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1 IntroductionThe problem of obtaining complexity lower bounds on algebraic decision treeshas a long history (a recent overview of the known methods can be found,e.g., in [GKV95]; see also [R72], [B83], [M85], [MPR94], [Y92], [Y94], [GV96],[GKMS96]). However almost all known results (with the exception of [R72],[MPR94], and [GV96]) concern algebraic decision trees, i.e. decision trees withthe gate functions being polynomials.In this paper we introduce a new method for proving lower bounds for astronger computational model of (deterministic and randomized) analytical deci-sion trees, i.e. the trees with the gate functions being analytic (cf. also [R72]).Let us brie
y mention the main results of the paper.In subsection 3.1, after describing the general method we give a short prooffor Rabin's ([R72]) lower bound n (closing also a gap in his original proof forthe case of analytic functions; cf. [R72], [F93], [MPR94]) on the depth of testingmembership to an octant Rn+ = f(x1; � � � ; xn) 2 Rn : x1 � 0; � � � ; xn � 0g bya deterministic analytic decision tree. In subsection 3.2 we design a randomizedalgebraic decision tree (with the gates being polynomials of degrees at most n)which recognizes Rn+ with the depth O(log2 n). Furthermore, we design anotherrandomized tree of the same type computing maxfx1; � � � ; xng with the depthO(log5 n). This extends the result of [TY94] which was for the case of x1; � � � ; xnbeing pairwise distinct.In Section 4 we study the size of analytic decision trees (which is a strongercomplexity measure than the commonly considered depth, since a lower boundon the size implies immediately a lower bound on the depth). In particular,as a corollary we prove an exponential lower bound 2
(n) on the size of analyticdecision trees testing membership to the set of the points (x1; � � � ; x2n) 2 R2n withexactly n negative coordinates. Notice, that the only known so far exponentiallower bound on the size of decision trees was obtained in [GKY95] for testingthe octant Rn+ under the assumption that the tree is ternary (i.e., branchingaccording to the inequalities <;=; > ) rather than a usual binary one (whichbranches according to �; > ) and besides, the decision tree is algebraic, i.e. thegate functions are polynomials of a �xed degree.Finally, in Section 5 we obtain a lower bound 
(pn) on the depth of random-ized analytic decision trees which recognize a set of the type f(x1; � � � ; xn) : thenumber of negative elements among x1; � � � ; xn is a multiple of qg for a �xed qbeing not a power of 2. Notice that this is the �rst nontrivial lower bound forrandomized analytic decision trees (for randomized algebraic decision trees thenonlinear lower bounds were proved in [GKMS96]).A method for obtaining nonlinear lower bounds on the depth of Pfa�an com-putation trees (which are the trees with the gates being Pfa�an functions andthus, lying between the algebraic and analytic decision trees) for the problemof testing membership to a polyhedron, was developed in [GV96]. This result2



is however independent from the present paper since relying on the methodsintroduced below, one could get only linear lower bounds on the depth.2 PreliminariesSimilarly as in [GKMS96], for a given polynomial g 2 R[X1; � � � ;Xn], we de�neits leading term lm(g) as follows. First we take the terms of g with the leastdegree in Xn, then among them with the least degree in Xn�1 and so on, till X1.One can describe lm(g) by means of in�nitesimals (cf., e.g., [GKMS96]).Namely for a real closed �eld F (see e.g. ([L65], [GV88]) we say that anelement " transcendental over F is an in�nitesimal (with respect to F ) if 0 <" < a for any element 0 < a 2 F . This uniquely induces the