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1 IntroductionStarting with [MT82], [S83], [M85a] and [M85b] there has been a continuede�ort in the last decade to understand an intrinsic power of randomizationin algebraic decision trees (see also [BKL93], [GK93], [GK94] for some morerecent results). Several algebraic and topological methods which were intro-duced in proving lower bounds for deterministic algebraic decision trees (cf.[SY82], [B83], [BLY92], [GKV95], [Y94]), with the exception of [BKL93], and[GK93], were not yielding lower bounds for the case of randomized decisiontrees. In [M85a] a lower bound has been stated on the depth or randomizedlinear decision trees (randomized algebraic decision trees of degree 1) for thecase of languages being �nte unions of hyperplanes (a gap in the proof of theMain Lemma of [M85a] for the generic case was closed in [GK94]). Our paperprovides the �rst lower bounds on the depth of randomized algebraic deci-sion trees in the case of the languages being �nite unions of hyperplanes aswell as intersections of halfspaces. In this case we provide a new method forproving lower bounds also for deterministic algebraic decision trees withoutmaking use of Milnor's bound and Betti numbers of algebraic varieties. Asan application we derive randomized lower bounds for a number of concreteproblems, among others, Knapsack (
(n2) lower bound), and the ElementNon-distinctness (
(n log n) lower bound).The paper is organized as follows. Section 2 introduces a necessary alge-braic terminology. Section 3 discusses local cases of randomized computationtrees and section 4 formulates our main lower bound theorem, and gives itsapplications to concrete problems.2 PreliminariesWe use standard algebraic and topological notations:Given a polynomial f(x1; : : : ; xn) 2 IR [X1; : : : ;Xn] and a point v 2 IRn.Also, let the vectors a1 = (a1(1); : : : ; a1(n)); : : : ; an = (an(1); : : : ; an(n)) 2 IRnbe given, we de�ne an n � m matrix A = (ai(j)). Introduce new vari-ables Y1; : : : ; Yn and consider a polynomial f (v;a1;:::;an)(Y1; : : : ; Yn) = f(v +A(Y1; : : : ; Yn)), which obviously is the expansion of f with, the origin v andthe coordinates, being the vectors a1; : : : ; an.Denote for brevity g = f (v;a1;:::;an) and de�ne the leading term lm(g) as2



follows: First take the terms of g with the least degree in Yn, then amongthem with the least degree in Yn�1 and so on, till Y1. One could describelm(g) by means of in�nitesimals (cf., e. g., [GV88]).Namely for a real closed �eld F (see e. g. [L65]) we say that an element "transcendental over F is an in�nitesimal (with respect to F) if 0 < " < a forany element 0 < a 2 F. This uniquely induces the order on the �eld F (")of rational functions and further on the real closure gF(") (see [L65]). Nowlet "1 > : : : > "n > 0 be the elements such that "`+1 is in�nitesimal withrespect to the real closed �eld]IR(") for " = ("1; : : : ; "`); 0 � ` < n. Then thesign sgn(g("1; : : : ; "n)) = sgn(lm(g)("1; : : : ; "n)) and on the other hand thisproperty uniquely determines the term lm(g). Actually, one could stick in thearguing below with the real numbers 1 = "(0)0 > "(0)1 > : : : > "(0)n > 0 insteadof "1; : : : ; "n where "(0)`+1 is \considerably smaller" than "(0)` , 0 � l � n � 1.But then one should specify, what does it mean \considerably smaller", andit is more convenient to use in�nitesimals.3 Randomized Computation Trees: LocalCaseRecall (see, e. g., [B83]) that a (deterministic) computation tree (CT) con-tains the nodes of two types: the computation nodes and the branching queryones. At the computation node one can compute a new polynomial by ei-ther addition or multiplication of two previously (on the path of the tree)computed polynomials. One can also replace one or both of the previouslycomputed