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1 IntroductionIn [KM95] we gave a powerful method for estimating VC-dimension of classesde�ned by Boolean combinations of C1 (in�nitely di�erentiable) conditionsf(v) > 0. In this paper we exploit these results to give good randomized poly-nomial time algorithms for absolute approximation of various volumes and in-tegrals de�ned \in the Pfa�an category". These algorithms are quite di�erentin spirit from the well-known ones of Dyer, Freeze and Kannan [DFK91] and inmany concrete cases are faster.In addition we consider the issue of formulas for " - approximation of volumeof de�nable sets (and integrals of de�nable functions), and we do this not onlyin real analysis but also in p -adic analysis. Due to our current ignorance ofgood bounds for VC-dimension in p -adic algebra or analysis, we cannot yet givee�cient randomized algorithms in that setting.The �rst of our results were obtained in October-November 1994 just prior tothe Dagstuhl meeting on Neural Computing. In the real case they overlap withthese of Pascal Koiran [K95], with whom we had at Dagstuhl some technicaldiscussions on approximate de�nition of volume via VC-dimension.2 Measure and VC-Dimension2.1 We assume familiarity with the basics about VC-dimension [AB92], [L92],[GJ93], with our paper [KM95], and the basics on approximating the volume of[DF88], [DFK91]. We refer to [H50] for the most basic notions of the measuretheory, and to [H76] for the basic notions from di�erential topology.Our usual setting will involve a set X and a class C of subsets of X, of �niteVC-dimension d (VC-Dim(C) = d). Model theory provides a wide selection ofsuch X and C. If � is a theory without the independence property (cf. [L92]),andM is any model C, we get X and C as follows:X =Mk , some k;C is the class of all subsets ofMk de�ned by �(�1; : : : ; �k; �1; : : : ; �`), for a �xedformula �, and ~� ranging overM`.For this see [L92], where (astronomical) bounds on VC-Dim(C) are established.(We note that one can generalize signi�cantly. X could be a set interpretable inM. In analytic situations, this would give us access to manifolds, and not justa�ne spaces).There are two notable classes of examples:1. � is o-minimal [L92]. The largest current example, with enormous expres-sive power, is the theory of the real exponential �eld, with primitives forall restricted analytic functions [DMM94];2. T is the theory of p -adic �eld with primitives for all restricted analyticfunctions [DD88]. That this does not have the independence property2



follows from [De84], [DD88] and [L92].A conspicuous di�erence between (1) and (2) is that in (1) one has good boundsfor VC-Dim(C) in many cases [KM95], whereas in (2) one has no good boundsso far.There are also important cases where one has good bounds for VC-dimensionwithout knowing any general result about lack of the independence property.The most important examples are in [KM95] for C de�ned by boolean combina-tions of f(�v; ~�) > 0, for f being Pfa�an [K91]. At present we do not know anygeneral o-minimality result for unbounded Pfa�an functions.2.2 We have stressed the real and p -adic cases, because IR and IQp, being locallycompact groups, carry Haar measures (cf. [H50]). For convenience, �x, in eachcase, such a measure � giving measure 1 to unit ball.Lemma 1 Suppose thatM is eitheri) IR with some o-minimal structure, orii) IQp with the structure of restricted analytic functions.Then every de�nable subset ofMk is �-measurable.Proof By cell-decomposition [KPS86], [DD88] every de�nable subset is Borel.22.3 The basis for the randomized approximation algorithms below is the fun-damental [V82], [BEHW90]:Theorem 2 Suppose C is a class of subsets of X, of VC-dimension d. LetP be a probability distribution on X, and Pn the product distribution onXn. Suppose P satis�es the condition (#) (to be given below). Then ifn � max(4" log 2� ; 8d" log 13" )Pn�f(x1; : : : ; xn) : supC2C��� 1nXi �c(xi) � P (C)��� < "g� > 1� �(Here �c is the characteristic function of C, and (#) ensures that the set dis-played above is measurable).The condition (#) is just that for each n the functionssupC2C��� 1n Pi �c(xi)� P (C)���, andsupC2C��� 1n Pi �c(xi)� 1nPi �c(yi)���are measurable.Lemma 3 (#) holds for o-minimalM, and for the p -adic subanalytic case.3