order on the �eldF (") of rational functions and further on the real closure]F (") (see [L65]). Nowlet "1 > � � � > "n > 0 be the elements such that "`+1 is in�nitesimal with respectto the real closed �eld gR(") for " = ("1; � � � ; "`), 0 � ` < n. Then the signsgn(g("1; � � � ; "n)) = sgn(lm(g)("1; � � � ; "n)) and on the other hand this propertyuniquely determines the term lm(g). Actually, one could stick in the arguingbelow with the real numbers 1 = "(0)0 > "(0)1 > � � � > "(0)n > 0 instead of "1; � � � ; "nwhere "(0)`+1 is \considerably smaller" than "(0)` , 0 � l � n�1. But then one shouldspecify, what does it mean \considerably smaller", and it is more convenient touse in�nitesimals.As computational models we deal with the decision trees (DTs) (see e.g. [R72],[MPR94], [Y94], [GKV95], [GKY95]). We consider two kinds of gates of DTs:either polynomials of degrees at most d, then we denote the corresponding alge-braic decision trees by d-DT, or the functions, being real analytic (cf. [C48]) in acertain vicinity of the origin, then we denote the corresponding analytic decisiontrees by A-DT. We denote by d-RDT or A-RDT, respectively, their random-ized counterparts, called randomized decision trees, which are the sets fT�g (seee.g. [MT82], [M85], [GKMS96]), with T� being a deterministic d-DT or A-DT,respectively, chosen with a probability p� � 0, P p� = 1.Observe that for a function a in n variables X1; � � � ;Xn, being real analyticat the origin, one can literally extend the notion of the leading term lm(a) asabove, treating a as a power series in X1; � � � ;Xn. Also sgn(a("1; � � � ; "n)) =sgn((lm(a))("1; � � � ; "n)) holds, herewith the power series a("1; � � � ; "n) could benaturally considered as an element of the real closed �eld Rn, where R0 = R andfor each 0 � i � n�1 Ri+1 is the �eld of Puiseux seriesPj�0 pj"�j=@i+1 , pj 2 Ri, 1 �@ 2Z, integers �0 < �1 < � � � increase (see e.g. [GV88]). Since Rn is a real closed�eld, due to Tarski's transfer principle [T51], the sign sgn((lm(a))("1; � � � ; "n))does not depend on, whether we regard (lm(a))("1; � � � ; "n) as an element of thereal closure ^R("1; � � � ; "n) or of its extension Rn.3



3 Testing octant: deterministic vs. randomizeddecision treesTesting membership to the nonnegative octant Rn+ was �rstly studied byM. Rabinin [R72], where a (sharp) lower bound n was formulated for the depth of A-DT(the gaps in the proof where �lled in [F93], [MPR94]). In the next subsection wegive a short proof of this bound for the case of analytic functions.3.1 Deterministic decision treesLet an A-DT T test membership to Rn+. For any vector � = (�1; � � � ; �n) 2f�1; 1gn consider a point E� = (�1"1; � � � ; �n"n) 2 (Rn)n. Consider any gatea of T , being a real analytic function. For any point ("(0)1 ; � � � ; "(0)n ) 2 Rnwhere "(0)1 > � � � > "(0)n > 0 and "(0)i+1 is su�ciently less than �(0)i , 0 � i �n � 1, we have sgn(a(�1"(0)1 ; � � � ; �n"(0)n )) = sgn((lm(a))(�1"(0)1 ; � � � ; �n"(0)n )).Also sgn(a(E�)) = sgn((lm(a))(E�)) (cf. section 2 above), obviouslysgn((lm(a))(�1"(0)1 ; � � � ; �n"(0)n )) = sgn((lm(a))(E�)). Thus, sgn(a(E�)) =sgn(a(�1"(0)1 ; � � � ; �n"(0)n )) and thereby runs correctly for an input point E�.Notice that the above argument was necessary since we deal with A-DTs. Ifwe would consider d-DT rather than A-DT, we could immediately apply Tarski'stransfer principle [T51] to ensure that d-DT runs correctly for any input pointfrom (Rn)n. For the purpose of this paper the restriction on the input points E�for A-DT su�ces.Take the path in T along which T runs for the point E(1;��� ;1) = ("1; � � � ; "n)(and therefore, outputs \yes"). Let g1; � � � ; gt be the testing (real analytical)functions along this path.Lemma 1. t � nProof. Denote lm(gj) = cjXs1;j1 � � �Xsn;jn ; cj 2 R, 1 � j � t. The signsgn(lm(gj)) is determined by the vector Sj = (s1;j; � � � ; sn;j) (mod 2) 2 (F2)n,1 � j � t. Suppose that t < n. Then there exists a nonzero vector (s1; � � � ; sn) 2Fn2 such that the inner products ((s1; � � � ; sn); Sj) = 0 (mod 2), 1 � j � t.Denote � = ((�1)s1 ; � � � ; (�1)sn). Then lm(gj(E(1;��� ;1)) = lm(gj(E�)), 1 � j � t;i.e. E� satis�es all the tests along the path under consideration, and thereby theoutput of T for the input E� is \yes", but E� does not belong to the nonnegativeoctant, the obtained contradiction proves the lemma.Corollary 1. ([R72])Any A-DT testing membership to Rn+ has the depth at least n.4



3.2 Randomized decision treesIn [TY94] it was shown that testing membership to the octant Rn+ can be per-formed by an n-RDT with the depth (log n)O(1) under the assumption that all thecoordinates of an input vector (x1; � � � ; xn) 2 Rn are nonzeros. In this subsectionwe design an n-RDT testing membership to Rn+ for arbitrary input vectors.Thus, RDT (in particular n-RDT and A-RDT) could have much less depththan any DT solving the same problem, cf. corollary 1. On the other hand,in [GKMS96] it was proved the lower bound n2d on the depth of d-RDT testingmembership to Rn+. This shows that there is a noncollapsing hierarchy on thecomputational power of d-RDTs with respect to d.Let (x1; � � � ; xn) 2 Rn be an input vector. Denote by P � f1; � � � ; ng thesubset of j such that xj < 0. Treating f1; � � � ; ng as a subset of V = (F2)dlog2 ne(in an arbitrary way), we apply to P theorem 2.4 [VV86]. It states that for arandom choice of vectors w1; � � � ; wdlog2 ne 2 V the probability that one of thetruncated sets P` = P \ fv 2 V ; (v;wi) = 0, 1 � i � `g, 0 � ` � dlog2 neconsists of a single element is at least 1=4 (provided that P 6= �). For any1 > � > 0 making O(log 1=�) rounds of choosing the vectors w1; � � � ; wdlog2 ne, wecould achieve the latter probability to be greater than 1 � � (for at least one ofthe rounds).For the next step we need to be able to pick out randomly a homogeneousmultilinear polynomial hk from R[Y1; � � � ; Ym] of degree k (for 0 � k � m )and with all the coe�cients in the interval [0; 1]. In fact, one could pick outrandomly from a suitable �nite set of such polynomials, or one could use thegeneral statement from [M85] which enables us for a randomized decision treewith a continuous random parameter to replace it by a discrete one. For thereason of simplicity we will use a continuous random parameter.Thus, �x for the time being a chosen randomly truncated set fv 2 V ; (v;wi) =0; 1 � i � `g = fj1; � � � ; jmg. Denote fY1; � � � ; Ymg = fXj1 ; � � � ;Xjmg. Observethat a random homogeneous multilinear polynomial hk 2 R[Y1; � � � ; Ym] vanishes(with the probability 1) at the point (y1; � � � ; ym) = (xj1; � � � ; xjm) if and only ifthe number of zeroes among y1; � � � ; ym is greater than m� k (if the latter is notful�lled it vanishes with the probability zero).We construct an n-RDT T , which using binary search is testinghdm=2e(y1; � � � ; ym), then testing hdm=4e(y1; � � � ; ym) if the �rst test returns zero,or else testing h3dm=4e(y1; � � � ; ym) and so on, �nds the minimal k0 for whichhk0(y1; � � � ; ym) vanishes. Then m� k0 +1 equals (with the probability 1) to thenumber of zeroes among y1; � � � ; ym. Test also hk0�1(y1; � � � ; ym), unless k0 = 1and in this case (y1; � � � ; ym) = (0; � � � ; 0) and we agree 1 � h0 � 0. If ally1; � � � ; ym were nonnegative (in particular, if (x1; � � � ; xn) 2 Rn+) then the lattertest would be positive. If among y1; � � � ; ym was exactly one negative elementthen the latter test would be negative (with the probability 1).Summarizing, T makes O(log 1=�) rounds, choosing at every round some vec-5



