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Abstract

We introduce a new powerful method of approximating the volume
(and integrals) for a vast number of geometric body classes defined by
boolean combinations of Pfaffian conditions. The method depends on the
VC-Dimension of the class of bodies. The resulting approximation algo-
rithms are quite different in spirit from the other up to now known meth-
ods, and give randomized solutions even for such seemingly untouchable
problems of statistical physics like computing the volume of sets defined
by the systems of exponential (or more generally Pfaffian) inequalities.
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1 Introduction

In [KM95] we gave a powerful method for estimating VC-dimension of classes
defined by Boolean combinations of C'*° (infinitely differentiable) conditions
f(@) > 0. In this paper we exploit these results to give good randomized poly-
nomial time algorithms for absolute approzimation of various volumes and in-
tegrals defined “in the Pfaffian category”. These algorithms are quite different
in spirit from the well-known ones of Dyer, Freeze and Kannan [DFK91] and in
many concrete cases are faster.

In addition we consider the issue of formulas for £- approximation of volume
of definable sets (and integrals of definable functions), and we do this not only
in real analysis but also in p-adic analysis. Due to our current ignorance of
good bounds for VC-dimension in p-adic algebra or analysis, we cannot yet give
efficient randomized algorithms in that setting.

The first of our results were obtained in October-November 1994 just prior to
the Dagstuhl meeting on Neural Computing. In the real case they overlap with
these of Pascal Koiran [K95], with whom we had at Dagstuhl some technical
discussions on approximate definition of volume via VC-dimension.

2 Measure and VC-Dimension

2.1 We assume familiarity with the basics about VC-dimension [AB92], [L.92],
[GJ93], with our paper [KM95], and the basics on approximating the volume of
[DF88], [DFK91]. We refer to [H50] for the most basic notions of the measure
theory, and to [H76] for the basic notions from differential topology.

Our usual setting will involve a set X and a class C of subsets of X, of finite
VC-dimension d (VC-Dim(C) = d). Model theory provides a wide selection of
such X and C. If T' is a theory without the independence property (cf. [L92]),
and M is any model C, we get X and C as follows:

X =MF | some k;

C is the class of all subsets of M* defined by ¢(vi, ..., vk, B1, ..., B¢), for a fixed
formula ¢, and 5 ranging over M?*.

For this see [L92], where (astronomical) bounds on VC-Dim(C) are established.
(We note that one can generalize significantly. X could be a set interpretable in
M. In analytic situations, this would give us access to manifolds, and not just
affine spaces).

There are two notable classes of examples:

1. T is o-minimal [L.92]. The largest current example, with enormous expres-
sive power, 1s the theory of the real exponential field, with primitives for
all restricted analytic functions [DMM94];

2. T 1is the theory of p-adic field with primitives for all restricted analytic
functions [DD8§]. That this does not have the independence property



follows from [De84], [DD8§] and [L92].

A conspicuous difference between (1) and (2) is that in (1) one has good bounds
for VC-Dim(C) in many cases [KM95], whereas in (2) one has no good bounds
so far.

There are also important cases where one has good bounds for VC-dimension
without knowing any general result about lack of the independence property.
The most important examples are in [KM95] for C defined by boolean combina-

tions of f(v,3) > 0, for f being Pfaffian [K91]. At present we do not know any
general o-minimality result for unbounded Pfaffian functions.

2.2 We have stressed the real and p-adic cases, because IR and @, being locally
compact groups, carry Haar measures (cf. [H50]). For convenience, fix, in each
case, such a measure p giving measure 1 to unit ball.

Lemma 1 Suppose that M is either

i) IR with some o-minimal structure, or
ii) Q, with the structure of restricted analytic functions.

Then every definable subset of M* is y-measurable.

