the algebra �. Then R = R0
kK under our identi�cationsof tensor products with subspaces of �, see Section 1.Compute the semisimple algebra �0 = �0=R0 i.e. compute a k{basis of thisalgebra with its multiplication table, c.f. Introduction. This basis is simultaneouslya basis of K{algebra � = �=R under our identi�cations. Denote by � : � ! �=Rthe natural projection.Apply the algorithm from Section 1 to the semisimple algebra �0 and constructthe decomposition � = �i2I�i (5)similar to (1) where the simple algebra �i is de�ned over the �eld ki, see Section 1.Further, construct an isomorphism�i ' �i2IUmii : (6)similar to (2) with V replaced by �i. So Ui is a simple �i{module de�ned over a�eld Ki, see Section 1. Denote P i = Ui for every i 2 I.According to the construction from Section 1 the module Ri = Pj2I; j 6=i�j �U "i�1i is de�ned over the �eld Ki and P i � Ri ' �. The module Ri de�ned byits Ki{structure and the isomorphism P i � Ri ' � can be constructed within thepolynomial time, see Section 1. Further we shall suppose without loss of generalitythat P i � Ri = �, i.e. that P i and Ri are submodules of � de�ned over Ki.We need an auxiliary algorithm. In input of this algorithm a �nite extension L ofthe �eld k, an idempotent q 2 �0
kL, idempotents qi 2 �0
kL, 1 � i � r are givensuch that qi1qi2 = 0 for any di�erent 1 � i1 6= i2 � r and q = q modR =P1�i�r qi.Hence, see [?],W = �q is projective ideal of � de�ned over L, the modulesQi = �qi15



are projective ideals of �, 1 � i � r, and we have the decomposition W=RW =�1�i�rQi of the module W = W=RW into the direct sum of its submodules Qi,1 � i � r.In output of this algorithm we get idempotents qi 2 �0 
k L, 1 � i � r suchthat qi1qi2 = 0 for any di�erent 1 � i1 6= i2 � r, q =P1�i�r qi and qi modR = qifor all 1 � i � r. Hence, the modules Qi = �qi are projective ideals of �, 1 � i � r,and we have the decomposition W = �1�i�rQi of the module W into the directsum of its submodules Qi such that such that �(Qi) = Qi=RQi = Qi, 1 � i � r.The working time of this algorithm is polynomial in the size of input.To describe this algorithm prove the following lemma.LEMMA 3. Let r2 � r1 � R be ideals of � and �1 : �=r1 ! �, �1;2 : �=r2 !�=r1 be natural projections. Let �1�i�rQ1;i =W=r1W where Q1;i are submodulesofW=r1W de�ned over the �eld L and �1(Q1;i) = Qi for 1 � i � r.. Then there existsubmodules Q2;i ofW=r2W de�ned over the �eld L such that �1�i�rQ2;i = W=r2Wand �1;2(Q2;i) = Q1;i for all 1 � i � r.PROOF. We shall suppose without loss of generality that r2 = f0g. Thereexists, see e.g. [?], projective modules Qi de�ned over L (i.e. their L{structures areprojective modules) such that Qi=RQi ' Qi over L.Show that there exists an isomorphismW !�1�i�rQi de�ned over L. Indeed,since W and �1�i�rQi are projective modules de�ned over L and �1�i�rQi = Wthere exist homomorphisms � : W ! �1�i�rQi and � : �1�i�rQi ! W de�nedover L such that ��� = 1��1 and � �� = 1��2 where 1 denotes here the identityisomorphisms of �1�i�rQi and W respectively, the images Im�1 � R(�1�i�rQi),Im�2 � RW . Therefore, �1 and �2 are nilpotent endomorphisms of �1�i�rQi and� respectively. Therefore, � � � and � � � are isomorphisms. Hence, the kernelsKer� = Ker� = f0g and the images Im� = �1�i�rQi, Im� = W . The requiredassertion is proved.We shall suppose further without loss of generality that Qi are submodulesof � de�ned over L. We shall identify W=r1W = �1�i�rQi=r1Qi. Note thatQi=r1Qi ' Q1;i since these modules are projective �=r1{modules and the reductionsmodulo R=r1 of these modules coincide. Hence, there exists an isomorphism 1 :�=r1 ! �=r1 induced by the considered isomorphisms Qi=r1Qi ' Q1;i, 1 � i � r.There exists a homomorphismof modules  : W !W such that 1��1;2 = �1;2�.Analogously to that it was above for the homomorphism � it is proved that  is anisomorphism. Now set Q2;i = (Qi) for all 1 � i � r. The lemma is proved.Now let 1 � j 2 Z. Consider the natural projection �j : �=Rj ! �. Let1 � j0 2Zbe maximal such thatRj0�1 6= f0g. Our aim is to construct consequentlyfor j = 1; 2; : : : ; j0 submodules Qi;j � W=RjW de�ned over the �eld L such that�1�i�rQi;j = �=Rj and �j(Qi;j) = Qi, 1 � i � r. Let q modRj =P1�i�r qi;j 2�=Rj where qi;j 2 Qi;j, 1 � i � r. Then (�=Rj)qi;j = Qi;j and qi;j 2 �=Rj16