tors w1; � � � ; wdlog2 ne, then for each truncated set (y1; � � � ; ym) �nds k0 as de-scribed above and tests hk0�1(y1; � � � ; ym). If all these tests are positive, then Treturns (x1; � � � ; xn) 2 Rn+, else if at least one of the tests is negative, T returns(x1; � � � ; xn) =2 Rn+.It is not di�cult to see the correctness of T in testing membership to Rn+.Indeed, if (x1; � � � ; xn) 2 Rn+ then all the described tests hk0�1(y1; � � � ; ym) arepositive. Else, if (x1; � � � ; xn) =2 Rn+ then with the probability greater than 1� �one of the truncated sets (y1; � � � ; ym) contains a single negative element. Thenfor this truncated set the test hk0�1(y1; � � � ; ym) would be negative.Now complete the depth analysis of T . There are O(log 1=�) roundschoosing vectors w1; � � � ; wdlog2 ne, each of these vectors yields a truncated setfy1; � � � ; ymg � fx1; � � � ; xng. For every of these truncated sets T �nds k0 bybinary search, which in its turn also requires O(log n) steps. Thus, the depth ofn-RDT T can be bounded by O(log2 n log 1=�).As an application of the described n-RDT one could design an n-RDT with asimilar depth O(log2 n log 1=�) and the probability greater than 1�� for the prob-lemMAX (cf. [TY94], [GKY95]), namely, whether x1 = maxfx1; � � � ; xng for aninput vector (x1; � � � ; xn). It su�ces to apply T to the vector (x1 � x2; � � � ; x1 �xn) 2 Rn�1.If one would like to solve theMAX problem (i.e. computing maxfx1; � � � ; xng),then similarly as in [TY94] it is necessary to have a subroutine which increases acandidate for maxfx1; � � � ; xng, in other words, which �nds an element xj greaterthan x1 (provided that such xj does exist). It corresponds to detecting negativecoordinate among x1 � x2; � � � ; x1 � xn (provided, it does exist).Namely, when a truncated set (y1; � � � ; ym) with the negative testhk0�1(y1; � � � ; ym) is found, we use the binary search to test as above, whether forthe set (y1; � � � ; ydm=2e) for the maximal k1 for which hk1�1(y1; � � � ; ydm=2e) doesnot vanish, the inequality hk1�1(y1; � � � ; ydm=2e) < 0 holds. If this is the case,then proceed to the half (y1; � � � ; ydm=2e), else if hk1�1(y1; � � � ; ydm=2e) > 0, thenproceed to the half (ydm=2e; � � � ; ym), and so on. If (y1; � � � ; ym) contained a sin-gle negative element after dlog2me steps, the described subroutine would �nd it.Thus, the depth of n-RDT for the described subroutine which �nds a negativeelement among x1; � � � ; xn (or returns that (x1; � � � ; xn) 2 Rn+) is bounded byO(log3 n � log 1=�). The probability of the correct output is greater than 1 � �.Finally, in [TY94] it is shown that the result of applying the procedure of�nding a greater element among x1; � � � ; xn, successively O(log n) times, taking� = O(1=n) equals to maxfx1; � � � ; xng with the probability close to 1. Thus, onecan compute maxfx1; � � � ; xng by n-RDT with the depth O(log5 n).Let us summarize what we have proved in this subsection in the followingtheorem.Theorem 1. For each of the following problems there is an n-RDT which forany input vector (x1; � � � ; xn) 2 Rn 6



a) tests membership to Rn+ or tests whether x1 = maxfx1; � � � ; xng in thedepth O(log2 n);b) �nds a negative xi (or returns that (x1; � � � ; xn) 2 Rn+) in the depthO(log3 n)c) computes i such that xi = maxfx1; � � � ; xng in the depth O(log5 n).4 Exponential lower bound on the size of deter-ministic analytic decision treesIn this section we study the size of a decision tree as its complexity measurerather than its depth. Evidently, a lower bound on the size immediately impliesa (logarithmic) lower bound on the depth, so it is a more di�cult problem, andthe known methods for obtaining lower bounds on the depth (see e.g. [GKV95]and the references