Proof By cell-decomposition [KPS86], [DD88] every definable subset is Borel.
O

2.3 The basis for the randomized approximation algorithms below is the fun-
damental [V82], [BEHW90]:

Theorem 2 Suppose C is a class of subsets of X, of VC-dimension d. Let
P be a probability distribution on X, and P" the product distribution on
X"™. Suppose P satisfies the condition (#) (to be given below). Then if

n > maz(2log 3, Sa—d log 12)

P*({(z1,...,2n) isupceC‘%ZXc(l‘i) - P(C’)‘ <e})>1-46

(Here x. is the characteristic function of C, and (#) ensures that the set dis-
played above is measurable).
The condition (#) is just that for each n the functions

L5 Xe(z) = P(C)
=3 Xe(wi) = £ 22 Xelwi)

are measurable.
Lemma 3 (#) holds for o-minimal M, and for the p-adic subanalytic case.
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Proof Lemma 1. O

A notable special case of Theorem 2, called e-nets, used in [K95], is:
Theorem 4 (Assumptions as in Theorem 3) If n > Sa—d log 15—3 there is a subset
{z1,..., 25} of X such that for all C' € C with P(C) > e,

Cn{zy, ...,z } #0.

3 A More General Version of Koiran’s “Volume
Approximation Formula”

3.1 Koiran [K95] works relative to a first-order structure on the R including
4+, —, < as primitives. Let L be the language involved.

Koiran considers a measurable £ C RP, a formula ¢(v) of L, and £ > 0 in IR.
Definition 1 ¢ defines an e-approximate volume for E if

a) REo(r) — |r—pf(E)| <e
b) [r—pP(E)| <5 — R E ¢(r)

He points out the well-known fact that even for semi-algebraic £ one cannot
demand

R o(r)| «—= |r =@/ (E) <2 (%)

if ¢ 18 semi-algebraic, because m is undefinable in the semi-algebraic category.
One can give more elaborate examples, for richer structure on IR (using, e.g. the
undefinability results in [DMM94] ). There is however the intriguing possibility
that for some huge o-minimal structure on IR (*) is possible for definable F.
This may have something to do with the error function.

Koiran [K95], by two methods, proves results of the following shape:

If F is definable, there is a formula ¢(v) which defines an e-approximate volume
for E.

We will elaborate these methods, and compare them. The second method (that
of Koiran’s Theorem 4) [K95] was known to us, and is related to more general
model theoretic considerations. The first is very elementary.

3.2 First Method It appears that Koiran here does not wish to appeal to o-
minimality. He defines x(F) as the maximum number of connected components
of £ N L, for any axis parallel line. It is however worth observing that you
cannot have all k(F) finite, for definable E, withput T being o-minimal. On
the other hand, if £ is semi-Pfaffian, x(E) is finite and can be useful estimated
[K91].

In both cases one has a uniformity for x(F) .

Lemma 5 Suppose either a) M is o-minimal, and ®(vy, -, vp, w1, -+, wy) 18
arbitrary;

or b) & is defined by a Boolean combination of Pfaffian primitives.



For 3 € M!, let Ej be defined by ®(7, 5) Then there is an integer K¢ depending

only on ® such that for any line L parallel to an axis in IR”, and any 5
E;N L has < Kg connected components.
Proof For (a), see [KPS86], for (b) [K91].
Now let I =[0,1] , and assume E C I¥| F p-measurable, and x(F) finite. Let
N be an integer, and put on /¥ the grid of size h = % Let pp, be the probability
measure on I” uniformly distributed on the N¥' vertices of the grid. By a simple
Fubini argument Koiran proves the following, which for him generalizes the case
of converse k(F) = 1.

| (E) — u(E) | < phr(E).
Proof. See [K95].

We now quickly consider algorithmic aspects of this. To calculate p(FE) one
must simple N¥ points.

Fix ¢ > 0, and let N be chosen so 2% < €. Then |y, (E) — p(E) |<
Suppose | pp (E) —r|< 5. Then | r — pu(E) [< ¢
Conversely, suppose | 1 — u(E) [< §. Then [ r — pp(E) [< §4+ 5 = 5.
So | r—pn(E) |< 5.
¢ - approximates p(F), and is clearly first-order.
Moreover, in terms of conventional logical classifications, when E is defined by
® (0, 3) as done earlier, we note that | r — pup(E) |< £ is both X,, and Il in
the 5, of @ is both X, and II,, in 17,5.