polynomials by a real constant or by one of the input variablesX1; : : : ;Xn. At the branching node, to which a previously computed poly-nomial f is assigned a CT branches to one of the three sons of the nodeaccording to the sign of f(x1; : : : ; xn). Herewith (x1; : : : ; xn) 2 IRn is aninput vector. Every leaf is labeled by \yes" or \no".A randomized computation tree (RCT) is a collection T = fT�g of CTT� each chosen with its own probability p�, such that P� p� = 1. The depthis de�ned as the maximum of depths. We say that T tests a (semialgebraic)set S � IRn if T gives the correct answer for any point (x1; : : : ; xn) 2 IRnwith the probability > 23 (cf. [M85a]).For a family of polynomials f1; : : : ; fs 2 IR [X1; : : : ;Xn], vectors3



a1; : : : ; an 2 IRn and a point v 2 IRn denote by Var(f1; : : : ; fs) =Var(v;a1;:::;an)(f1; : : : ; fs) (we omit a1; : : : ; an and v from the notation since inthis section they would be �xed) the number of the variables among Y1; : : : ; Ynoccuring in the leading terms lm(f (v;a1;:::;an)1 ); : : : ; lm(f (v;a1;:::;an)s ). For a CTT� denote by Var(T�) the maximum of Var(f1; : : : ; fs), where f1; : : : ; fs arethe testing polynomials along one path in T�, over all the paths of T�. ForRCT T by E(V ar(T )) we denote the expectation of Var(T�), also denoteVar(T ) = max�fVar(T�)gFor the next lemma �x v; a1; : : : ; an.Lemma 1 The depth of T is greater or equal to 12 V ar (T ).Proof. There exists CT T� and a certain path of it with the testingpolynomials f1; : : : ; fs along it, such that Var(f1; : : : ; fs) = Var(T ). Observethat for each 1 � ` � s the polynomials f1; : : : ; f` depend on at most 2`variables among Y1; : : : ; Yn. It is easy to prove be induction in ` noticing thateach polynomial among f1; : : : ; fs could introduce into the game at most 2new variables due to the de�nition of CT. Hence s � 12Var(f1; : : : ; fs). 2Remark For d-degree decision trees T 0 (see the next section one easilyobtains the lower bound 1dVar(T 0).Denote IRn+ = f(x1; : : : ; xn) : xi � 0; 1 � i � ng and IRn0 = (IR n f0g)n.Theorem 1 Any RCT which recognizesa) IRn+,b) IRn0has the depth greater or equal to n=4.Proof. Observe that by the Tarski's transfer principle ([T51]) the sameRCT recognizes the setF n+ = f(x1; : : : ; xn) 2 F n : xi � 0; 1 � i � ng (respectively the setF n0 = (Fnf0g)n) if to consider RCT over the real closure F =]IR("). Belowwe take v = 0, and ai is i-th ort,1 � i � n (see the section 2).Let RCT T (+) recognize IRn+. Consider the points E =("1; : : : ; "n); E(+)i = ("1; : : : ; "i�1;�"i; "i+1; : : : ; "n); 1 � i � n. There existsCT T (+)� for which the output for E is correct (i. e. \yes") and for at leastof n=2 among the points E(+)i ; 1 � i � n the outputs are correct (i. e. \no")as well. Take one of such 1 � i0 � n and consider a path in T (+)� whichprovides the output for the point E. Denote by f1; : : : ; fs the testing polyno-mials along this path. We claim that Xi0 occurs in one of the leading termslm(f1); : : : ; lm(fs). Indeed, otherwise sgn(f`(E(+)i0 )) = sgn(lm(f`(E(+)i0 ))) =4



sgn(lm(f`(E))) = sgn(f`(E)); 1 � ` � s, therefore E(+)i0 satis�es all the testsalong the same path as E, hence the output for E(+)i0 would be \yes", whichcontradicts to the choice of i0. Thus Var(f1; : : : ; fs) � n=2 and lemma 1implies that the depth of T (+) is greater or equal to n=2 that proves thetheorem in case a).In the case b) consider the points E(0)i = ("1; : : : ; "i�1; 0; "i+1; : : : ; "n); 1 �i � n and argue as in the case a), replacing E(+)i by E(0)i ; 1 � i � n: 2Remark For d-degree randomized decision tree one can get the lowerbound 12dn following the proof of the theorem 1 and replacing the referenceto lemma 1 by the remark after lemma 1.4 Randomized Decision Trees: Global Caseand ApplicationsRecall (see