
A Fast Randomized Parallel Algorithm for Finding SimpleCycles in Planar GraphsCarsten F. Dorgerloh�Institut f�ur Informatik der Universit�at BonnR�omerstr. 164, D-53117 BonnGermanyAbstractWe show that if a planar graph has a simple cycle of length k, where k is a �xed integer, sucha cycle may be computed in O(logn log� n) expected time by a randomized EREW-PRAM withO(n) processors.1 IntroductionIt is well known that �nding the longest cycle in a graph is a hard problem, since �ndinga Hamiltonian cycle is NP -complete [GJ 79]. Hence �nding a cycle of lenght k, for anarbitrary k, is NP -complete. This remains true if G is planar and under other restrictions.However, we are concerned only with the problem of �nding simple cycles of a givenlength. Alon, Yuster and Zwick [AYZ 95] presented a randomized sequential algorithmfor this task which uses O(n) expected time. Our randomized parallel algorithm forthat problem, while using ideas from [JM 91], is largely a parallel implementation of thealgorithm of [AYZ 95], with results of [CE 91] used crucially in the parallelization. Weachieve an expected running time of O(logn log� n) on a randomized EREW-PRAM withO(n) processors.2 Notations and de�nitionsThe terminology used in this paper follows that of Even [Ev 79]. Let G = (V;E) be agraph. For each vertex v,N(v) denotes the set of neighbours of v. A simple cycle of lengthk is a sequence v0; v1; ::vk�1 of vertices with vi 6= vj for i 6= j and (vi; v(i+1) mod k) 2 Efor 0 � i < k. A contraction of an edge (v; w) 2 E is the following operation: Delete theedge (v; w), identify the vertices v and w as a new vertex vw adjacent to exactly thosevertices that were adjacent to either v or w (or both) in the original graph. In practice,one of the vertices (v or w), called the representative, plays the role of the new vertex.The computational model used in this paper is the randomized EREW-PRAM. Thismodel is a synchronized parallel computation model for which simultaneous access toany memory location by di�erent processors is forbidden. Furthermore, each processor�email: carsten@cs.uni-bonn.de 1



has access to a random number generator which returns random numbers of logn bits inconstant time. More details of the PRAM models can be found in the survey by Karpand Ramachandran [KR 88].3 The AlgorithmBefore we explain the technical details of the algorithm, we give our special view on thedata structures which allows us to implement the algorithms e�ciently.We assume that the vertices of G are represented by positive numbers and that G ispresented to the algorithm in the form of a set of edge-lists L: The graph is representedas an array of jV j vertices, and each vertex u is equipped with a pointer to its list L(u), adoubly-linked list that contains exactly one entry for each edge that connect u to anothervertex in the graph. For implementation reasons it is convenient to assume that there isa fake edge at the end of each edge list. Additionally, each edge (u; v) appearing in theedge-list of u has a pointer to its twin edge (v; u) appearing in the edge-list of v. In theliterature, pointers of this type are often called cross links.3.1 Parallel Graph ContractionLet G = (V;E) be the input graph with n = jV j vertices and m = jEj edges. Since G isplanar, from Euler's formula [Ev 79] follows that m < 3n. We will assume that there isone processor assigned to each vertex v 2 V and one processor to each edge (u; v) 2 E.In the course of the algorithm we will need to contract all edges incident to a given vertexu wich will be the representative. Some of the algorithmic techniques used in the proofof the following lemma were introduced by Johnson and Metaxas [JM 91].Lemma 1 Let G = (V;E) be a graph and S � V be a set of vertices such that foreach pair u; v 2 S with u 6= v N(u) \ N(v) = ; and (u; v) 62 E. Then the edgese 2 D := f(u; v) 2 Eju 2 S and v 2 N(u)g may be contracted by an EREW-PRAM inO(logn) time using O(n+m) processors.Proof: Let the �rst and last functions de�ned on L(v) give the �rst and last edges,respectively, appearing in L(v). The contraction is done by having each edge (u; v) 2 D�rst execute the following:(01) for each (u; v) 2 D pardo(02) next(last(L(v))) := next(u; v)(03) next(u; v) := first(L(v))(04) for each (v; w) pardo(05) rename the endpoint v to u(06) end(07) end(08) for each (x1; y1) pardo(09) (y2; x2) := twin(x1; y1)(10) rename y1 to y2(11) end 2



