Greibach Normal Form Transformation.
Revisited

Robert Koch
Norbert Blum
Informatik IV, Universitat Bonn
Romerstr. 164, D-53117 Bonn, Germany
email: blum@cs.uni-bonn.de

Abstract

We develop a direct method for placing a given context-free gram-
mar into Greibach normal form with only polynomial increase of its
size; i.e., we don’t use any algebraic concept like formal power series.
Starting with a cfg G in Chomsky normal form, we will use standard
methods for the construction of an equivalent context-free grammar
from a finite automaton and vice versa for transformation of G into
an equivalent cfg G’ in Greibach normal form. The size of G’ will be
O(|G]?), where |G| is the size of . Moreover, we show that it would
be more efficient to apply the algorithm to a context-free grammar in
canonical two form, obtaining a context-free grammar where, up to
chain rules, the productions fulfill the Greibach normal form proper-
ties, and then to use the standard method for chain rule elimination
for the transformation of this grammar into Greibach normal form.
The size of the constructed grammar is O(|G|*) instead of O(|G|%),
which we would obtain if we transform G into Chomsky normal form
and then into Greibach normal form.

1 Introduction and definitions

We assume that the reader is familiar with the elementary theory of finite
automata and context-free grammars as written in standard text books, e.g.
[1, 4, 6, 9]. First, we will review the notations used in the subsequence.

A context-free grammar (cfg) G is a 4-tuple (V, X, P,S) where V is a
finite, nonempty set of symbols called the total vocabular, > C V a finite set
of terminal symbols, N = V'\ X the set of nonterminal symbols (or variables),
P a finite set of rules (or productions), and S € N is the start sympol. The
productions are of the form A — «, where A € N and a € V*. « is called

alternative of A. L((G) denotes the context-free language generated by G.
The size |G| of the cfg G is defined by

Gl= 2. lg(Aa),

A—a€P

where [g(Aa) is the length of the string Aa. Two context-free grammars
GG and G’ are equivalent if both grammars generate the same language; i.e.,
L(G) = L(G").

Let & denote the empty word. A production A — ¢ is called e-rule. A
production A — B with B € N is called chain rule.

A leftmost derivation is a derivation where, at every step, the variable
replaced has no variable to its left in the sentential form from which the
replacement is made.

A cfg G = (V,X,P,9) is in canonical two form if each production is of
the form

i) A — BC with B,C € N\ {5},
i) A Bwith Be N\ {5},
i) A— awitha €3, or

iv) S —e.

A cfg GG is in Chomsky normal form if GG is in canonical two form and G
contains no chain rule.
A cfg G = (V,X, P,5) is in extended Greibach normal form if each pro-

duction is of the form

1) A—>CLB1B2...B75 with Bl,BQ,...BtEN\{S},GEZ,
i) A Bwith Be N\ S,
)

i) A — a with ¢ € X, or

iv) S —e.

A cfg G is in extended 2-standard form if G is in extended Greibach normal
form and with respect to rules of kind (i), always ¢ < 2.

A cfg G = (V,X,P,9) is in Greibach normal form (Gnf) if G is in ex-
tended Greibach normal form and G contains no chain rule. G is in 2-
standard form (2-Gnf) if G is in extended 2-standard form and G contains
no chain rule.

A nondeterministic finite automaton M is a 5-tuple (Q,%,4,qo,qs) ,
where () is a finite set of states, X is a finite, nonempty set of input symbols,
§ is a transition function mapping @ x X to 29, ¢y € Q is the initial state,
and ¢y € () 1s the finite state.

Given an arbritrary cfg G = (V, X, P, 5), it is well known that G can be
transformed into an equivalent cfg G' which is in Gnf [3, 4, 6, 9]. But the usual
algorithms possibly construct a cfg G', where the size of G’ is exponential in
the size of i (see [4], pp. 113-115 for an example). Given a cfg G without e-
rules and without chain rules, Rosenkrantz [8] has given an algorithm which
produces an equivalent cfg G’ in Gnf such that |G'| = O(|G]*). Rosenkrantz
gave no analysis of the size of G’. For an analysis, see [4], pp. 129-130 or
[7]. Rosenkrantz’s algorithm uses formal power series.

We will develop a direct method for placing a given cfg into Gnf with
only polynomial increase of its size; i.e., we don’t use any algebraic concept
like formal power series. Given any cfg G, in a first step the grammar will
be transformed into an equivalent cfg G' in Cnf. Then, we will use standard
methods for the construction of an equivalent cfg from an nfa and vice versa
for transformation of G’ into an equivalent cfg G” in 2-Gnf. The size of
G" will be O(|G']?). Moreover, we show that it would be more efficient
to apply the algorithm to a cfg in canonical two form, obtaining a cfg in
extended 2-standard form and then to use the standard method for chain
rule elimination for the transformation of the grammar into 2-Gnf. The size
of the constructed grammar is O(|G|*) instead of O(|G|%), which we would
obtain if we transform ¢ into Cnf and then into Gnf.

