
Greibach Normal Form Transformation,RevisitedRobert KochNorbert BlumInformatik IV, Universit�at BonnR�omerstr. 164, D-53117 Bonn, Germanyemail: blum@cs.uni-bonn.deAbstractWe develop a direct method for placing a given context-free gram-mar into Greibach normal form with only polynomial increase of itssize; i.e., we don't use any algebraic concept like formal power series.Starting with a cfg G in Chomsky normal form, we will use standardmethods for the construction of an equivalent context-free grammarfrom a �nite automaton and vice versa for transformation of G intoan equivalent cfg G0 in Greibach normal form. The size of G0 will beO(jGj3), where jGj is the size of G. Moreover, we show that it wouldbe more e�cient to apply the algorithm to a context-free grammar incanonical two form, obtaining a context-free grammar where, up tochain rules, the productions ful�ll the Greibach normal form proper-ties, and then to use the standard method for chain rule eliminationfor the transformation of this grammar into Greibach normal form.The size of the constructed grammar is O(jGj4) instead of O(jGj6),which we would obtain if we transform G into Chomsky normal formand then into Greibach normal form.

1 Introduction and de�nitionsWe assume that the reader is familiar with the elementary theory of �niteautomata and context-free grammars as written in standard text books, e.g.[1, 4, 6, 9]. First, we will review the notations used in the subsequence.A context-free grammar (cfg) G is a 4-tuple (V;�; P; S) where V is a�nite, nonempty set of symbols called the total vocabular , � � V a �nite setof terminal symbols, N = V n� the set of nonterminal symbols (or variables),P a �nite set of rules (or productions), and S 2 N is the start sympol . Theproductions are of the form A ! �, where A 2 N and � 2 V �. � is calledalternative of A. L(G) denotes the context-free language generated by G.The size jGj of the cfg G is de�ned byjGj = XA!�2P lg(A�);where lg(A�) is the length of the string A�. Two context-free grammarsG and G0 are equivalent if both grammars generate the same language; i.e.,L(G) = L(G0).Let " denote the empty word. A production A ! " is called "-rule. Aproduction A! B with B 2 N is called chain rule.A leftmost derivation is a derivation where, at every step, the variablereplaced has no variable to its left in the sentential form from which thereplacement is made.A cfg G = (V;�; P; S) is in canonical two form if each production is ofthe formi) A! BC with B;C 2 N n fSg,ii) A! B with B 2 N n fSg,iii) A! a with a 2 �, oriv) S ! ".A cfg G is in Chomsky normal form if G is in canonical two form and Gcontains no chain rule.A cfg G = (V;�; P; S) is in extended Greibach normal form if each pro-duction is of the form 1

i) A! aB1B2 : : : Bt with B1; B2; : : :Bt 2 N n fSg; a 2 �,ii) A! B with B 2 N n S,iii) A! a with a 2 �, oriv) S ! ".A cfg G is in extended 2-standard form if G is in extended Greibach normalform and with respect to rules of kind (i), always t � 2.A cfg G = (V;�; P; S) is in Greibach normal form (Gnf) if G is in ex-tended Greibach normal form and G contains no chain rule. G is in 2-standard form (2-Gnf) if G is in extended 2-standard form and G containsno chain rule.A nondeterministic �nite automaton M is a 5-tuple (Q;�; �; q0; qf) ,where Q is a �nite set of states, � is a �nite, nonempty set of input symbols,� is a transition function mapping Q � � to 2Q, q0 2 Q is the initial state,and qf 2 Q is the �nite state.Given an arbritrary cfg G = (V;�; P; S), it is well known that G can betransformed into an equivalent cfgG0 which is in Gnf [3, 4, 6, 9]. But the usualalgorithms possibly construct a cfg G0, where the size of G0 is exponential inthe size of G (see [4], pp. 113{115 for an example). Given a cfg G without "-rules and without chain rules, Rosenkrantz [8] has given an algorithm whichproduces an equivalent cfg G0 in Gnf such that jG0j = O(jGj3). Rosenkrantzgave no analysis of the size of G0. For an analysis, see [4], pp. 129{130 or[7]. Rosenkrantz's algorithm uses formal power series.We will develop a direct method for placing a given cfg into Gnf withonly polynomial increase of its size; i.e., we don't use any algebraic conceptlike formal power series. Given any cfg G, in a �rst step the grammar willbe transformed into an equivalent cfg G0 in Cnf. Then, we will use standardmethods for the construction of an equivalent cfg from an nfa and vice versafor transformation of G0 into an equivalent cfg G00 in 2-Gnf. The size ofG00 will be O(jG0j3). Moreover, we show that it would be more e�cientto apply the algorithm to a cfg in canonical two form, obtaining a cfg inextended 2-standard form and then to use the standard method for chainrule elimination for the transformation of the grammar into 2-Gnf. The sizeof the constructed grammar is O(jGj4) instead of O(jGj6), which we wouldobtain if we transform G into Cnf and then into Gnf.2