are idempotents such that qi1;jqi2;j = 0 for any di�erent 1 � i1 6= i2 � r, see[?]. Conversely, if qi;j 2 �=Rj are idempotents such that q modRj =P1�i�r qi;j,qi1;jqi2;j = 0 for any di�erent 1 � i1 6= i2 � r and �j(qi;j) = qi;1 then we can set(�=Rj)qi;j = Qi;j for all 1 � i � r. So it is su�cient to construct idempotentsqi;j 2 �=Rj such that q modRj = P1�i�r qi;j, qi1;jqi2;j = 0 for any di�erent1 � i1 6= i2 � r and �j(qi;j) = q1 for all 1 � i � r.Construct for j = 1; 2; : : : the factor algebras �=Rj and compute j0. Notethat Qi;1 = Qi. Hence, construct qi;1 for all 1 � i � r. We shall construct forevery 0 � j < j0, 1 � i � r elements "i;j 2 Rj (one have R0 = �) such thatqi;j =P0�s<j "i;s modRj for every 1 � j � j0, 1 � i � r. Solving a linear systemover the �eld L construct elements "i;0 2 � such that qi;1 = "i;0 modR. Nowsuppose that qi;j�1 and all "i;s, 0 � s < j � 1, 1 � i � r are constructed for some1 < j � j0 and show how to construct qi;j and "i;j�1.By Lemma 3 applied to r1 = Rj�1, r2 = Rj and by the described above connec-tion between idempotents and projective modules there exist ui 2 Rj�1, 1 � i � rsuch that( X0�s<j�1 "i1;s + ui1)( X0�s<j�1"i2;s + ui2) 2 Rj ; 1 � i1 6= i2 � r;( X0�s<j�1"i;s + ui)2 � X0�s<j�1"i;s � ui 2 Rj ; 1 � i � r;X1�i�r( X0�s<j�1"i;s + ui)� q 2 Rj :Hence, equivalently"i1;0ui2 + ui1"i2;0 = � X0�s1;s2<j�1;s1+s2�j�1 "i1;s1"i2;s2 modRj;1 � i1 6= i2 � r;"i;0ui + ui"i;0 � ui = � X0�s1;s2<j�1;s1+s2�j�1 "i;s1"i;s2 + X0�s<j�1"i;s modRj;1 � i � r;X1�i�r ui = q � X1�i�r X0�s<j�1"i;s modRjin �=Rj. Solving a linear system over the �eld L compute some elements ui modRj, 1 � i � r. Solving a linear system over the �eld L compute the requiredelements "i;j�1 2 Rj�1 by the condition ui = "i;j�1 modRj , 1 � i � r. It followsimmediately by induction from the construction described that the size L("i;j) <(j � 1)P1(M1d1n) +P2(M1d1n) for all i; j for some polynomials P1;P2. Therefore,all "i;j and qi;j can be constructed within the polynomial time.Now construct the required modules Qi = �qi;j0 de�ned by their L{structures.The auxiliary algorithm is described.Now apply the auxiliary algorithm to the decomposition P i � Ri = �, i 2 Iwhere P i and Ri are submodules of � de�ned over Ki, see above. So construct the17



decomposition Pi�Ri = � where Pi and Qi are projective ideals of � de�ned overthe �eld Ki such that �(Pi) = Pi=RPi = P i and �(Ri) = Ri=RRi = Ri for all i 2 Iand an idempotent e(i) 2 �0 
K Ki such that Pi = �e(i), Ri = �(1 � e(i)). TheKi{structure of Pi is P 0i == �0e(i).REMARK 6. We shall suppose that by solving linear systems in the describedconstruction we take conjugated solutions for systems with conjugated coe�cients.Therefore, if K = k, the dices i; j 2 I, an embedding � : ki ! K over k , anembedding �1 : Ki ! K over k are such that (see Remark 5) i� = j and �1 extends� then (e(i))�1 = e(j).Now let V be an arbitrary �{module from Introduction de�ned by its k{structureV 0. Our aim is to decide whether V is a projective �{module and if it is the factto construct an isomorphism V ' �P "ii :Construct the epimorphism �V : �m ! V de�ned over the �eld k. This ispossible since the generators fvjg1�j�m of V 0 are known, see Introduction. Solvinga linear system construct a basis over k of the space of homomorphismsHom�0(V 0; V 0) = f� 2 Homk(V 0; V 0) : � (�ivj) = �i� (vj)81 � i � n; 1 � j � mg:Hence, the space of homomorphisms Hom�(V; V ) = Hom�0(V 0; V 0) 
k K. Simi-larly construct a basis over k of the space of homomorphisms Hom�0(V 0; (�0)m).Hence Hom�(V;�m) = Hom�0(V 0; (�0)m) 
k K. Therefore, Hom�(V; V ), andHom�(V;�m) are de�ned over k. Further construct the homomorphism de�nedover k �V � : Hom�(V;�m)! Hom�(V; V )induced by �V .Now V is projective if and only if the identity isomorphism 1V of V belongs toIm�V �. Solving a linear system over k we can decide whether 1V 2 Im�V � and ifit is the fact construct an element � 2 ��1V �(1V ). Thus we can decide within thepolynomial time whether V is projective.Let V be a projective module. Using Section 1 construct the isomorphism : V=RV ' �i2IP "ii and the natural projections i : V=RV ! P "ii de�ned overthe �eld Ki, see Section 1. Consider the natural homomorphism de�ned over the�eld Ki � : Hom�(V; P "ii )! Hom�(V=RV; P "ii ):Since V is a projective module there exists a homomorphism i : V ! P "ii suchthat i modR = i, i.e. i 2 ��1(i). Solving linear systems over the �elds Kiconstruct homomorphisms i for all i 2 I.We claim that the homomorphisms i, i 2 I de�ne the isomorphism  : V !�i2IP "ii . Indeed, we have  mod R = . Now similarly to that it was in the proof18



of Lemma 3 for the isomorphism of � and Pi�Qi we get that  is an isomorphism(de�ned over the composite of all �elds Ki, i 2 I).Now let be given two projective modules V1 and V2 de�ned over the �eld k.Construct for them the isomorphisms j : Vj ' �i2IP "j;ii , j = 1; 2. The modulesV1 and V2 are isomorphic over K if and only if "1;i = "2;i for all i 2 I and if it is thecase we have the isomorphism between them �12 � 1 de�ned over the composite ofall �elds Ki, i 2 I. We shall show later in Section 5 how to obtain the isomorphismbetween these modules de�ned over the �eld k.3 Decomposition of an algebra into the direct sumof projective ideals which is good with respectto the action of the Galois group.Let � be as in previous Section and (5), (6) are satis�ed and constructed.We shall suppose that the set of indices I has the structure described in Section 1,i.e. that I = [i2I1Hi if K = k; (7)I = [i2I1(H0i [ [j2Ji �j) if K = ek; (8)and I = [i2I1Ei (9)where Ei = H0i [[j2Ji�j for every i 2 I1. Further, the sets Hu, u 2 I1 can be con-structed within the polynomial time. Denote the central idempotents correspondingto the elements of i 2 Hu or i 2 I by ei (in Section 1 they were denoted ei). Ifu 2 I1 then the algebra �u is constructed and de�ned by the central idempotenteu = Pi2Hu ei = Pi2Eu ei. The algebra �u is de�ned over the �eld k for everyu 2 I1. Denote the idempotents corresponding to the elements of v 2 Ii, i 2 I byei;v, e(i)v (in Section 1 they were denoted ei;v, e(i)v ) and the modules correspondingto �ifv by W i;v. In particular denote by e(i) = ei;1 the idempotent de�ning themodule P i. The isomorphisms P i ! W i;v constructed in Section 1 denote by i;v(in Section 1 they were denoted i;v).Note that now #Ii = "i and we shall suppose that Ii = f1; : : : ; "ig. We conserveother denotations from Section 1 and Section 2.We have � = �0
kK and �
KK = �0
kK. Hence, the Galois group Gal(K=k)acts in the natural way on � and the Galois group Gal(K=k) acts on �
KK . Theseactions are trivial on �0.Now let A0 be an L{structure of a submodule A (of �) de�ned over the �eld Lwhich is an extension of k. Then every embedding � : L ! K over k is extended19