2 The method

Let G = (V,X, P,S) be an arbitrary cfg in Cnf. Productions of type A — «
with @ € X already fulfill the Greibach normal form properties. Our goal
is now to replace the productions of type A — BC, B,C € N\ {5} by
productions which fulfill the Greibach normal form properties. Let B €
N\ {S}. We have an interest in leftmost derivations of the form

B:>a0rB:>l*m BoBl...BtjaBlBQ...Bt,

where a € ¥ and By, By,...,B; € N\ {S}. Up to the last replacement, only
alternatives from (N \ {5})? are chosen. The last replacement chooses for
By an alternative in . Such a leftmost derivation is called terminal leftmost
derivation and is denoted by

B =y, a and B =73, aB1B; ... By, respectively.

Let Lp = {acc € (N \ {S})" | B =7}, ac}. Our goal is to construct a cfg
Gp = (Vg,V, Pg, Sp) such that

a) L(Gp) = Lg, and
b) each alternative of a variable begins with a symbol in .

Np denotes the set of nonterminals of Gg; i.e. Ng = Vg \ V. Assume that
for B,C € N\ {S}, B # C, the grammars GGg and G/¢ are constructed such
that

1) NBQNCZQ,OI’

ii) each production with a variable from Ng N N¢ on the left side is con-
tained in both set of rules Pg and Fr.

If we replace each production A — BC € P by the set
{A = ayC | av is an alternative of Sp in G},
then we obtain a cfg G' = (V' X, P/, S) in Gnf, where

Vi= VU{Ng|B & N\{S}}, and

PP= {A—a€eP|lack}
U{A = ayC | A — BC € P and a~ is an alternative of Sg in Gg}
UUBGN\{S}PB\{SB%OAQEZNE}

3

The conditions (i) and (ii) above ensure that in a derivation in G’ no illegal
changes between two grammars G and G¢ are possible. It remains the

construction of the c¢fg Gp = (VB,V, Pg,Sg), B € N\ {S}. The central

observation is that Lp is a regular set. Let
LY ={B,Bi_y... Bia | aB\B,... B, € Lg};

i.e., L is Lp reversed.

First, we will construct a nfa Mg = (Q, V.6, Bg,Sg) with L(Mp) = LE.
Using a standard method (see [4], pp. 55-56), it is easy to construct from
Mp a nfa My with L(Mp) = Lg. For doing this, Sg will be the initial state,
Bpg will be the unique finite state, and we turn around the transitions of Mp.
Then, we will use for each B € N \ {5} the nfa M} for the construction of
a cfg G5 = (VB,V, Pg,Sp) which fulfills

1. L(G%) = L,
2. G5 is in Gnf. (Note that V' is the terminal alphabet of G'5.)
3. a € YN} for each production Sg — a € Pg.

4. The right side of every other production begins with a variable of G
i.e., a symbol in N\ {S}.

5. NN Neg =0 for all B,C € N\{S}, B#£C.

Now, G'g will be constructed from G’ by the replacement of every rule of the
form Dp — ECp and Dp — E, respectively in Pg by a set of productions,
analogously to the construction of P’ from P. Altogether, we obtain the
following method for the construction of the cfg G = (Vs,V, Pg,Sg).

(1) Define Mg = (Q, V.6, Bg,Sg) by

Q= {Ap| Ae N} U{Sg}, and
§(Cp, BE)= {Dg|C — DE € P}
5(C,a) = {éSB} ifC —acP

otherwise

forall Cp e @, E € N\{S},a € X.

L(Mpg) = LE can easily be proven by induction on the length of the terminal
left derivation and on the length of the computation of the nfa, respectively.

(2) Define My = (Q,V.,d,Sg, Bg) by

§(Sp.a) = {Cp|{Sk} =6(Cp,a)}, and
§'(Dp,E)= {Cg|Dp € §(Cp, E)}

forall Dpe @, E € N\ {S}and a € ¥.

Also L(Mpg) = Lp can easily be proven by induction. Using the standard
method for the construction of an equivalent cfg from a given nfa (see [4],
pp. 61-62), we obtain the cfg G'g.