Proof Lemma 1. 2A notable special case of Theorem 2, called "-nets, used in [K95], is:Theorem 4 (Assumptions as in Theorem 3) If n � 8d" log 13" there is a subsetfx1; : : : ; xng of X such that for all C 2 C with P (C) � ",C \ fx1; : : : ; xng 6= ;.3 A More General Version of Koiran's \VolumeApproximation Formula"3.1 Koiran [K95] works relative to a �rst-order structure on the IR including+;�; < as primitives. Let L be the language involved.Koiran considers a measurable E � IRp, a formula '(v) of L, and " > 0 in IR.De�nition 1 ' de�nes an "-approximate volume for E ifa) IR j= '(r) �! jr � �p(E)j < "b) jr � �p(E)j < "4 �! IR j= '(r)He points out the well-known fact that even for semi-algebraic E one cannotdemandIR j= '(r)j  ! jr � �p(E)j < " (*)if ' is semi-algebraic, because � is unde�nable in the semi-algebraic category.One can give more elaborate examples, for richer structure on IR (using, e.g. theunde�nability results in [DMM94] ). There is however the intriguing possibilitythat for some huge o-minimal structure on IR (*) is possible for de�nable E.This may have something to do with the error function.Koiran [K95], by two methods, proves results of the following shape:If E is de�nable, there is a formula '(�) which de�nes an "-approximate volumefor E.We will elaborate these methods, and compare them. The second method (thatof Koiran's Theorem 4) [K95] was known to us, and is related to more generalmodel theoretic considerations. The �rst is very elementary.3.2 First Method It appears that Koiran here does not wish to appeal to o-minimality. He de�nes �(E) as the maximumnumber of connected componentsof E \ L, for any axis parallel line. It is however worth observing that youcannot have all �(E) �nite, for de�nable E, withput � being o-minimal. Onthe other hand, if E is semi-Pfa�an, �(E) is �nite and can be useful estimated[K91].In both cases one has a uniformity for �(E) .Lemma 5 Suppose either a) M is o-minimal, and �(v1; � � � ; vp; w1; � � � ; wl) isarbitrary;or b) � is de�ned by a Boolean combination of Pfa�an primitives.4



For ~� 2Ml, letE~� be de�ned by �(�v; ~�). Then there is an integerK� dependingonly on � such that for any line L parallel to an axis in IRp, and any ~�.E~� \ L has � K� connected components.Proof For (a), see [KPS86], for (b) [K91].Now let I = [0; 1] , and assume E � IP , E �-measurable, and �(E) �nite. LetN be an integer, and put on IP the grid of size h = 1N . Let �h be the probabilitymeasure on IP uniformly distributed on the NP vertices of the grid. By a simpleFubini argument Koiran proves the following, which for him generalizes the caseof converse �(E) = 1.j �h(E)� �(E) j � ph�(E).Proof. See [K95].We now quickly consider algorithmic aspects of this. To calculate �h(E) onemust simple NP points.Fix � > 0, and let N be chosen so pkN < �4 . Then j �h(E) � �(E) j< �4 :Suppose j �h(E)� r j< �2 . Then j r � �(E) j< �Conversely, suppose j r � �(E) j< �4 . Then j r � �h(E) j< �4 + �4 = �2 .So j r � �h(E) j< �2 .� - approximates �(E), and is clearly �rst-order.Moreover, in terms of conventional logical classi�cations, when E is de�ned by�(~�; ~�) as done earlier, we note that j r � �h(E) j< �2 is both �m and �m inthe ~�, of � is both �m and �m in ~�; ~�.But, the formula is very long. A routine calculation shows that its length is oforder 2NP �NP � j � j, and so is exponential in �� .We summarize:Theorem 7 (Notation as above).