uniquely till the embedding A0 ! � which we shall also denote without ambiguityby �. This embedding � : A0 ! � is such that �(a) = ae� for a 2 A0 wheree� 2 Gal(K=k) is an arbitrary element for which the restriction e�jL = �. Theembedding � : A0 ! � does not depend on the choice of e� since A0 is invariantrelatively to the Galois group Gal(K=L).In Section 2 the projective ideals Pi of an algebra � and an an isomorphism : �! �i2IP "ii (10)(one should set here V = �) were constructed.The aim of this section is to construct projective ideals Wi;v, 1 � v � "i; i 2 Iof � satisfying to the following properties. that(i) Wi;v is de�ned over the �eld Ki for all 1 � v � "i; i 2 I.(ii) the isomorphisms i;v : Pi ! Wi;v de�ned over the �eld Ki are constructedfor all 1 � v � "i; i 2 I.(iii) � = P1�v�"i;i2IWi;v as a sum of submodules of � (it follows from (10) bycomparison of dimensions overK that this sum is a direct sum of submodules).(iv) Let 1 =P1�v�"i;i2I ei;v 2 �, where ei;v 2 Wi;v. Denote also P1�v�"i ei;v =ei for every i 2 I and Pi2Eu ei = eu for every u 2 I1. Then(a) ei;v 2 �0 
k Ki and ei;v modR = ei;v for all 1 � v � "i; i 2 I, henceWi;v=Wi;v \R = W i;v;(b) if K = k, the indices i; j 2 I, an embedding � : ki ! K over k , anembedding �1 : Ki ! K over k are such that (see Remark 5) i� = j,e�1i;v = ej;v for all v and �1 extends � then e�1i;v = ej;v for all 1 � v � "i,and �1i;v = j;v, i.e. j;v(x�1 ) = i;v(x)�1 for every x 2 P 0i ;(c) ei 2 �0 
k ki and ei modR = ei for every i 2 I, therefore the idealWi =P1�v�"iWi;v = �ei is de�ned over the �eld ki andWi=Wi\R = �i(d) if i; j 2 I and an embedding � : ki ! K of �elds over k are such thatj = i� , see Remark 2, then ej = e�i ;(e) eu 2 �0 and eu modR = eu for every u 2 Ii, therefore the ideal Wu =Pi2Eu Wi = �eu is de�ned over the �eld k, and Wu=Wu \R = �u.To e�ect this construction at �rst apply the auxiliary algorithm to the decom-position � = �u2I1�u, i.e. to the idempotents 1 2 � and eu 2 � u 2 I1, andconstruct all the required in (e) ideals Wu de�ned over k and idempotents eu 2 �0such that Wu = �eu and eu modR = eu for all u 2 I1.Consider at �rst the case when K = k.Now for every u 2 I1 and a �xed index i0 2 Hu denote qi0 =Pi2Hu; i 6=i0 ei 2 �,Si0 = �i2Hu ; i 6=i0�i = �qi0 . Hence, the idempotents ei0 ; qi0 2 �0 
k ki0 and the20



modules �i0 , Si0 are de�ned over the �eld ki0 . Apply the auxiliary algorithm toto the module Wu and the decomposition �u = �i0 � Si0 , i.e. to the idempotentseu 2 �, ei0 ; qi0 2 �0 
k ki0 and construct the idempotents eei0 ; qi0 2 � such thateu = eei0 + qi0 , ei0 = eei0 modR, qi0 = qi0 modR.Set fWi0 = Wueei0 = �eei0 . Si0 = Wuqi0 = �qi0. So we get the decompositionWu = fWi0 � Si0 where fWi0 and Si0 are de�ned over the �eld ki0 .Set eei = ee�i0 , qi = q�i0 and fWi = Wueei = �eei. Si0 = Wuqi0 = �qi0 for everyi 2 Hu and an embedding � : ki0 ! K of �elds over k such that i = i�0 . So wehave the isomorphism Wu = fWi � Si and natural projections e�i : Wu ! fWi and�0i :Wu ! Si de�ned over the �eld ki for every i 2 Hu, u 2 I1.We can not claim now that the sum of projective idealsPi2Hu fWi is a direct sum.But still similarly to that it was for the isomorphism  there exists an isomorphismu :Wu !�i2HufWi (11)which is induced by the natural projections Wu ! fWi, i 2 Hu (the direct sum hereis an external abstract direct sum).Now our aim is to construct using (11) the required in (c) ideals Wi satisfyingto (d). De�ne the action of the Galois group Gal(K=k) on the module �i2HufWi inthe following way if (�i)i2Hu 2 �i2HufWi and � 2 Gal(K=k) then set(�i)�i2Hu = (��i��1 )i2Hu :Thus u is invariant relative to the action of the Galois group Gal(K=k), i.e. (�� ) =(�)� for any � 2Wu and � 2 Gal(K=k).Consider the natural projection�i :Wu !�j2Hu;j 6=ifWj :Set Ker�i = Wi. Then W �i = Wi for every � 2 Gal(K=ki). Therefore, Wi is de-�ned over the �eld ki for every i 2 Hu. Besides that, Wi=Wi \R = �i. Further,Pi2Hu Wi = Wu and this sum of submodules is a direct sum since u is an iso-morphism. Note that Pj2Hu;j 6=iWj = Si = Kere�i for every i 2 Hu. So we haveWu = Wi � Si as a direct sum of submodules.Denote by W 0i (respectively S0i) the ki{structure of Wi (respectively Si) and byW 0u the k{structure of Wu for every i 2 Hu. Then we haveW 0i = ( \j2Hu;j 6=iKere�j) \ (W 0u 
k ki) =\j2Hu;j 6=i((Sj 
kj k[i; j]) \ (W 0u 
k ki))Here k[i; j] is a composite of the �elds ki = k[i] and kj = k[j] over k and Sj
kj k[i; j],W 0u 
k ki are subspaces of W 0u 
k k[i; j] considered as vector space over k. Thus,compute all the di�erent non{isomorphic over ki composites k[i; j] of the �elds21