there) do not give any lower bound on the size. Besides, as acounterpart to Rabin's linear lower bound on the depth for testing membershipto Rn+ (see subsection 3.1) an upper linear bound on the size is obvious. Thepoint is that we deal usually with the binary decision trees (i.e. branching at� or >). In [GKY95] ternary decision trees were studied (i.e. branching goesaccording to <, =, >) and an exponential lower bound on the size for testingmembership to Rn+ was obtained for algebraic d-DT where d = const. However,the result of [GKY95] cannot be deduced from the methods of this section sincethese methods work for binary decision trees, and on the other hand for binarytrees there is already mentioned above obvious linear upper bound on the sizefor testing Rn+. Thus, the lower bounds on the size for binary and ternary treesare independent.In this section we design a method for obtaining the �rst exponential lowerbounds on the size of analytic decision trees, and we provide some concrete ex-amples of the problems for which the sizes of A-DTs are exponential.Consider an A-DT T . As in the subsection 3.1 we restrict T to the inputs E�.In this setting we attach to T a function b : f�1; 1gn ! f�1; 1g which maps �to 1 if and only if E� is accepted by T (to each accepting (resp. rejecting) leaf ofT 1 (resp. �1) is attached). One could treat b as a boolean function (cf. [BS90],[KM91]) and also as an element of a bigger set Bn of functions f�1; 1gn ! Rwhich is isomorphic to R2n. Then Bn is R-space with the basis of all multilinearmonomials fXI = X i11 � � �X inn g; i1; � � � ; in 2 f0; 1g.Thus, for a boolean function b we have an expansion b = PI �IXI , herewiththe norm L2((�I)I) = PI �2I = 1 (since the vector (�i)I is an image of thevector 1(p2)n (b(x))x with L2-norm equal to 1 under the unitary Fourier transformbeing n-th tensor power of the matrix 1p2  1 11 �1 !. The important feature of7



b studied in [BS90], [KM91] is its L1-norm L1(b) = PI j�I j. We use the followinglemma from [KM91] for which we give here also a short proof.Lemma 2. ([KM91]) If the tree T has m leaves then L1(b) � m.Proof. As we restrict T to the inputs E� we could replace each gate g of Tby lm(g) (see subsection 3.1). Thereby, to any subtree T 0 of T we could assign a(boolean) function bT 0 : f�1; 1gn ! f�1; 1g, then b is assigned to the whole treeT . We prove lemma by induction on the size of the tree. In case of the base ofinduction the tree consists of a single leaf with constant 1 or �1 boolean functionattached. For the inductive step consider a term lm(g) = cXI , c 2 R in the rootv of T and let the boolean functions b(1); b(2) are attached to two subtrees T (1); T (2)of T with the roots being the sons of v. Then b = 12(1�XI )b(1) + 12(1 +XI)b(2)and hence L1(b) � L1(b(1))+L1(b(2)). Then applying inductive hypothesis to thesubtrees T (1); T (2) completes the proof of the lemma.To exhibit an example of a set, for which the membership requires an ex-ponential size for any A-DT T , denote by C� = f�1X1 > 0; � � � ; �nXn > 0g,�1; � � � ; �n 2 f�1; 1g an octant. Assume that T recognizes membership to aset M such that [�2MC� � M � [�2MC� [ fX 1� � �Xn= 0g for a certain setM � f�1; 1gn, i.e. the inner part of M coincides with [�2MC�. Denote bybM : f�1; 1gn ! f�1; 1g the boolean function such that bM(�) = �1 if and onlyif � 2M .Lemma 2 provides the lower bound L1(bM) on the size of a decision tree Ttesting the setM. Now we give two examples of setsM with a big norm L1(bM)taken from [BS90].Let n = 2k and de�neMEXACT �Rn to be the set of points (x1; � � � ; xn) withexactly k negative coordinates among x1; � � � ; xn.Now let n = 4k and de�neM4�Rn to be the set of all the points (x1; � � � ; xn)such that for each 0 � i � k � 1 either x4i+1, x4i+2 are both negative or x4i+3,x4i+4 are both negative.Using the bounds L1(bMEXACT) � 2k=k (observe that this bound is close to thepossible largest bound due to the Cauchy inequality L1(b) � 2n=2 for any booleanfunction b 2 Bn), L1(bM4) � (1:25)k [BS90] and Lemma 2 we get the followingcorollary.Corollary 2. Any analytic decision tree testing membership to a) MEXACTor to b) M4 has the size greater than 2