£
i

But, the formula is very long. A routine calculation shows that its length is of
order 2" . N P. | @ |, and so is exponential in Z.

We summarize:

Theorem 7 (Notation as above).

(i) If @ is both ¥,, and Il,,, then given ¢ there is a formula ¢ (v, w1, ..., we),
also both X, and II,,, such, for any 3, ¢(v, 8) defines an e-approximate
volume for <I>5.

(ii) ¢ has length of order 2V° - NP. | & |, where N is 22

€

Remarks
a) (i) is clearly of theoretical interest.

b) That the length bound in (ii) is exponental in 1 makes it useless for the
algorithmic purpose of approximating the volume of Eé, at least if one
adopts any conventional technique of looking for an r — satisfying | » —
uP(Eé) |< €. Moreover, the size of N makes the method useless even as
a randomized algorithm.

¢) In the literature one is interested mainly in algorithms polynomial in P, the
dimension of the ambient space [DF88, DFK91].



d) In many interesting cases K may be reasonably small. This is certainly so in
the semi-algebraic case, if @ is given as quantifier — free. Suppose ®(@, )
is a Boolean combination of conditions f;(¢,w) > 0 ,i < s. Let d;; be the
vj-degree of f;. Then it is easily seen that

max;2( ¢, dij) + 1

If @ 1s quantifier — free in the language of exponentation, Hardy’s method
[DF88, DFK91] can be applied to give bounds which are not too satisfac-
tory.

In the quantifier — free Pfaffian case, Khovanskii’s method applies, as in

[KMO5].

3.3 The Translation Method We maintain the preceding notation.

The translation method is more subtle, and very congenial to a modeltheorist
who defines generic types in terms of group translation [P83]. The idea is of
course to derandomize the sampling algorithm by relating generic and of large
measure.

As before, the procedure is uniform in 5, so we write F for Eé~

We can interpret (%)P in the L-Structure, using representations in [0, 1[. Let
@, © be the interpretations of the group operation, and the inverse. On ([0, 1[)¥
these operations are quantifier-free defineable; using +, -, <.

Following Koiran [K95], define, for k € N, and v, € T

Sva = {(x1,--xe) € () | £ iy xe(w) — v I< o}

(There is a hidden (uniform) dependence on 5 If Eis X, und I, so is Sy o.)
Let © be the family of all y &5, o, x € I¥ P. This is a family of sets in (I¥)*,
indexed by v, a, 3, x.

Note that the length of (the natural definition of) S, , is of order k * 2%% | @ |,
as is that of x © .5, 4.

Finally, fix an m, and consider the natural formula C), expressing that a union
of m translates of S, , covers (Ip)k. This formula is ¥, 42, if E is both X,, and
I1,,. Moreover, the first block of 3’s has length m, and the first block of ¥’s has
length pk. Inside this there is a disjunction of m formulas S, , ®1;, essentially
of length that of 5, ..

Korian’s Theorem 4 [K95] is (essentially):

Theorem 8 Let d > VC-dim O. Let m > (16log 26)d, and k >
max(lzm”zifgmz). Then Cp, (v, ) defines an e-approximate volume for Eé~
Remarks

(a) The most obvious issue is what is gained by using C',, logically more com-
plex than the formula of Theorem 7. The length of C), is essentially a



constant times m + pk + k x 2%+ | ® |, so, with minimal choice of m, k a
constant times d + ’%?—d + ’%;ﬂl Y | @ |

(b) d can in some cases be estimated. In [K95] Koiran shows that d < ¢ * d’ «
k log k, where C is an absolute constant and d’ is the VC—dimension of
the family x © Eé~ Note that this estimate 1s valid before we impose the
constraints in Theorem 8.