(i) If � is both �m and �m, then given � there is a formula '(v; w1; : : : ; we),also both �m and �m, such, for any ~�, '(v; ~�) de�nes an �{approximatevolume for �~�.(ii) ' has length of order 2NP �NP � j � j, where N is 4p�� .Remarksa) (i) is clearly of theoretical interest.b) That the length bound in (ii) is exponental in 1� makes it useless for thealgorithmic purpose of approximating the volume of E~�, at least if oneadopts any conventional technique of looking for an r { satisfying j r ��P (E~�) j< �. Moreover, the size of N makes the method useless even asa randomized algorithm.c) In the literature one is interested mainly in algorithms polynomial in P , thedimension of the ambient space [DF88, DFK91].5



d) In many interesting cases K may be reasonably small. This is certainly so inthe semi{algebraic case, if � is given as quanti�er { free. Suppose �(~v; ~w)is a Boolean combination of conditions fi(~v; ~w) > 0 ,i � s. Let dij be thevj-degree of fi. Then it is easily seen thatmaxj2(Pi�s dij) + 1If � is quanti�er { free in the language of exponentation, Hardy's method[DF88, DFK91] can be applied to give bounds which are not too satisfac-tory.In the quanti�er { free Pfa�an case, Khovanskii's method applies, as in[KM95].3.3 The Translation Method We maintain the preceding notation.The translation method is more subtle, and very congenial to a modeltheoristwho de�nes generic types in terms of group translation [P83]. The idea is ofcourse to derandomize the sampling algorithm by relating generic and of largemeasure.As before, the procedure is uniform in ~�, so we write E for E~�.We can interpret (RZ)P in the L-Structure, using representations in [0, 1[. Let�;	 be the interpretations of the group operation, and the inverse. On ([0; 1[)Pthese operations are quanti�er-free de�neable, using +, -, <.Following Koiran [K95], de�ne, for k 2 N, and �; � 2 IS�;� = f(�1; : : :�k) 2 (IP )k :j 1k Pki=1 �E(�i) � � j� �g(There is a hidden (uniform) dependence on ~�. If E is �n und �n, so is S�;�.)Let � be the family of all � 	 S�;�, � 2 IkP . This is a family of sets in (IP )k,indexed by �; �; �; �.Note that the length of (the natural de�nition of) S�;� is of order k � 2k� j � j,as is that of � 	 S�;�.Finally, �x an m, and consider the natural formula Cm expressing that a unionof m translates of S�;� covers (Ip)k. This formula is �n+2, if E is both �n and�n. Moreover, the �rst block of 9's has length m, and the �rst block of 8's haslength pk. Inside this there is a disjunction of m formulas S�;��ti, essentiallyof length that of S�;�.Korian's Theorem 4 [K95] is (essentially):Theorem 8 Let d � VC{dim �. Let m � (16 log 26)d, and k �max (12lnm;48ln 2)�2 . Then Cm(�; �2 ) de�nes an �{approximate volume for E~�.Remarks(a) The most obvious issue is what is gained by using Cm, logically more com-plex than the formula of Theorem 7. The length of Cm is essentially a6



constant times m + pk + k � 2k� j � j, so, with minimal choice of m, k aconstant times d+ p log d�2 + p log d�2 � d 12�2 � j � j.(b) d can in some cases be estimated. In [K95] Koiran shows that d � c � d0 �k log k, where C is an absolute constant and d0 is the VC{dimension ofthe family � 	 E~�. Note that this estimate is valid before we impose theconstraints in Theorem 8.d0 can be nicely estimated in some cases where � is quanti�er{free, and inthe semi{algebraic case quite generally, using re�ned results on quanti�er{elemination [GJ93]. Let us brie
y recall the most notable result [KM95]:Suppose �(~�; ~w) is a Boolean combination of s many formulas fi(~�; ~w) >0; 1 � i � s where each fi is a polynomial of degree � � in ~�; ~w andq many (q independent of i) �(~�; ~w) which occur in a Pfa�an chain oflength q and degree D. Then the VC-dimension of E~� is bounded by2(ql)(ql � 1) + 2l log �+ 2l log (l�+ lD + 1)+2ql log l + 2ql log (l�+ lD + 1)+l(16 + 2 log s): 