(3) Define G’y = (VB,V, P, SB) by

Ve = {4s | Ae N\ {S}}U{Sg} UV, and
Pé = {SB — aCp | Cg € (S/(SB,CL) and
(Cp # Bp or 6'({Bp} x N\ {5} #0)}
U{SB — a | Bg € (S/(SB,CL)}
U{DB — ECp | Cp € (S/(DB,E) and
(Cp # Bp or §'({Bp} x N\ {5} #0)}
U{DB — F | Bg € (S/(DB,E)}

forall Dg € Vi, E € N\ {S}, a € X.

By inspection, Properties 1 — 5 can easily be proven. It is easy to show that
L(G') = L. For obtaining only productions fulfilling the Greibach normal
properties with respect to the terminal alphabet ¥, simultaneously to all G5,
B € N\ {5}, we apply the trick used for the construction of P’ from P again.
Note that for all grammars G, £ € N \ {5}, the alternatives of the start
symbol Sg fulfill the Greibach normal form properties with respect to the
terminal alphabet X.

(4) For each B € N\ {S} we define Gg = (Vg, ¥, Pg,Sg) by

Py = {SB —>CLCB|SB — aCp € Pé}
{SB—>CL|SB—>CLEP§}
UUDB—>ECBGP]’3{DB — aCp | a is an alternative of Sg in G’}
UUDB—>E6PJ’3{DB — « | « is an alternative of Sg in G’}

Note that L(Gg) # Lp, since the same trick was applied twice and hence,
the terminal alphabet of GGg is ¥ and not V. We have to add to Pg all
productions in (/g with left side # Sg. Since we use for each £ € N\ {5}
the grammar Gy for the construction of the cfg G' = (V/, X, P',S) and all
these productions are added to P’, we do not have to add these productions
explicitely to Pg. For the same reasons, we have not to extend N explicitely.

By construction, the cfg G fulfills the Greibach normal form properties
with respect to the terminal alphabet ¥ for all B € N\ {S}. Furthermore,
for all B,C € N\ {S}, B # C the grammar GGg and (/¢ are constructed,
such that

1) NBQNCZQ,OI’

ii) each production with a variable from Ng N N¢ on the left side is con-
tained implicitely in both set of rules Pg and Fc.

Since L(G') = L for all B € N\{S}, L(G") = L(G) follows immediately.
Furthermore, G’ is in Gnf. Moreover, since every alternative a of the start

symbol Sg of the grammars G5 and G'p are of the form a = aF, a € ¥, F €
N\ {S}, the grammar G’ is in 2-Gnf.

Let us analyze the size of G' in dependence of the size of G. Since each
transition of Mp and hence, each transition of My corresponds to a rule of
P and vice versa, it is easy to see that |G| < 5|G| for all B € N\ {S}.
Constructing Gg from G5, every production Dg — ECpg and Dg — F,
respectively of Pj is replaced by at most |G| rules. Hence, |G| < |GR]|G] =
O(|G|*). Similary, each production of type A — BC of P is replaced by
at most |G| productions. Note that for all B € N \ {5}, the number of
alternatives of the start symbol Sg of G'g is bounded by |G|. Altogether, we
have obtained

G <5IGP 4+ > |Gel = 0(G]).

BEN\{S}

Hence, we have proven the following theorem.

Theorem 1 Let G = (V,X, P,S) be a cfg in Cnf. Then there is a cfg G' =
(V. X, P, S) in 2-Gnf such that L(G') = L(G) and |G'| = O(|G]?).

Given an arbitrary cfg G = (V, X, P, 5), the usual algorithm for the trans-
formation of (¢ into Cnf can square the size of the grammar (see [4], pp. 102
for an example). No better algorithm is known. This observation leads
directly to the following corollary.

Corollary 1 Let G = (V,X, P, S) be a cfg. Then there exists a cfg G' =
(V. X, P, S) in 2-Gnf such that L(G') = L(G) and |G'| = O(|G]°).

In [2], it is shown that for all € > 0 and sufficiently large n there is a context-
free language C'L,, with the following properties:

a) C'L, has a cfg of size O(n).
b) Each chain rule free cfg for C'L, has size O(c*n®/27).

3 Improving the size of the Gnf grammar

Harrison and Yehudai [5] have developed an algorithm which eliminates for
a given cfg G = (V, X, P,5) the e-rules in linear time. Moreover, the con-
structed cfg G' = (V', X, P’, S) is in canonical two form and |G'| < 12|G]. For
obtaining an equivalent cfg G in Cnf from (', it would suffice to eliminate
the chain rules from G’. Hence, the expensive part of the transformation of
an arbitrary cfg G = (V, X, P, 5) into Cnf is the elimination of the chain rules.
The standard method for chain rule elimination computes for all A € N the
set

W(A)={Be N|A="B}
and deletes the chain rules from P and adds the set

P(A)={A—sa|aeV*\Nand IBe W(A): B - a € P}

of productions to P. Note that |P(A)| < |G|. Hence, |G"| = O(n?).