d’ can be nicely estimated in some cases where ® is quantifier—{ree, and in
the semi—-algebraic case quite generally, using refined results on quantifier—
elemination [GJ93]. Let us briefly recall the most notable result [KM95]:

Suppose ®(7, @) is a Boolean combination of s many formulas f; (7, @) >
0, 1 <1t < s where each f; is a polynomial of degree < A in 7, w and
q many (q independent of i) a(Z,w) which occur in a Pfaffian chain of
length ¢ and degree D. Then the VC-dimension of £ is bounded by

20D (¢l = 1)+ 2l log A+ 2llog IA+1D+1)
+2qllog 1+ 2qllog (IA+ 1D+ 1)
+(16 + 21og s).

&)

Note that this does not depend on the length of 7!
To deal with the VC—dimension d of family y & Eé some minor adjust-

ments are needed, mainly to take account of the interpretation of % via
[0,1]. We omit constantly the details of the argument, but the only change
needed in @ 1s to replace s by s + 4p.

(¢) The main point to notice vis-a-vis | Cy, | is that there is a term exponential
in E%, but in the Pfaffian case there is no exponential dependence on p.
So there is a slight gain over the earlier formula. But, if one tries, in the
semi—algebraic case, to eliminate quantifiers & la Renegar [R92], the cost
is great, because the block of ¥’s has length kp, leading to a time cost
exponential in p and }2

(d) Though it seems to be of no practical importance, it is interesting to note
that for fixed ¢, and | v — p(Ej) |< g the block of m s can always be

instantiated by a tuple independent of v and B (This follows easily by the
e—net argument.) The (unsolved) problem is to find this tuple.

3.4 p—adic version Delon [De89] proved that the field Q, does not have the
independence property, and from this, using [DD88] and [L92], one easily de-
duces that Q,, with the subanalytic structure of van den Dries—Denef also does



not have the independence property. This of course gives finiteness of VC—
dimension for families of sets interpretable in @, with subanalytic structure.
But, till now, even for the pure field @, , one does not have good bounds.
This is, to some extent, connected with the subtlety of notions like (definably)
connected component.

Let V be the unit ball of Q, and y the normalized Haar measure with p(V') = 1.
All p—adic subanalytic sets are p—measurable, by quantifier-elimination. So the
problem of closely approximating the measure of a definable set is natural. But
some modifications must be made to Koiran’s definitions, since the values of the
measure are not elements of the model. That 1s, you cannot just substitute real
rforvin  |v—pu(E)|<e and make sense inside @, .

We propose the following modification. We follow the notations of [K95], except
that we replace I by V. V is now an additive group, so we avoid the details of
interpretability. We work in a power ((Qp)t)k as before (replacing p by t for

obvious reasons!). The relative frequency % * Zle xe(xs) is one of the

rationals % 0 < j < k. The least distance between these numbers is %, and,if

ECV, u(E)is no more than % from some ]E If % < §, then p(F) is within §
of some unique .

Now we can just follow Koiran’s notation [K95] prior to his Theorem 4. Observe
that his argument there works even better in the p—adic case. It just does not
give a formula of the intended language. All we can do is to define (in the
language), for each j < k the set Sj of x in ((Qp)p)k whose relative frequency is

%. Choose the unique j such that | %—u(E) |< 5. So, as in [K95] /J(S%V%) >

€ 52 .
1—e 'S ,s0 1(S;) >1— e~ so by Koiran’s argument (for m, k as there) m
translates of S; cover (V¥)*. Conversely, as in [K95], if m translates of .5; cover

(VO u(S;) > L> e” 7. So /J(Si_' L) > e T as in [K95).
So we have proved, with the same notation as in Theorem 8.
Theorem 9 If m translates of S; cover (V)% then | £ — pu(E) |< ¢, and if

| %— p(E) |< § then m translates of S; cover (V.

Remarks

(a) This has for now even less computational significance than Theorem 7
since we don’t know how to calculate the VC-dimensions.

(b) We don’t know any analogue of Lemma 6, though we hope to find one.