e. g. [B83]) that to every node of a d-decision tree (d - DT) atesting polynomial of degree at most d is assigned. Similar as in the section1 one de�nes a randomized d-decision tree (d - RDT), see e. g. [M85a].Let H1; : : : ;Hm � IRn be hyperplanes. We consider recognizing byd - RDT of one of two following sets; either the complement to the ar-rangement S = IRn n S1�i�mHi (cf. [M85a], [GK94]) or the polyhedronP = T1�i�mfHi � 0g, (cf. [GKV95]), although the main result could beextended to more general sets constructed by means of the hyperplanes.Observe that in [BKL93] a RCT is exhibited which recognizes in 0(n) timethe set n(x1; : : : ; xn; y1; : : : ; yn)�IR2n , where (y1; : : : ; yn) is a permutation of(x1; : : : ; xn)g. This shows that the results of this section ascertained for RDTcan not be directly extended to RCT.Under a k-face Lk of S (cf [M85a]) we mean k-dimensional plane of theform \Hi for a certain subset I � f1; : : : ;mg. Throughout this section we�x the following unique representation of Lk as an intersection. Take themaximal possible in�k such that Lk � Hin�k . Then take the next maxi-mal possible in�k�1 such that Lk � Hin�k�1 and dim�Hin�k�1 THin�k� <dimHin�k , obviously in�k�1 < in�k. If il+1 < il+2 < : : : < in�k are alreadyyielded, where l � 1, take the maximal possible il such that Lk � Hiland dim�Hil THil+1 T : : :THin�k� < dim�Hil+1 T : : :THin�k�, obviouslyil < il+1. Similarly we de�ne a k-face of the polyhedron P .5



Now we need an extension of V ar function used in the section 1 from thepoints (so, 0-faces), to k-faces. The next consideration concerns both casesof the sets S and P .Let a point vLk belong to a k-face Lk de�ned by an intersectionHi1 T : : :THin�k ; i1 < : : : < in�k as yielded above, and vLk does not be-long to the faces of smaller dimensions. We choose a coordinate sys-tem (Z1; : : : ; Zk; Y1; : : : ; Yn�k) in a neighbourhood of vLk taking the lastn � k orts orthogonal to the hyperplanes Hi1 ; : : :Hin�k respectively, andthe �rst k orts in Lk in an arbitrary way. Expanding each polynomialf�IR[X1; : : :Xn] in the variables Z1; : : : ; Zk; Y1; : : : ; Yn�k we de�ne its leadingterm (cf. section 1) lm(v;Z1;:::;Zk ;Y1;:::;Yn�k)(f) considering f as a polynomialfrom IR(Z1; : : : ; Zk)[Y1; : : : ; Yn�k ] i. e. �rst take the terms with the leastdegree in Yn�k , after that among them with the least degree in Yn�k�1 andso on till the variable Y1.Notice that lm(g1g2) = lm(g1)lm(g2) for any g1; g2�IR[X1; : : : ;Xn](we omit here the indices v; Z1; : : : ; Yn�k). For a family of polynomialsf1; : : : ; fs�IR[X1; : : : ;Xn] we de�ne var(v;Z1;:::;Zk;Y1;:::;Yn�k)k (f1; : : : ; fs) as thenumber of all variables among Y1; : : : ; Yn�k which occur in at least one ofthe terms lm(v;Z1;:::;Zk ;Y1;:::;Yn�k)(f`); 1 � ` � s (cf. section 1). We usuallyomit Z1; : : : ; Zk; Y1; : : : ; Yn�k in the notations if it does not lead to the am-biguity.Now we �x 0 � k < n and on any k-face L = Lk we �x a point vL, ateach point vL �x a coordinate system as above. Suppose, a d-decision treeT 0 is given which recognizes either the complement S to an arrangement orP (cf.above). For each point vL we de�ne var(vL)(T 0) asmaxf1;:::;fsfvar(vL)(f1; : : : ; fs)g where (f1; : : : ; fs) are the testing polyno-mials along a path of T 0, and the maximum is taken over all paths.Lemma 2 Assume that for some c > 0 there are at least M k-facesL such that var(vL)(T 0) � c(n � k). Then the depth of T 0 is greater than
((n � k) logm), provided that M > m(n�k)(1�c+c0)d(c+c0)(n�k) for a certainc0 > 0.Proof. To every k-face L de�ned by an intersectionHi1 T : : :THin�k ; i1 <: : : < in�k, see above, with var(vL)(T 0) � c(n � k), we correspond apath in T 0 with the testing polynomials f1; : : : ; fs for which var(vL)(T 0) =var(vL)(f1; : : : ; fs).By a ag of L we mean the sequence of imbedded planes6