2 The methodLet G = (V;�; P; S) be an arbitrary cfg in Cnf. Productions of type A! awith a 2 � already ful�ll the Greibach normal form properties. Our goalis now to replace the productions of type A ! BC, B;C 2 N n fSg byproductions which ful�ll the Greibach normal form properties. Let B 2N n fSg. We have an interest in leftmost derivations of the formB) a or B)�lm B0B1 : : :Bt) aB1B2 : : : Bt;where a 2 � and B0; B1; : : : ; Bt 2 N n fSg. Up to the last replacement, onlyalternatives from (N n fSg)2 are chosen. The last replacement chooses forB0 an alternative in �. Such a leftmost derivation is called terminal leftmostderivation and is denoted byB)tlm a and B)�tlm aB1B2 : : : Bt; respectively:Let LB = fa� 2 �(N n fSg)� j B)�tlm a�g. Our goal is to construct a cfgGB = (VB; V; PB; SB) such thata) L(GB) = LB, andb) each alternative of a variable begins with a symbol in �.NB denotes the set of nonterminals of GB; i.e. NB = VB n V . Assume thatfor B;C 2 N n fSg, B 6= C, the grammars GB and GC are constructed suchthati) NB \ NC = ;, orii) each production with a variable from NB \ NC on the left side is con-tained in both set of rules PB and PC .If we replace each production A! BC 2 P by the setfA! a
C j a
 is an alternative of SB in GBg;then we obtain a cfg G0 = (V 0;�; P 0; S) in Gnf, whereV 0 = V [fNB j B 2 N n fSgg; andP 0 = fA! a 2 P j a 2 �g[fA! a
C j A! BC 2 P and a
 is an alternative of SB in GBg[SB2NnfSgPB n fSB ! � j � 2 �N�Bg3

The conditions (i) and (ii) above ensure that in a derivation in G0 no illegalchanges between two grammars GB and GC are possible. It remains theconstruction of the cfg GB = (VB; V; PB; SB), B 2 N n fSg. The centralobservation is that LB is a regular set. LetLRB = fBtBt�1 : : : B1a j aB1B2 : : : Bt 2 LBg;i.e., LRB is LB reversed.First, we will construct a nfa MB = (Q;V; �;BB;SB) with L(MB) = LRB.Using a standard method (see [4], pp. 55{56), it is easy to construct fromMB a nfa M 0B with L(M 0B) = LB. For doing this, SB will be the initial state,BB will be the unique �nite state, and we turn around the transitions ofMB.Then, we will use for each B 2 N n fSg the nfa M 0B for the construction ofa cfg G0B = (VB; V; P 0B;SB) which ful�lls1. L(G0B) = LB,2. G0B is in Gnf. (Note that V is the terminal alphabet of G0B.)3. � 2 �N�B for each production SB ! � 2 P 0B.4. The right side of every other production begins with a variable of G;i.e., a symbol in N n fSg.5. NB \ NC = ; for all B;C 2 N n fSg, B 6= C.Now, GB will be constructed from G0B by the replacement of every rule of theform DB ! ECB and DB ! E, respectively in P 0B by a set of productions,analogously to the construction of P 0 from P . Altogether, we obtain thefollowing method for the construction of the cfg GB = (VB; V; PB;SB).(1) De�ne MB = (Q;V; �;BB;SB) byQ = fAB j A 2 Ng [fSBg; and�(CB; E) = fDB j C ! DE 2 Pg�(CB; a) = (fSBg if C ! a 2 P; otherwisefor all CB 2 Q, E 2 N n fSg, a 2 �.4