ki = k[i] and kj = k[j] over k and all the di�erent subspaces (Sj 
kj k[i; j]) \(W 0u 
k ki) � W 0u 
k ki. Finally computing their intersection obtain the requiredW 0i for all i 2 Hu, u 2 I1.Compute the idempotents ei 2 Wi and e0i 2 Si from the condition ei + e0i = eufor all i 2 Hu, u 2 I1.Thus, we have by the construction described ei 2 �0 
k ki and ei modR = eifor every i 2 I, the ideal Wi = �ei is de�ned over the �eld ki and Wi=Wi \R = �i.Further, if i; j 2 I and an embedding � : ki ! K of �elds over k are such thatj = i� , then ej = e�i for all i 2 Hu, u 2 I1. Hence, Wi and ei satisfy to (c) and (d)for all i 2 Hu, u 2 I1. Besides that,Pi2Hu ei = eu for all u 2 I1.So for every u 2 I1 �x an index i 2 Hu and apply the auxiliary algorithm to theidempotents ei 2 �, ei; ei;v, 1 � v � "i which de�ne the decomposition�i = �1�v�"iW i;v:Thus, construct the idempotents ei;v 2 �0 
k Ki such that P1�v�"i ei;v = ei andei;v = ei;v modR for all 1 � v � "i. Set Wi;v = Wiei;v = �ei;v for all 1 � v � "i.So we obtain the decompositionWi = �1�v�"iWi;vwhere all Wi;v are de�ned over the �eld Ki.Similarly to how it was for the isomorphism  in Section 2 construct the requiredisomorphisms i;v from the condition that i;v modR = i;v.If j 2 I, an embedding � : ki ! K over k , an embedding �1 : Ki ! K overk are such that i� = j, e�1i;v = ej;v for all v and �1 extends � then set e�1i;v = ej;v,�1i;v = j;v for all 1 � v � "i.Thus (a), (b), (c), (d) and (e) are satis�ed. Hence, (i), (ii), (iii), (iv) are satis�ed.The construction for the case K = k is completed.Now consider the case when K = ek. Apply the algorithm for the case K = k tothe algebra �
K K and the corresponding idempotents eu, ei, u 2 I1, i 2 Hu. Sowe get the idempotents eu, ei, u 2 I1, i 2 Hu. Now for every j 2 Ju, u 2 I1 setej = ei1 + ei2 if and only if j = i1 + i2+ zi1i2 for i1; i2 2 Hu, see (8) and Section 1.The idempotent ej 2 �0
k k[i1; i2] and it is invariant relatively to the action of theGalois group Gal(k[i1; i2]=kj). Hence, ej 2 �0 
k kj . De�ne Wu = �eu, Wi = �ei,for all i 2 Eu, u 2 I1.Now for every i 2 Eu, u 2 I1 apply the auxiliary algorithm to the idempotentsei 2 �, ei; ei;v, 1 � v � "i which de�ne the decomposition�i = �1�v�"iW i;v:22



Thus, construct the idempotents ei;v 2 �0 
k Ki such that P1�v�"i ei;v = ei andei;v = ei;v modR for all 1 � v � "i. Set Wi;v = Wiei;v = �ei;v for all 1 � v � "i.So we obtain the decompositionWi = �1�v�"iWi;vwhere all Wi;v are de�ned over the �eld Ki.Similarly to how it was for the isomorphism  in Section 2 construct the requiredisomorphisms i;v from the condition that i;v modR(e(i)) = e(i)v .Thus (a), (c), (d) and (e) are satis�ed. Hence, (i), (ii), (iii), (iv) are satis�ed.The construction for the case K = ek is also completed.4 Decomposition into the direct sum of indecom-posable modules.Let V be a �{module de�ned over the �eld k, see Introduction. Our aim is toconstruct the decomposition V 'Xi2I V "ii (12)from Theorem 1 and to prove it. By the Krull{Schmidt theorem, see e.g. [?], thisisomorphism is unique up to isomorphisms and a permutation of direct summands.Construct the algebra of endomorphisms of the module VE = Hom�(V; V ) � HomK(V; V )de�ned by its k{structureE0 = Hom�0(V 0; V 0) � Homk(V 0; V 0):Apply the construction from Sections 3 and 4 to the algebra E. So we get the pro-jective ideals and idempotents of E. We change � for E and use other denotationsfrom (i){(iv), (a){(e) of Section 4 for these projective ideals and idempotents of E.Thus the family of orthogonal idempotents ei;v, 1 � v � "i, i 2 I is a family oforthogonal projections, i.e. this family de�nes the isomorphism of �{modulesV !�i2I �1�v�"i Vi;v (13)where Vi;v = ei;v(V ) and (13) is induced by the projections ei;v : V ! ei;v(V ),1 � v � "i, i 2 I. The direct sum in (13) is a sum of submodules of V .Each module Vi;v is de�ned over the �eld Ki. Each module Vi;v is indecompos-able, 1 � v � "i, i 2 I. Indeed, if Vi;v = V 0 � V 00 is a direct sum of submodules V 0and V 00 of V then the projections to V 0 and V 00 de�ne the idempotents e0; e00 2 Esuch that ei;v = e0+ e00. This de�nes the decomposition of the E{moduleWi;v ' Pi23