(n).8



5 Lower bound on the depth of randomized an-alytic decision treesWe have shown in Section 3 that randomization can enhance dramatically the e�-ciency of analytic decision trees. In this section we prove a lower bound 
(pn) forrandomized analytic decision trees recognizing sets like Li;q=[� (mod q)�iC�,where the union is taken over � 2 f�1; 1gn such that the number of �1 in � hasa residue i (mod q), and q is not a power of 2.Thus, assume A-RDT T (i;q) = fT�g with the depth t recognizes Li;q. As-suming that q is small (say, a constant), one can suppose q to be an odd prime,taking into account that the complexities of recognizing Li;q for diverse i (and�xed q) coincide. Indeed, in order to reduce recognizing Li;q to recognizing Lj;qone replaces the input (x1; � � � ; xn) by (�x1; � � � ;�xj�i; xj�i+1; � � � ; xn).Again as in the previous section we restrict T (i;q) to the set of 2n points E�and take A-DT T� which makes at most 132n errors on the points E � fE�g�, i.e.jEj � 132n. Again as in Section 4 we associate with T� a boolean function b�, butunlike Section 4 in a more standard setting, namely b� : f0; 1gn ! f0; 1g = F2.For each gate g (being an analytic function) of T� consider lm(g) = cX i11 � � �X innand replace g by a linear form Lg(y1; � � � ; yn) = i1y1+ � � �+ inyn (mod 2) : Fn2 !F2 . To every path of T� with the gate functions g1; � � � ; gk, we attach the productof linear functions (Lg1 + �1) � � � (Lgk + �k) where �i 2 f0; 1g, 1 � i � k is thecorresponding sign of the branch at the path with the gate function gi. Thenb� coincides with the sum of the products (Lg1 + �1) � � � (Lgk + �k) attached toall the paths with the outputs 1. Similar to Section 4 we can give an inductivedescription of b�. For the base of induction consider a tree consisting of a singleleaf and b� equals to the output of this leaf. For the inductive step let the gate gbe assigned at the root v of T� and the boolean functions b(1); b(2) are attached tothe left and right subtrees, respectively, with the roots being the sons of v. Thenb� = Lg � b(1) + (Lg + 1)b(2).Therefore, deg b� � t. Thus, b� coincides with the boolean function MODi;qat more than 232n points, and hence the Corollary and Lemma 4 [S87] implythat deg b� � 
(pn) for a certain 0 � i � q � 1, see above (to apply directlyCorollary [S87] one has to imbed the functions b�, MODi;q in the set of functionsf0; 1gn ! F2` for a suitable extension F2` of F2, cf. lemma 5 [S87]). Thus, we getthe following theorem.Theorem 2. Any A-RDT which recognizes the union of octants[� (mod q))�iC� has the depth greater than 
(pn) (for a �xed q being not a powerof 2). �9



6 Open Problems and Further ResearchThere remain important open problems on randomized decision complexity ofmany concrete problems which are expressible by simultaneous positivity of smalldegree polynomials, like quadratic or cubic ones. The interesting examples in-clude Element Distinctness in algebraic computation tree model or for n-RDTs(cf. a randomized lower bound 
(n log n) [GKMS96] for n�-RDTs with su�cientlysmall � > 0), Finite Union of Balls in Rn, or algebraic version of 3SAT being theexistentional problem of simultaneous positivity of cubic polynomials.AcknowledgementWe thank Andy Yao for many stimulating discussions on the subject of the paper.
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