4 Integrals

4.1 In the real case, the preceding methods are readily adapted to ”express®
certain integrals. The relevant integrals are fA fdu® | A a definable subset of
I¥ and f a definable function on A with | f(z) |< 1, # € A. By splitting



A into the definable sets where f is negative or nonnegative, we reduce to case
where 0 < f(#) < 1 on.A. Then fA fdpf = pPHi((2,y) 1 0 <y < f(7) .z € A),
thereby making available all the results of Section 3.

Note that definable functions are measurable, in o—minimal theories!

4.2 The preceding of course covers the case of lengths of definable curves in
o—minimal theories.

4.3 It 1s however much less clear how to deal with various areas of curved
surfaces, i1f these are not surfaces of revolution.

4.4 p—adic integrals There is a considerable body of work on rationality of
p—adic Poincare’ series, or equivalently rationality in P~% of fA | (=) | dpt,
where A, f are p—adic definable, and s is a real variable. See particularly [De89],
[DD&S].

For rational s one can use the method of 4.1, combined with the ideas of Section
3, to get "expressibility “ in the p-adic analytic language. Here there is an
interesting problem of taking account of variation in s. We hope to return to
this in a later publication.

5 Randomized Algorithms

5.1 For us the main significance of our results [KM95] is that they lead to
powerful randomized algorithms in a wide range of geometric problems with
Pfaffian data. There is a noticeable difference between this approach and that of,
say, Dyer—Freeze—-Kannan [DFK91] who have as data blackboxes for arbitrary
convex bodies, and are concerned with relative approximation. One of their
desiderata is an algorithm running in time polynomial in p, the dimension of
the ambient space, and this establishes a point of comparison with our method,
where convexity plays no role.

We restrict to sets definied by quantifier—free conditions in the language with
primitives for all total Pfaffian functions.

5.2 For us a typical © is defined by a Boolean combination of conditions
fi(p, @) > 0 as in [KM95], where the f; are polynomials of degree < A in
7, w and ¢ many Pfaffian functions occuring in a chain of length ¢ and degree
<D.

Our bound for VC-dim(©) [KM95], following [K91, p. 91] is

glg — 1)+ 2llog A+ 2(l + q)log (A + D) + 2llog (I + 1) + (16 + 2log si),

in which k doesn’t occur. Let d be the above estimate. Then if a sample of size
m > max(% log %, % log %) is chosen, and its relative frequency, for C'in ©, is
tested, this is within € of u(C') with probability > 1 — 4.



So here one has a randomized algorithm, taking time mp (with blackbox con-
vention) giving an absolute error < e with probability > 1 —J. If we unpack
d, and so m, we see that the time of the algorithm, say for § = %, is (up to
absolute constants):

i) linear in p;

i) Llog(t) in ¢
iii) quadratic in g¢;
iv) llog!lin [.

This result, which we now summarize, seems to us more than competitive with

those of [DFK91]:

Theorem 10 (Notation as above.) There is a randomized algorithm for absolute
e —approximation of a volume of semi-Pfaffian sets, with running time of order

P * qzélog llog (%)

5.3 Analogue for Integrals Since, as remarked in 777 integrals

[ fdpP , where 0 < f <1
A

are special cases of volumes, there is an obvious analogue of Theorem 10 for
integration of Pfaffian f over semi-Pfaffian A.

5.4 Doing better It seems likely that one can use the deep results of [V82
Chapter 7] to get randomized algorithms based on computation of means

LS fevate)

instead of via 5.3. In the o—minimal case one has of course the finitness of
capacity (cf. [V82]). We have not looked closely at the relative merits of this
and the i1dea of 5.3.

5.5 Surface areas, etc. In contrast to the situation for expressibility, where
translation invariance was crucial, the randomized algorithm method works
for Borel measures on compact ©-manifolds where © is a geometric category
[DMM94], and in an analogous Pfaffian situation. In the latter case, fast algo-
rithms will exist, via [KM95].
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