into the direct sum of two its submodules. But Pi is an indecomposable projec-tive module. Therefore, e0 = 0 or e00 = 0 and then V 0 = 0 or V 00 = 0, i.e. V isindecomposable as it was required.We shall show that Vi1;v1 ' Vi2;v2 if and only if i1 = i2 and construct thisisomorphism. Suppose that i1 = i2 = i. Set v1 = v. Recall that Pi = Ee(i) for theidempotent e(i). Denote by pi (respectively pi;v) the projection E ! Pi, � 7! �e(i)(respectively E !Wi;v, � 7! �e(i)v ). Set also Vi = e(i)(V ).Show how to construct an isomorphism Vi ' Vi;v.Since Pi and Wi;v are isomorphic projective modules the projective E{modulesE(1� e(i)) and E(1� e(i)v ) are also isomorphic and de�ned over the �eld Ki. So wecan construct an isomorphism �i;v between E(1� e(i)) and E(1 � e(i)v ) similarly tothat it was for the isomorphism  in Section 2. Further, construct an isomorphism� of the module E which is the direct sum of i;v and �i;v. So i;v � pi = pi;v � �and �jPi = i;v.Hencee(i)�(1) = �(e(i)) = i;v(e(i)) = (i;v � pi)(1) = (pi;v � �)(1) = �(1)e(i)vwhere 1 2 E is identity isomorphism of V . Note that �(1) is invertible element ofE since � is an isomorphism of the E{module E to itself. So e(i)v = �(1)�1ei�(1).Now de�ne an isomorphism �i;v : Vi ! Vi;v by the formula v 7! �(1)�1(v) forv 2 Vi. The isomorphism �i;v is de�ned over the �eld Ki. Similarly the isomorphism�i2;v2 is constructed. Therefore Vi1;v1 ' Vi2 ;v2 ' Vi over the �eld Ki if i1 = i2 = i.REMARK 7. One can construct similarly to Section 3 the isomorphisms �i;vsatisfying additionally to the following property. If K = k, i; j 2 I, an embedding� : ki ! K over k , an embedding �1 : Ki ! K over k are such that i� = j,e�1i;v = ej;v for all v and �1 extends � then ��1i;v = �j;v.Conversely, suppose that there exists an isomorphism � : Vi1;v1 ! Vi2;v2 of�{modules. Then there exists an isomorphism e� : V ! V of the �{module Vwhich is a direct sum of � and another isomorphism (similarly to that it was for�) Hence, e� � e(i1)v1 = e(i2)v2 � e� and e�je(i1)v1 (V ) = �. De�ne the isomorphism of E-modules � : E ! E by the condition �(1) = e��1. One see immediately that�(Wi1;v1) = Wi2;v2 , i.e. E{modules Wi1;v1 and Wi2;v2 are isomorphic. ThereforePi1 ' Pi2 and hence i1 = i2, see Section 2.Thus we have constructed the required isomorphism (12).5 Algorithms for the problem of the isomorphismof modules.>From the Krull{Schmidt theorem an the result of the previous section we get thefollowing criteria of the isomorphism of two �{modules V1 and V2 de�ned over the�eld k such as in the Introduction. 24



Construct isomorphisms V1 'Xi2I V "ii (14)and V1 � V2 'Xj2J V "jj : (15)The modules V1 and V2 are isomorphic if and only if #I = #J and there exists abijection � : I ! J such that "�(i) = 2"i. An isomorphism between V1 and V2 (ifthey are isomorphic) de�ned over a composite of �elds of de�nition of all Vi, i 2 Iand Vj, j 2 J can be also constructed. But we shall construct more than that.By the Deuring{Noether theorem [?] if V1 and V2 are isomorphic over an al-gebraic extension of the �eld k then there exists an isomorphism V1 ' V2 de�nedover k. Our aim now is to construct such an isomorphism if it exists and to proveTheorem 2.Construct the algebra of endomorphisms of the module V1E = Hom�(V1; V1) � HomK(V1; V1)de�ned by its k{structureE0 = Hom�0(V 01 ; V 01) � Homk(V 01 ; V 01):Further, construct the space of homomorphismsV = Hom�(V2; V1) � HomK(V2; V1)which is a E{module de�ned over k by its k{structureV 0 = Hom�0(V 02 ; V 01) � Homk(V 02 ; V 01):If V1 ' V2 then E ' V as E{module.LEMMA 4. If V1 ' V2 and � : E ! V is an isomorphism of E{modules de�nedover k then �(1) : V2 ! V1 is an isomorphism of �{modules de�ned over k.PROOF. Denote C 0 = Ker�(1) and C 00 = Im�(1). We have the exact sequence0! C0 ! V2 ! C 00 ! 0which gives the exact sequence0! Hom�(C 00; V2)! Hom�(V2; V2)! Hom�(C 0; V2):In this sequence the homomorphismHom�(V2; V2)! Hom�(C 0; V2) is nonzero if C0is nonzero. Therefore, dimK Hom�(C 00; V2) � dimK Hom�(V2; V2) and the equalitytakes place if and only if C 0 = f0g, i.e. if and only if �(1) is an isomorphism.Each homomorphism � 2 Hom�(V2; V1) can be uniquely represented in the form� = � � �(1) where � 2 Hom�(V1; V1). Hence the honomorhism Hom�(V2; V1) !Hom�(C 00; V1), � 7! �jC00 is an embedding. Further, we haveHom�(V2; V2) ' Hom�(V1; V1) ' Hom�(V2; V1) ,! Hom�(C 00; V1) ' Hom�(C 00; V2)25