The representative of each contraction (u; v) is always the vertex u 2 S. In lines (02)-(03)the edge-list L(v) of v is plugged into u's edge-list by redirecting a couple of pointers.The exact place into which L(v) is plugged is after the edge (u; v) and before next(u; v).The endpoints of the edges are renamed in lines (04)-(10). This is done by setting the�rst endpoint of each edge in L(u), as well as the second endpoint of the correspondingtwin edge, to u and the second to the �rst endpoint of the twin edge. All this can bedone in constant time without memory access con
icts.Now there may be multiple edges in L(u) as well as loops. Loops are nulli�ed and multipleedges are identi�ed. One of them is kept while the rest are nulli�ed as redundant. This isdone as follows. Run standard list ranking on each edge-list to �nd the distance of eachedge from the end of its list. Copy each edge-list in an array using the results of the listranking as index. Sort the array using the parallel merge sort of Cole [Co 88] and usethe results to form a sorted linked list. Then, blocks of redundant edges are nulli�ed asfollows. (01) for each (u; w) 2 L(u) pardo(02) if next(u; w) = (u; w) then(03) nullify(u; w)(04) end(05) endThus, the last edge in a block of consecutive edges having identical names is kept. Beforewe remove the nulli�ed edges, we have to recompute the twin function. Each edge (v; w)wich is not nulli�ed passes its address prev(next(v; w)) to a �eld addr(v; w). From there,the edge (w; v) reads it. Now we can remove all nulli�ed edges using pointer doubling.Each of these steps can be done in O(logn) parallel time on an EREW-PRAM usingO(n +m) processors.3.2 Planar OrientationsGiven an undirected graph G = (V;E), an orientation ! of G is a function which replaceseach undirected edge (u; v) 2 E by one directed edge (u; v) or (v; u). By deg!(v) we willnote the out-degree of v, under this orientation !. We say that ! is d-bounded if for eachvertex v 2 V we have deg!(v) � d.The following lemma can be found in [CE 91].Lemma 2 Let G be a planar graph. A 6-bounded acyclic orientation ! of G may be com-puted on an EREW-PRAM in time O(log n log� n), using O(n=(log n log� n)) processors.Remark 3 Using lemma 2 we can represent a planar graph by a compacted adjacencymatrix A such that A[v; 1; : : : ; 6] contains the set of neighbours of v under the orientation!. This representation can be computed within the same resource bounds. Therefore, onlyminor changes are needed in the proof of lemma 2. We omit the details.3.3 Finding trianglesLemma 4 There is a EREW-PRAM algorithm for �nding a triangle in a planar graphG, if one exists, which runs in time O(log n log� n) with O(n) processors.3



Proof: The algorithm �rst constructs a compacted adjacency matrix A of G. Byremark 3 to lemma 2 (Section 3.2) this takes parallel time O(log n log� n).For simplicity reasons, we describe the next step by a Priority CRCW-PRAM algorithmwhich runs in O(1) time using O(n) processors. Since any algorithm that works on thismodel can be simulated by an EREW-PRAM with the same number of processors andwith the parallel time increased by only a factor of O(log p), where p is the number ofprocessors, one can design an O(log n) time EREW-PRAM algorithm for this step (seee.g.[KR 88]). The Priority CRCW-PRAM algorithm which �nds a triangle, if one exists,assigns one processor v to each A[v; 1 : : :6] and proceeds as follows:(01) for each v 2 V pardo(02) for each i with 1 � i � 6 do(03) w := A[v; i](04) for each j with 1 � j � 6 do(05) u := A[w; j](06) for each l with 1 � j � 6 do(07) if A[u; l] = v then(08) triangle := (v; w; u)(09) end(10) end(11) end(12) end(13) for each (i; j) with 1 � i < j � 6 do(14) for each l with 1 � l � 6 do(15) if A[A[v; i]; l] = A[v; j] or(16) A[A[v; j]; l] = A[v; i] then(17) triangle := (v; A[v; i]; A[v; j])(18) end(19) end(20) end(21) endLet T be a triangle in G. Then either the edges of T form a directed cycle in A, or thereis one vertex in T which has two descendants in A which are connected by an edge. Inthe �rst case (lines (02)-(12)) T is detected by 3 processors, in the latter (lines (13)-(20))by 1 processor. The need of constant time is obvious.3.4 Finding simple cyclesBefore we state our main theorem, we need the following de�nition. We say a cycle oflength k in G is well-coloured if the vertices on it are consecutively coloured by 1; : : : ; k.Theorem 5 Let k > 3 be a �xed integer. Given a planar graph G on n vertices, a simplecycle of size k in G, if one exists, may be computed in O(logn log� n) expected time by arandomized EREW-PRAM using O(n) processors.Proof: We use the following algorithm: 4