�Note that this does not depend on the length of ~�!To deal with the VC{dimension d of family � 	 E~� some minor adjust-ments are needed, mainly to take account of the interpretation of RZvia[0,1[. We omit constantly the details of the argument, but the only changeneeded in
� is to replace s by s + 4p.(c) The main point to notice vis-a-vis j Cm j is that there is a term exponentialin 1�2 , but in the Pfa�an case there is no exponential dependence on p.So there is a slight gain over the earlier formula. But, if one tries, in thesemi{algebraic case, to eliminate quanti�ers �a la Renegar [R92], the costis great, because the block of 8's has length kp, leading to a time costexponential in p and 1�2 .(d) Though it seems to be of no practical importance, it is interesting to notethat for �xed �, and j � � �(E~�) j< �4 the block of m 9's can always beinstantiated by a tuple independent of � and ~�. (This follows easily by the�{net argument.) The (unsolved) problem is to �nd this tuple.3.4 p{adic version Delon [De89] proved that the �eld IQp does not have theindependence property, and from this, using [DD88] and [L92], one easily de-duces that IQp with the subanalytic structure of van den Dries{Denef also does7



not have the independence property. This of course gives �niteness of VC{dimension for families of sets interpretable in IQp with subanalytic structure.But, till now, even for the pure �eld IQp , one does not have good bounds.This is, to some extent, connected with the subtlety of notions like (de�nably)connected component.Let V be the unit ball of IQp and � the normalized Haar measure with �(V ) = 1.All p{adic subanalytic sets are �{measurable, by quanti�er-elimination. So theproblem of closely approximating the measure of a de�nable set is natural. Butsome modi�cations must be made to Koiran's de�nitions, since the values of themeasure are not elements of the model. That is, you cannot just substitute realr for � in j � � �(E) j< � and make sense inside IQp .We propose the followingmodi�cation. We follow the notations of [K95], exceptthat we replace I by V. V is now an additive group, so we avoid the details ofinterpretability. We work in a power ((IQp)t)k as before (replacing p by t forobvious reasons!). The relative frequency 1k �Pki=1 �E(�i) is one of therationals dk 0 � j � k. The least distance between these numbers is 1k , and,ifE � V , �(E) is no more than 1k from some jk . If 1k < �4 , then �(E) is within �4of some unique jk .Now we can just follow Koiran's notation [K95] prior to his Theorem 4. Observethat his argument there works even better in the p{adic case. It just does notgive a formula of the intended language. All we can do is to de�ne (in thelanguage), for each j � k the set ~Sj of �� in ((IQp)p)k whose relative frequency isjk . Choose the unique j such that j jk � �(E) j< �2 . So, as in [K95] �(S jk ; �2 ) >1� e� k�248 , so �( ~Sj) > 1� e� k�248 so by Koiran's argument (for m; k as there) mtranslates of ~Sj cover (V t)k. Conversely, as in [K95], if m translates of ~Sj cover(V t)k ; �( ~Sj) � 1m > e� k�212 . So �(S jk ; �2 ) > e� k�212 as in [K95].So we have proved, with the same notation as in Theorem 8.Theorem 9 If m translates of ~Sj cover (V t)k then j jk � �(E) j< �, and ifj jk � �(E) j< �4 then m translates of ~Sj cover (V t)k.Remarks(a) This has for now even less computational signi�cance than Theorem 7 ,since we don't know how to calculate the VC-dimensions.(b) We don't know any analogue of Lemma 6, though we hope to �nd one.4 Integrals4.1 In the real case, the preceding methods are readily adapted to "express\certain integrals. The relevant integrals are RA fd�P , A a de�nable subset ofIP , and f a de�nable function on A with j f(�x) j� 1, �x 2 A. By splitting8