where the �rst isomorphism takes place since V1 ' V2, the second since � isan isomorphism and the third since V1 ' V2. Hence, dimK Hom�(C 00; V2) �dimK Hom�(V2; V2). Thus �(1) is an isomorphism. The lemma is proved.Using the algorithm described in Section 2 decide whether V is a projective E-module. If V is not a projective E{module than E 6' V and hence V1 6' V2. If V is aprojective E{module then decide using the algorithm from Section 2 whether thereexists an isomorphism of E{modules E ' V . By the Deuring{Noether theorem ifsuch an isomorphism exists then there exists also an isomorphism of E{modulesE ' V de�ned over k. If E 6' V then V1 6' V2. If E ' V then our aim till theend of the Section will be to construct such an isomorphism � : E ! V de�nedover the �eld k. Further, if �(1) is not an isomorphism then V1 6' V2 by Lemma 4.Otherwise, �(1)�1 : V1 ! V2 is the required isomorphism.Thus we can suppose that E ' V and our aim is to construct such an isomor-phism de�ned over k. Denote by R the radical of E and compute R. Note thatit is su�cient to construct an isomorphism E=R ' V=RV de�ned over the �eld k.Indeed, if such an isomorphism is constructed then since E and V are projectivemodules we can lift this isomorphism till an isomorphism E ! V , similarly to thatit was for the isomorphism  in Section 2. So construct E=R and V=RV . We shallsuppose further without loss of generality that R = f0g, i.e. that E is a semisimplealgebra over the �eld k.At �rst we shall describe a direct method for constructing an isomorphism de-�ned over the �eld k of two E{modulesW1 and W2 de�ned over the �eld k when Eis a semisimple algebra. Let E0, W 01 and W 02 be the k{structures of E, W1 and W2.Compute a nonzero element h 2 HomE0(W 01;W 02). Since E0 is a semisimple algebrathe modules Imh and Cokerh are projective. Therefore, W1 ' Kerh � Imh andW2 ' Imh�Cokerh. Construct these isomorphisms using the algorithm from Sec-tion 2. Since E0 is semisimple the modulesW 01 'W 02 if and only if Ker h ' Coker h.To obtain an isomorphismW 01 ' W 02 it is su�cient now to construct an isomorphismKer h ' Coker h. But dimkKer h < dimkW 01, dimk Cokerh < dimkW 02. So we canapply the algorithm under description recursively to Ker h and Cokerh instead ofW 01 and W 02. The description of this direct method is completed. This algorithmworks in the polynomial time if the �eld k is �nite.In the case of an in�nite �eld k one should estimate the growth of coe�cientsfrom k in the described construction. But instead of that for the case when k isin�nite we shall describe an algorithm for constructing an isomorphism between Eand V .Consider the case when k is an in�nite �eld. Set K = k and e�ect all theconstruction of Section 1 for the algebra E and the module V . Change everywherein Section 1 � for E including the denotations with indices and conserve all theother denotations from this Section (one should not confuse these denotations withones from Section 3). 26



For every i 2 Hu, I 2 I1 construct the isomorphisms Ei ' U eii and Vi 'U eii de�ned over the �eld Ki are constructed. These isomorphisms induce theisomorphism �i : Ei ! Vide�ned over the �eld Ki for every i 2 Hu, I 2 I1. Besides that, see Remark 5,the isomorphisms �i satisfy to the following property. If i; j 2 Hu, an embedding� : ki ! K over k, an embedding �1 : Ki ! K over k which extends � are suchthat i� = j, e�1i;v = ej;v then ��1i = �j in the sense that �i(x)�1 = �j(x�1 ) for everyx 2 E0i 
ki Ki (recall that E0i is the ki{structure of Ei).We have the isomorphisms Eu ' �i2HuEi and EuV ' �i2HuEiV which aregiven by the same formula z 7! (eiz)i2Hu for z 2 Eu or z 2 EuV . These isomor-phisms induce the isomorphism� : HomE(Eu; EuV )!�i2HuHomE(Ei; EiV ):The isomorphism � de�nes the projection�i : HomE(Eu; EuV )! HomE(Ei; EiV )for every i 2 Hu. The projection �i is de�ned over the �eld ki since it is inducedby the projection EuV ! EiV , z 7! eiz and the inclusion Ei ! Eu, z 7! z whichare de�ned over the �eld ki.Denote by E0u (respectively E0i) the k{structure (respectively ki{structure) ofEu (respectively Ei). Then E0uV 0, HomE0(E0u; E0uV 0) (respectively E0iV 0 
k ki,HomE0
kki(E0i; E0i(V 0 
k ki)) is the k{structure (respectively ki{structure) of EuV(respectively EiV , HomE(Ei; EiV )). It follows immediately from the consideredconstruction that if i; j 2 Hu and an embedding � : ki ! K over k, the elementz 2 HomE0(E0u; E0uV 0) are such that i� = j then �i(z)� = �j(z) in the sense that�i(z)(y)� = �j(z)(y�) for every y 2 E0i.For every u 2 I1 e�ect the following. Fix an index i 2 Hu. Construct the vec-tor spaces of homomorphisms HomE0 (E0u; E0uV 0) and HomE0
kki(E0i; E0i(V 0
k ki)).Denote by �w; 1 � w � a the k{basis of HomE0 (E0u; E0uV 0) which is constructed.Construct �i(�w) 2 HomE0
kki(E0i; E0i(V 0 
k ki)) for all 1 � w � a. The elements�i(�w), 1 � w � a generate the Ki{vector spaceHomE0
kki(E0i; E0i(V 0 
k ki)) 
ki Ki =HomE0
kKi(E0i 
ki Ki; (E0i 
ki Ki)(V 0 
k Ki))since �i is an epimorphism. So solving a linear system compute a representation�i = X1�w�a�w�i(�w)where �w 2 Ki for all w. 27



Now construct integers e�w, 1 � w � a in the following way, c.f. Lemma 2. Lete�w are constructed for 0 � w < j � a. Show how to construct e�j . Enumeratet = 1; 2; : : :. For the considered value of t compute�i;j(t) = ( X1�w<j e�w�i(�w)) + t�i(�j) + ( Xj<w�a�j�i(�w)):Decide whether �i;j(t) is an isomorphism. If �i;j(t) is an isomorphism set f�j = t,otherwise, go to the consideration of the next value of t. Note that e�j � 1+dimki V 0isince the determinant of the square matrix corresponding to �i;j(t) considered as apolynomial in t has at most dimki V 0i zeros.Set e�i = X1�w�a e�w�i(�w)where �w 2 Ki for all w. Thus, e�i is an isomorphism. Sete�u = X1�w�a e�w�w:Then �j(e�u) is an isomorphism for every j 2 Hu since �j(e�u) = �i(e�u)� = e��i for theembedding � : ki ! K over k such that j = i� . Hence, �(e�u) is an isomorphism.Therefore, e�u is an isomorphism for every u 2 I1.We have the isomorphisms E ' �u2I1Eu and V ' �u2I1EuV de�ned over the�eld k and given by the same formula z 7! (euz)u2I1 for z 2 E or z 2 V . Finally,using these isomorphism and the direct sum of isomorphisms e�u, u 2 I1 constructthe required isomorphism e� : E ' V de�ned over the �eld k. The case of an in�nite�eld k is considered completely. The description of the algorithm of this Section iscompleted.6 The problem of similarity of families of matrices.Our aim is to prove Theorem 4 from the Introduction. Denote byMr(k) the algebraof r � r matrices with coe�cients from the �eld k. Compute the k{algebra�0 = fC 2Mr(k) : CAi = AiC; 1 � i � mgand �0{module V 0 = fC 2Mr(k) : CBi = AiC; 1 � i � mg:LEMMA 5. The existence of the matrix S from the formulation of Theorem 4is equivalent to two conditions(a) there exists an isomorphism �0 : �0 ! V 0 is of �0{modules(b) for every isomorphism � : �0 ! V 0 of �0{modules �(1) is an invertible matrix.28