L(MB) = LRB can easily be proven by induction on the length of the terminalleft derivation and on the length of the computation of the nfa, respectively.(2) De�ne M 0B = (Q;V; �0;SB; BB) by�0(SB; a) = fCB j fSBg = �(CB; a)g; and�0(DB; E) = fCB j DB 2 �(CB; E)gfor all DB 2 Q, E 2 N n fSg and a 2 �.Also L(M 0B) = LB can easily be proven by induction. Using the standardmethod for the construction of an equivalent cfg from a given nfa (see [4],pp. 61{62), we obtain the cfg G0B.(3) De�ne G0B = (VB; V; P 0B;SB) byVB = fAB j A 2 N n fSgg [fSBg [V; andP 0B = fSB ! aCB j CB 2 �0(SB; a) and(CB 6= BB or �0(fBBg �N n fSg 6= ;)g[fSB ! a j BB 2 �0(SB; a)g[fDB ! ECB j CB 2 �0(DB; E) and(CB 6= BB or �0(fBBg �N n fSg 6= ;)g[fDB ! E j BB 2 �0(DB; E)gfor all DB 2 V 0B, E 2 N n fSg, a 2 �.By inspection, Properties 1 { 5 can easily be proven. It is easy to show thatL(G0B) = LB. For obtaining only productions ful�lling the Greibach normalproperties with respect to the terminal alphabet �, simultaneously to all G0B,B 2 N nfSg, we apply the trick used for the construction of P 0 from P again.Note that for all grammars G0E, E 2 N n fSg, the alternatives of the startsymbol SE ful�ll the Greibach normal form properties with respect to theterminal alphabet �.(4) For each B 2 N n fSg we de�ne GB = (VB;�; PB;SB) byPB = fSB ! aCB j SB ! aCB 2 P 0BgfSB ! a j SB ! a 2 P 0Bg[SDB!ECB2P 0BfDB ! �CB j � is an alternative of SE in G0Eg[SDB!E2P 0BfDB ! � j � is an alternative of SE in G0Eg5

Note that L(GB) 6= LB, since the same trick was applied twice and hence,the terminal alphabet of GB is � and not V . We have to add to PB allproductions in GE with left side 6= SE. Since we use for each E 2 N n fSgthe grammar GE for the construction of the cfg G0 = (V 0;�; P 0; S) and allthese productions are added to P 0, we do not have to add these productionsexplicitely to PB. For the same reasons, we have not to extendNB explicitely.By construction, the cfg GB ful�lls the Greibach normal form propertieswith respect to the terminal alphabet � for all B 2 N n fSg. Furthermore,for all B;C 2 N n fSg, B 6= C the grammar GB and GC are constructed,such thati) NB \ NC = ;, orii) each production with a variable from NB \ NC on the left side is con-tained implicitely in both set of rules PB and PC .Since L(G0B) = LB for allB 2 NnfSg, L(G0) = L(G) follows immediately.Furthermore, G0 is in Gnf. Moreover, since every alternative � of the startsymbol SB of the grammars G0B and GB are of the form � = aE, a 2 �; E 2N n fSg, the grammar G0 is in 2-Gnf.Let us analyze the size of G0 in dependence of the size of G. Since eachtransition of MB and hence, each transition of M 0B corresponds to a rule ofP and vice versa, it is easy to see that jG0Bj � 5jGj for all B 2 N n fSg.Constructing GB from G0B, every production DB ! ECB and DB ! E,respectively of P 0B is replaced by at most jG0Ej rules. Hence, jGBj � jG0BjjGj =O(jGj2). Similary, each production of type A ! BC of P is replaced byat most jGj productions. Note that for all B 2 N n fSg, the number ofalternatives of the start symbol SB of GB is bounded by jGj. Altogether, wehave obtained jG0j � 5jGj2 + XB2NnfSg jGBj = O(jGj3):Hence, we have proven the following theorem.Theorem 1 Let G = (V;�; P; S) be a cfg in Cnf. Then there is a cfg G0 =(V 0;�; P 0; S) in 2-Gnf such that L(G0) = L(G) and jG0j = O(jGj3).6

Given an arbitrary cfg G = (V;�; P; S), the usual algorithm for the trans-formation of G into Cnf can square the size of the grammar (see [4], pp. 102for an example). No better algorithm is known. This observation leadsdirectly to the following corollary.Corollary 1 Let G = (V;�; P; S) be a cfg. Then there exists a cfg G0 =(V 0;�; P 0; S) in 2-Gnf such that L(G0) = L(G) and jG0j = O(jGj6).In [2], it is shown that for all � > 0 and su�ciently large n there is a context-free language CLn with the following properties:a) CLn has a cfg of size O(n).b) Each chain rule free cfg for CLn has size O(�3n3=2��).3 Improving the size of the Gnf grammarHarrison and Yehudai [5] have developed an algorithm which eliminates fora given cfg G = (V;�; P; S) the "-rules in linear time. Moreover, the con-structed cfg G0 = (V 0;�; P 0; S) is in canonical two form and jG0j � 12jGj. Forobtaining an equivalent cfg G00 in Cnf from G0, it would su�ce to eliminatethe chain rules from G0. Hence, the expensive part of the transformation ofan arbitrary cfg G = (V;�; P; S) into Cnf is the elimination of the chain rules.The standard method for chain rule elimination computes for all A 2 N theset W (A) = fB 2 N j A)� Bgand deletes the chain rules from P and adds the setP (A) = fA! � j � 2 V + nN and 9B 2 W (A) : B ! � 2 Pgof productions to P . Note that jP (A)j � jGj. Hence, jG00j = O(n2).Given an arbitrary cfg G = (V;�; P; S), our goal is now to construct anequivalent cfg G0 in Gnf such that jG0j = O(jGj4). Since the transformationof G into canonical two form enlarges the size of G at most by the factor 12,we can assume that G is already in canonical two form. First, we will showthat an appropriate extension of our algorithm will produce an equivalentcfg �G in extended 2-standard form. Then we will show that applying the7