(01) Gk = (Vk; Ek) := G(02) for each u 2 Vk pardo(03) choose a random colour c(u) 2R f1; : : : ; kg(04) propagate c(u) to all edges (u; w)(05) end(06) delete all edges (u; v) where u; v are non-consecutively coloured(07) i := k(08) while i > 3 do(09) construct a compacted adjacency matrix A of Gi(10) the master processor guesses an direction � 2R f0; 1gand an index j 2R f0; : : : ; 6g(11) propagate � and j to all A[w] and to all edges(12) for each A[w] pardo(13) if (� = 0 and c(w) = i� 1 or � = 1 and c(w) = i) andA[w; j] is defined then(14) H [A[w; j]; w] := 1; H [w;A[w; j]] := 1(15) end(16) end(17) for each edge (u; v) with c(u); c(v) 2 fi� 1; ig pardo(18) if H [u; v] 6= 1 then delete (u; v)(19) end(20) for each edge (u; v) with c(u); c(v) 2 fi� 1; ig pardo(21) if � = 0 then(22) contract(u; v), vertex with colour k is the representative(23) else if � = 1 then(24) contract(u; v), vertex with colour k � 1 is the representative(25) end(26) end(27) Let Gi�1 = (Vi�1; Ei�1) be the graph obtained by recolouringeach endpoint of an edge and each vertex with colour i by i� 1(28) i := i� 1(29) end(30) if G3 contains at least one triangle then(31) Let C be one arbitrary triangle(32) for i = 3 to k do(33) reconstruct Gi+1 from Gi and(34) extend thereby C by one vertex (and by one edge)(35) end(36) endLet G be the given planar graph that contains at least one cycle C of length k.In lines (02)-(06) each processor u chooses a random colour from f1; : : : ; kg and propa-gates it to each edge in its edge list. In addition, edges between vertices of non-consecutivecolours are deleted, since they can not be a part of a well-coloured cycle. The colour ofeach vertex u is propagated to each edge in L(u) as follows. Run list ranking to determinethe length l(L(u)) of the edge-list of u. Now, c(u) is copied l(L(u)) times in log l(L(u))5



time in an array. By using the unique index of the list ranking, each (u; v) in L(u) readsthe colour of u from the array. Finally, the colour of the second endpoint of each edge(u; v) is determined by reading the colour of the �rst endpoint of the twin edge (v; u).Edge deletions are made by �rst nullifying all edges to be deleted and then removingthem by means of pointer jumping as in lemma 1.There are kk possible colourings of C. 2k of them are well-coloured. Thus the probabilitythat C is well-coloured is 2=kk�1. Assume there exists a well-coloured cycle of length kin Gk.The graph is reduced in k � 3 phases (lines (08)-(29)). Consider the �rst phase wherei = k. The well-coloured cycle of length k in G contains two vertices u and v withc(u) = k � 1 and c(v) = k, such that either v 2 A[u; 1; : : :6] or u 2 A[v; 1; : : : ; 6]. Themaster processor guesses the orientation � and the index j of this edge in the compactedadjacency matrix A of Gk . We assign one processor to each A[w] and use them to prop-agate � and j to each A[w]. The propagation of those two values to all edges is similarto the propagation of the colour described above.Suppose from now on that the guess is � = 0 which means that the guess is A[u; j] = v(� = 1 analogue). Then all edges between vertices coloured k � 1 and vertices colouredk are deleted from Gk, except the edges (x; y), (y; x) with c(y) = k � 1 and A[y; j] = x(lines (12)-(19)). In order to avoid read con
icts, this is done as follows. Each processorassigned to A[y] writes a 1 in the �elds H [x; y] and H [y; x] if A[y; j] = x and c(y) = k�1.Now all edges (x; y) in L(x) with c(x); c(y) 2 fk� 1; kg and H(x; y) = 0 are nulli�ed andthen removed as described above.The probability that Gk still contains a well-coloured cycle of length k is at least 1=12.Note that each vertex having colour k � 1 now has at most one neighbour coloured k.Thus we can apply lemma 1 where S is the set of vertices in Gk coloured k. This is donein lines (20)-(26). Before the next iteration of the while loop, each endpoint of an edgeand each vertex with colour k will be assigned to the colour k � 1.There are k � 3 iterations of the while loop. Thus the probability that G3 containsa cycle of length 3 is at least 1=12k�3. Such a triangle can be found by using the algo-rithm of lemma 4.Lines (04), (11) and (20)-(26) take O(logn) time, whereas line (09) can be executedin time O(log n log� n) by remark 3 (see Section 3.2). Hence lines (01)-(29) takeO(logn log� n) time. By running the process backwards, the reconstruction in lines (29)-(36) may be done within the same time bound. The algorithm �nds C with a probabilityof at least 2=(12k�3kk�1). By rerunning the algorithm, in case of failure, we obtain anO((12k�3kk�1) logn log� n) expected time algorithm.4 AcknowledgementsI like to thank Marek Karpinski.References[AYZ 95] Alon, N., Yuster, R., Zwick, U., Color-coding, Proc. 42nd Journal of the ACM(1995), pp. 844{856. 6



[CE 91] Chrobak, M., Eppstein, D., Planar orientations with low out-degree andcompaction of adjacency matrices, Theoretical Computer Science 86 (1991),pp. 243{266.[Co 88] Cole, R., Parallel Merge Sort, SIAM Journal on Computing 17(4) (1988),pp. 770{785.[Ev 79] Even, S., Graph Algorithms, Computer Science Press, 1979.[GJ 79] Garey, M. R., Johnson, D. S., Computers and Intractability, W. H. Freemanand Company, 1979.[JM 91] Johnson, D. B., Metaxas, P., Connected Components in O(log3=2 jV j) ParallelTime for the CREW PRAM, Proc. 32nd IEEE FOCS (1991), pp. 688{697.[KR 88] Karp, R. M., Ramachandran, V., A Survey of Parallel Algorithms for Shared-Memory Machines, Research Report UCB/CSD 88/408, University of Califor-nia, Berkeley, 1988.

7