Besides that if these conditions are satis�ed then one can take S = �(1) in theformulation of Theorem 4.PROOF. If S exists then then we have the required isomorphism �0 : �0 ! V 0de�ned by the condition S = �0(1). Hence (a) is ful�lled. If � is an arbitraryisomorphism then S = C�(1) for some matrix C 2 �0 since S 2 V 0. Therefore�(1) is invertible. Hence (b) is ful�lled. Conversely, suppose that (a) and (b) aresatis�ed. Set S = �(1). Then S is the required in the formulation of Theorem 4matrix. The lemma is proved.Now set K = k, � = �0
kK and V = V 0
kK. So � is an algebra de�ned overk and V is a �{module de�ned over k. Apply the algorithm from Section 5 to the�-modules � and V de�ned over k and decide whether these modules are isomorphicover k. Further if it is the fact construct an isomorphism � : � ! V de�ned overthe �eld k. Construct the matrix �(1). Decide whether �(1) is an invertible matrix.If �(1) is an invertible matrix then set S = �(1). By Lemma 5 S is the requiredmatrix and, conversely, the required matrix S exists only if there exists � and �(1)is invertible. The algorithm for Theorem 4 is described completely.7 The problem of similarity of families of matricesrelatively to the orthogonal groupOur aim is to prove Theorem 5 from the Introduction. Denote byMr(k) the algebraof r � r matrices with coe�cients from the �eld k. Denote by T the operation oftransposition of matrices.Show how to compute the k{subalgebras �01 (respectively �02) of the algebraMr(k) generated by the matrices E, A1, AT1 ; : : : ; Am, ATm (respectively E, B1,BT1 ; : : : ; Bm, BTm). Here E denotes the unity element of Mr(k). The algorithmfor constructing �01 is the following. Set L1 to be the vector subspace of Mr(k)generated by the matrices E, A1, AT1 ; : : : ; Am, ATm and compute the basis l1;j,1 � j � r1 of L1 consisting of some elements of the sequence E, A1, AT1 ; : : : ; Am,ATm. Further, recursively for i � 1 suppose that Li with its k{basis li;j, 1 � j � ri isconstructed. Then if Li 6= Li�1 of i = 1 construct the subspace Li+1 = L1Li+LiL1with its k{basis li+1;j , 1 � j � ri+1. Namely, set li+1;j = li;j if 1 � j � ri and chooseas li+1;j for ri + 1 � j � ri+1 some products l1;j1li;j2 or li;j2 l1;j1 for 1 � j1 � r1,1 � j2 � ri. If Li = Li�1 then set �01 = Li, i0 = i. Note that each li;j is aproduct of no more than i elements of the sequence E, A1, AT1 ; : : : ; Am, ATm andthese expressions of li;j as products can be obtained from the algorithm. Similarlythe algebra �02 is constructed.Show how to decide whether there exists an isomorphism � : �01 ! �02 such that�(Ai) = Bi and �(ATi ) = BTi for all 1 � i � m. This siomorphism exists if andonly if the two conditions are satis�ed 29



(a) the basis li0;j , 1 � j � ri0 , of �02 can be obtained by substituting in expressionsof li0;j , 1 � j � ri0 , as products of some elements of the sequence E, A1,AT1 ; : : : ; Am, ATm corresponding elements of the sequence E, B1, BT1 ; : : : ; Bm,BTm;(b) the multiplication tables of the basises li0 ;j, 1 � j � ri0, and l0i0 ;j, 1 � j � ri0,coincide.So we can construct � if it exists. If � does not exist then also there exists nomatrix S from the formulation of Theorem 5. So we shall suppose further that �exists and constructed explicitely.Set K = ek, �j = �0j 
k K, j = 1; 2. Not that if C belongs to �0j (respectively�j) then CT also belongs to �0j (respectively �j), j = 1; 2. We have the scalarproduct on algebras �0j and �j, j = 1; 2. Namely, if x; y belong to �0j or �j thentheir scalar product is tr(xyT ).LEMMA 6. The k{algebras �0j are semisimple for j = 1; 2. Therefore theK{algebras �j are also semisimple for j = 1; 2.PROOF. Let x 2 R0 where R0 is the radical of �0j. Then xxT is nilpotent.Therefore, the trace tr(xxT ) = 0. Hence, x = 0 since k is a real �eld. The lemmais proved.Using the algorithm from Section 1 construct the isomorphisms�j ' �i2I�j;i; j = 1; 2 (16)where �j;i � �j are simple algebras over K. Besides that �j;i is de�ned over the�eld ki which is constructed and has the ki{structure �0j;i such (�
kki)(�01;i) = �02;i.Factually it is su�cient to construct (16) for j = 1 and then apply the isomorphism�
k K.LEMMA 7. The sum in (16) is a direct orthogonal sum of subspaces.PROOF. Denote by ej;i the central idempotent de�ning �j;i, i.e. �j;i = �ej;i.Then the idempotent eTj;i 2 �j;i and also �j;i = �eTj;i. Therefore ej;i = eTj;i for allj; i. Therefore, if x1 2 �j;i1 , x2 2 �j;i2 than tr(x1xT2 ) = tr(x1ej;i1(x2ej;i2)T ) =tr(x1ej;i1eTj;i2xT2 ) = tr(x1ej;i1ej;i2xT2 ) = tr(0) = 0. The lemma is proved.Denote by V the space of columns Kr which is �j{module, j = 1; 2. The scalarproduct of w1; w2 2 V is equal to wT1 w2. Construct the isomorphismsV 'Xi2I �j;iV; j = 1; 2: (17)The similar computation as it was in Lemma 7 for (16) shows that the sum in (17)is a direct orthogonal sum of subspaces.Denote by Di the division algebra such that �j;i = Mmi (Di) by the Wedderbarntheorem, see Section 1. Using the algorithm from Section 1 construct for the alge-bras �j;i simple module Uj;i � �j;i de�ned over the �eld Ki with the annulator mj;i30