A into the de�nable sets where f is negative or nonnegative, we reduce to casewhere 0 � f(�x) � 1 on A. Then RA fd�P = �P+1((�x; y) : 0 � y � f(�x) ,�x 2 A),thereby making available all the results of Section 3.Note that de�nable functions are measurable, in o{minimal theories!4.2 The preceding of course covers the case of lengths of de�nable curves ino{minimal theories.4.3 It is however much less clear how to deal with various areas of curvedsurfaces, if these are not surfaces of revolution.4.4 p{adic integrals There is a considerable body of work on rationality ofp {adic Poincare' series, or equivalently rationality in P�s of RA j f(�x) js d�t,where A, f are p {adic de�nable, and s is a real variable. See particularly [De89],[DD88].For rational s one can use the method of 4.1, combined with the ideas of Section3, to get "expressibility\ in the p {adic analytic language. Here there is aninteresting problem of taking account of variation in s. We hope to return tothis in a later publication.5 Randomized Algorithms5.1 For us the main signi�cance of our results [KM95] is that they lead topowerful randomized algorithms in a wide range of geometric problems withPfa�an data. There is a noticeable di�erence between this approach and that of,say, Dyer{Freeze{Kannan [DFK91] who have as data blackboxes for arbitraryconvex bodies, and are concerned with relative approximation. One of theirdesiderata is an algorithm running in time polynomial in p, the dimension ofthe ambient space, and this establishes a point of comparison with our method,where convexity plays no role.We restrict to sets de�nied by quanti�er{free conditions in the language withprimitives for all total Pfa�an functions.5.2 For us a typical � is de�ned by a Boolean combination of conditionsfi(~�; ~w) > 0 as in [KM95], where the fi are polynomials of degree � � in~�; ~w and q many Pfa�an functions occuring in a chain of length q and degree� D.Our bound for VC-dim(�) [KM95], following [K91, p. 91] isq(q � 1) + 2l log � + 2(l + q) log (� + D) + 2l log (l + 1) + (16 + 2 log sl),in which k doesn't occur. Let d be the above estimate. Then if a sample of sizem � max(4� log 2� ; 8d� log 13� ) is chosen, and its relative frequency, for C in �, istested, this is within � of �(C) with probability � 1� �.9



So here one has a randomized algorithm, taking time mp (with blackbox con-vention) giving an absolute error < � with probability � 1 � �. If we unpackd, and so m, we see that the time of the algorithm, say for � = 14 , is (up toabsolute constants):i) linear in p;ii) 1� log(1� ) in �;iii) quadratic in q;iv) l log l in l.This result, which we now summarize, seems to us more than competitive withthose of [DFK91]:Theorem 10 (Notation as above.) There is a randomized algorithmfor absolute� {approximation of a volume of semi-Pfa�an sets, with running time of orderp � q2 l� log l log (1� ).5.3 Analogue for Integrals Since, as remarked in ???, integralsRA f d�p ; where 0 � f � 1are special cases of volumes, there is an obvious analogue of Theorem 10 forintegration of Pfa�an f over semi-Pfa�an A.5.4 Doing better It seems likely that one can use the deep results of [V82,Chapter 7] to get randomized algorithms based on computation of means1nX f(xi)�A(xi) ;instead of via 5.3. In the o{minimal case one has of course the �nitness ofcapacity (cf. [V82]). We have not looked closely at the relative merits of thisand the idea of 5.3.5.5 Surface areas, etc. In contrast to the situation for expressibility, wheretranslation invariance was crucial, the randomized algorithm method worksfor Borel measures on compact � -manifolds where � is a geometric category[DMM94], and in an analogous Pfa�an situation. In the latter case, fast algo-rithms will exist, via [KM95].AcknowledgmentWe thank Martin Dyer, Mark Jerrum, Pascal Koiran, Eduardo Sontag, andAndy Yao for many stimulating discussion.10
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