Given an arbitrary cfg G = (V, X, P, S), our goal is now to construct an
equivalent cfg G’ in Gnf such that |G'| = O(|G|*). Since the transformation
of (¢ into canonical two form enlarges the size of G at most by the factor 12,
we can assume that G is already in canonical two form. First, we will show
that an appropriate extension of our algorithm will produce an equivalent
cfg (i in extended 2-standard form. Then we will show that applying the

7

standard method for chain rule elimination produces a cfg G' in 2-standard

form with L(G') = L(G) and |G'| = O(|G|*).

Let G = (V,X,P,S5) be a cfg in canonical two form. Then the chain
rules already fulfill the properties for extended 2-standard form. Hence, the
grammar G = (V' X, P, S), where

Vi= VU{Ng|B & N\{S}}, and

P= {A—acPlacy}
{A—-BeP|BeN}
U{A = ayC | A — BC € P and a~ is an alternative of Sg in Gg}
UUBGN\{S}PB\{SB%OAQEZNE}

would be in extended 2-standard form, assumed that the grammars Gp,
B € N\ {5} are constructed correctly. It remains to discuss, how to treat
the chain rules during the construction of G'g. For doing this, we will extend
the four steps of the algorithm in an appropriate manner.

(1) We add the following transitions to 4.
§(Cp,e)={Dp | C = D € P}
for all (s € Q.

(2) For the correct definition of My, we have to add the following transi-
tions to ¢'.

§'(Dp,e) ={Cs | Dp € §(Cg,¢)}
for all Dg € Q.

(3) The standard algorithm for the construction of a cfg from a given nfa
add the following extra rules to Pj.

{DB — Cp | Cg € (S/(DB,aS) and (CB 7£ Bpg or (S/({BB}XN\{S}) 7£ @)}
for all Dp € V3.

Step 4 has not to be extended.

For the elimination of the chain rules A — B from P, we add the set

{A = ay | 3B € W(A) and av is an alternative of Sg in G}

8

of productions to P’. Since |[W(A)| < |N| for all A € N and since every
start symbol Sg of a grammar (g has at most |G| alternatives, this enlarges
the size of G at most by an amount of O(|G]?). Now, we apply the standard
method for chain rule elimination to G for all B € N\ {S}. Note that
for all Cg € Np, [W(Cg)| < |Ng| and hence, |W(Cg)| < |G|. Furthermore,
the number of distinct alternatives of variables in Vg is bounded by O(|G/?).
Hence, the standard method for chain rule elimination enlarges the size of
(g at most by a factor |G|. Hence, |Gg| = O(|G]*). Altogether, we have
obtained the following theorem.

Theorem 2 Let G = (V,X, P,S) be a cfg. Then there exits a cfg G' =
(V. X, P, S) in 2-Gnf such that L(G') = L(G) and |G'| = O(|G]*).

Remark: Given an e-rule free cfg G = (V, X, P, 5), the transformation of ¢
into canonical two form can enlarge the number of production considerably. If
one does not wish to enlarge the number of productions in such a way, one can
transform G directly into extended Greibach normal form. Let A — Ba be
any production of G. We consider « as one symbol and built in Steps 1 and 2
nfa’s Mg = (Q, Vest, 6, Bg,Sg) and My = (Q, Vewe, 8, Sp, Bg), respectively,
where V.,; = V U{a | IE € V with Fa is an alternative of an variable}.
Then we construct the cfg G’ from Mp. During Step 4, a will be considered
as an element of V*.

Acknowledgment: We thank Claus Rick for helpful comments.

References

[1] A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation, and
Compiling, Vol. I: Parsing, Prentice-Hall (1972).

[2] N. Blum, More on the power of chain rules in context-free grammars,

TCS 27 (1983), 287-295.

[3] S. A. Greibach, A new normal-form theorem for context-free, phrase-
structure grammars, JACM 12 (1965), 42-52.

[4] M. A. Harrison, Introduction to Formal Language Theory, Addison-
Wesley (1978).

[5] M. A. Harrison, and A. Yehudai, Eliminating null rules in linear time,

The Computer Journal 24 (1981), 156-161.

[6] J. E. Hopcroft, and J. D. Ullman, Introduction to Autmata Theory, Lan-
guages, and Computation, Addison-Wesley (1979).

[7] A. Kelemenova, Complexity of normal form grammars, TCS 28 (1984),
299-314.

[8] D. J. Rosenkrantz, Matrix equations and normal forms for context-free

grammers, JACM 14 (1967), 501-507.

[9] D. Wood, Theory of Computation, Harper & Row (1987).

10