also de�ned over the �eld Ki for all i and j = 1; 2. Besides that, the Ki{structureof Uj;i (respectively mj;i) is U 0j;i (respectively m0j;i) and (� 
k Ki)(U 01;i) = U 02;i,(� 
k Ki)(m01;i) = m02;i. Factually it is su�cient to construct everything for j = 1and then apply the isomorphism �
k K.Construct the isomorphisms�j;iV = X1�v�ej;i�j;ifj;i;v; i 2 I; j = 1; 2 (18)where �j;ifj;i;v is a simple �j;i{module de�ned over the �eld Ki; fj;i;v 2 (�j;i 
kiKi)(V 0j 
k Ki), 1 � v � ej;i is an orthonormal system of vectors with the sameannulator mj;i � �j;i which is given by the Ki{structure m0j;i. Besides that,X1�v�ej;i fj;i;vDi = fv 2 �j;iV : m0v = f0gg = V 00j;iand P1�v�ej;i fj;i;vDi is an orthogonal direct sum of subspaces fj;i;vDi, see Sec-tion 1.LEMMA 8. The sum in (18) is a direct orthogonal sum of subspaces.PROOF. The orthogonal complement (�j;ifj;i;v)? � �j;iV is an ideal since ifw1 2 (�j;ifj;i;v)?, w2 2 �j;ifj;i;v, � 2 � then �T 2 � and (�w1)Tw2 = wT1 (�Tw2) =0. We have the decomposition into the direct sumV 00j;i = (�j;ifj;i;v \ V 00j;i)� ((�j;ifj;i;v)? \ V 00j;i):But �j;ifj;i;v \ V 00j;i = fj;i;vDi. Therefore,(�j;ifj;i;v)? \ V 00j;i = X1�v1�ej;i; v1 6=v fj;i;v1Disince P1�v1�ej;i; v1 6=v fj;i;v1Di = (fj;i;vDi)? in V 00j;i. Thus fj;i;v1 2 (�j;ifj;i;v)? forevery v1 6= v.Therefore for every v1 6= v we have �j;ifj;i;v1 � (�j;ifj;i;v)?. Hence, the sumX1�v1�ej;i;v1 6=v�j;ifj;i;v1 � (�j;ifj;i;v)?:Thus, X1�v1�ej;i;v1 6=v �j;ifj;i;v1 = (�j;ifj;i;v)?since the dimensions of the both sides coincide. The lemma is proved.Now we get immediately that for the existence of the matrix S required in theformulation of Theorem 5 it is necessary that e1;i = e2;i for all i 2 I.Show that this condition is also su�cient. So we shall suppose further that e1;i =e2;i = ei for all i 2 I. Construct the isomorphism �i;v 2 HomK(�1;if1;i;v;�2;if2;i;v),de�ned over the �eld Ki such that �i;v(�f1;i;v) = �(�)f2;i;v for every � 2 � whichexists according to described above. 31



LEMMA 9. The homomorphism �i;v conserve scalar product, i.e. for everyw1; w2 2 �1;iV we have wT1 w2 = (�i;v(w1))T �i;v(w2)PROOF. Let ej be an orthonormal basis of �1;ifj;i;v such that fj;i;v is the �rstof its elements, j = 1; 2. It is su�cient to prove that the matrix  of �i;v in thebasises e1; e2 is an orthogonal matrix. Let � 2 �j;i. Denote by '1(�) (respectively'2(�)) the matrix of the homomorphism�1;if1;i;v ! �1;if1;i;v, z 7! �z (respectively�2;if2;i;v ! �2;if2;i;v, z 7! �(�)z). Then '1(�) = '2(�) (19)for every � 2 � by the de�nition of �. Further we have 'j(�T ) = 'j(�)T forevery � 2 � since the matrix 'j(�) is a submatrix of the block{diagonal matrixdiag('j(�); '0j(�)) which is obtained from � by the the orthogonal transformation ofsimilarity corresponding to the decomposition (18) into the orthogonal direct sum.Hence  '1(�)T = '2(�)T for every � 2 �. Therefore,  T'2(�) = '1(�) T (20)for every � 2 �. Now (19) and (20) give T '1(�) = '1(�) T for every � 2 �. Hence  T is a matrix of some homomorphism�1 2 Hom�1(�1;if1;i;v;�1;if1;i;v):But �1;if1;i;v is a simple �1{module. Therefore, Hom�1(�1;if1;i;v;�1;if1;i;v) ' Di.Thus, the minimal polynomial of the matrix  T over K is linear or square witha negative discriminant. But all the eigenvalues of the symmetric and thereforediagonalizable matrix  T with coe�cients from k are non{negative elements of k.Hence, the minimal polynomial of the matrix  T over K is linear. Finally,  T isthe identity matrix since the �rst column of  is (1; 0; : : : ; 0)T due to the fact that�i;v(f1;i;v) = f2;i;v. Thus  is an orthogonal matrix. The lemma is proved.Now set the isomorphism � 2 HomK(V; V ) to be the direct sum of isomorphisms�i;v for i 2 I, 1 � v � ei. By Lemma 9 this homomorphism has an orthogonalmatrix in any orthogonal basis of V . We have �(�w) = �(�)�(w) or �(�)w =�(���1(w)) for all � 2 � and w 2 V . So one can take as S the matrix of the linearhomomorphism �. Theorem 5 is proved.REMARK 8. It follows from the construction described that the matrix S canbe represented as a product of three orthogonal matrices S = S1S2S3 such thateach coe�cient of S1; S2; S3 is from the extension of k of the degree bounded fromabove by a polynomial in n;m; r (though the �eld generated by coe�cients of eachof these matrices is of exponential degree in n;m; r in the general case).REMARK 9. One can describe in a similar way the algorithms for the problemof similarity of families of matrices relatively to the unitary and simplectic groups.32
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