standard method for chain rule elimination produces a cfg G0 in 2-standardform with L(G0) = L(G) and jG0j = O(jGj4).Let G = (V;�; P; S) be a cfg in canonical two form. Then the chainrules already ful�ll the properties for extended 2-standard form. Hence, thegrammar �G = (V 0;�; �P ; S), whereV 0 = V [fNB j B 2 N n fSgg; and�P = fA! a 2 P j a 2 �gfA! B 2 P j B 2 Ng[fA! a
C j A! BC 2 P and a
 is an alternative of SB in GBg[SB2NnfSgPB n fSB ! � j � 2 �N�Bgwould be in extended 2-standard form, assumed that the grammars GB,B 2 N n fSg are constructed correctly. It remains to discuss, how to treatthe chain rules during the construction of GB. For doing this, we will extendthe four steps of the algorithm in an appropriate manner.(1) We add the following transitions to �.�(CB; ") = fDB j C ! D 2 Pgfor all CB 2 Q.(2) For the correct de�nition of M 0B, we have to add the following transi-tions to �0. �0(DB; ") = fCB j DB 2 �(CB; ")gfor all DB 2 Q.(3) The standard algorithm for the construction of a cfg from a given nfaadd the following extra rules to P 0B.fDB ! CB j CB 2 �0(DB; ") and (CB 6= BB or �0(fBBg�NnfSg) 6= ;)gfor all DB 2 V 0B.Step 4 has not to be extended.For the elimination of the chain rules A! B from �P , we add the setfA! a
 j 9B 2 W (A) and a
 is an alternative of SB in GBg8

of productions to P 0. Since jW (A)j � jN j for all A 2 N and since everystart symbol SB of a grammar GB has at most jGj alternatives, this enlargesthe size of �G at most by an amount of O(jGj2). Now, we apply the standardmethod for chain rule elimination to GB for all B 2 N n fSg. Note thatfor all CB 2 NB, jW (CB)j � jNBj and hence, jW (CB)j � jGj. Furthermore,the number of distinct alternatives of variables in VB is bounded by O(jGj2).Hence, the standard method for chain rule elimination enlarges the size ofGB at most by a factor jGj. Hence, jGBj = O(jGj3). Altogether, we haveobtained the following theorem.Theorem 2 Let G = (V;�; P; S) be a cfg. Then there exits a cfg G0 =(V 0;�; P 0; S) in 2-Gnf such that L(G0) = L(G) and jG0j = O(jGj4).Remark: Given an "-rule free cfg G = (V;�; P; S), the transformation of Ginto canonical two form can enlarge the number of production considerably. Ifone does not wish to enlarge the number of productions in such a way, one cantransform G directly into extended Greibach normal form. Let A ! B� beany production of G. We consider � as one symbol and built in Steps 1 and 2nfa's MB = (Q;Vext; �; BB;SB) and M 0B = (Q;Vext; �0;SB; BB), respectively,where Vext = V [f� j 9E 2 V with E� is an alternative of an variableg.Then we construct the cfg G0B fromM 0B. During Step 4, � will be consideredas an element of V �.Acknowledgment: We thank Claus Rick for helpful comments.References[1] A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation, andCompiling, Vol. I: Parsing, Prentice-Hall (1972).[2] N. Blum, More on the power of chain rules in context-free grammars,TCS 27 (1983), 287{295.[3] S. A. Greibach, A new normal-form theorem for context-free, phrase-structure grammars, JACM 12 (1965), 42{52.[4] M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley (1978). 9

[5] M. A. Harrison, and A. Yehudai, Eliminating null rules in linear time,The Computer Journal 24 (1981), 156{161.[6] J. E. Hopcroft, and J. D. Ullman, Introduction to Autmata Theory, Lan-guages, and Computation, Addison-Wesley (1979).[7] A. Kelemenov�a, Complexity of normal form grammars, TCS 28 (1984),299{314.[8] D. J. Rosenkrantz, Matrix equations and normal forms for context-freegrammers, JACM 14 (1967), 501{507.[9] D. Wood, Theory of Computation, Harper & Row (1987).

10