Hin�k � Hin�k THin�k�1 � Hin�k THin�k�1 THin�k�2 � : : : �THin�k T : : :THi1where i1 < : : : < in�k were yielded above. Our purpose is to label someof these planes in an appropriate way. As a result , a labeled ag would beattached to L. Morever, for a �xed path in T 0 with the testing polynimialsf1; : : : ; fs we organize the labeled ags attached to all k-faces L which cor-respond to this path as a regular tree T = T (f1; : : : ; fs) with all the pathsof the same length n� k.We construct the tree T and thereby the labeled ags by induction on thelevel . The base of induction. Take L which corresponds to the �xed path(we utilize the introduced above notations for the coordinates in a neigh-bourhood of vL). If Yn�k (or in other words, hyperplane Hin�k ) divides oneof f1; : : : ; fs we construct a vertex, being a son of the root of the tree T ,mark it with the hyperplane Hin�k and label. If Yn�k does not divide any off1; : : : ; fs, we do not label this vertex of T . To complete the construction ofthe �rst level of T , we represent the polynomial fj = ~fjY mjn�kLmj;1Hr1 : : :Lmj;pHrp ,1 � j � s as a product for maximal possible mj;mj;1; : : : ;mj;p wherein�k < r1 < : : : < rp and LHr1 ; : : : ;LHrp are all linear polynomials deter-mining hyperplanes Hr1 ; : : : ;Hrp which divide fj with the indices r1; : : : ; rpgreater than in�k. We assign to the constructed vertex the polynomialsf (1)j (Z1; : : : ; Zk; Y1; : : : ; Yn�k�1) = ffj(Z1; : : : ; Zk; Y1; : : : ; Yn�k�1; 0), 1 � j �s. One could view the polynomial f (1)j as being de�ned on the hyperplaneHin�k .Observe that the linear polynomials LHr1 : : :LHrp do not vanish on L(due to the choice of in�k) and therefore these linear polynomials do notvanish at vL, hence the expansion in the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�kof LHrl , 1 � l � p contains nonzero constant term which is thereby its leadingterm, thus lm(vL)(fj) coincides with lm(vL)(ffjY mjn�k) up to a constant factor.Furthermore, lm(vL)(ffjY mjn�k) = lm(vL)(ffj)Y mjn�k = lm(vL)(f (1)j )Y mjn�k ,1 � j � s,and so the leading term of the new polynomial f (1)j up to a constant factor isobtained from the leading term of the former polynomial fj by dividing onY mjn�k, 1 � j � s. We refer to this property as the maintenance of the leadingterm. In particular, if the vertex of T under consideration is not labeled, theleading term of all the polynomials change only up to constant factors. IfYn�k occurs in one of lm(vL)(fj), 1 � j � s then the vertex is labeled.Notice that all the k-faces with the same �rst hyperplane Hin�k in their7



ags, correspond to the constructed vertex ( marked with Hin�k ). Remarkthat the polynomials f (1)j , 1 � j � s do not depend on a particular k-face,but still we expand them in the coordinates which depend on L (so, vL).Now suppose by induction that ` < n levels of the tree T are alreadyconstructed. Consider any vertex w of T at `-th level. To the vertex w leadsto path (partially labeled), whose vertices are marked successively by thebeginning elements of a agHin�k � Hin�k THin�k�1 � : : : � Hin�k T : : :THin�k�`+1 .Finally, the polynomials f (`)j ; 1 � j � s are assigned to the vertex w. Onecould look at f (`)j ; 1 � j � s as a polynomial restricted on (n� `)-dimensionplane H = Hin�k T : : :THin�k�`+1 .If this is the beginning of the ag of a k-face L (we still consider L to keepthe notations), then we can regard f (`)j (Z1; : : : ; Zk; Y1; : : : ; Yn�k�`) ; 1 � j � sas the polynomials in the �xed coordinates in the neighbourhood of vL. Asabove we construct a new vertex of T of the level (`+1), being a son in T ofthe vertex under consideration, and mark it with the (n� `�1)-dimensionalplane Hin�k T : : :THin�k�`+1 THin�k�` = H THin�k�` .Represent f (`)j = ~f (`)j Y qjn�k�`Lqj;1HTHt1 : : :Lqj;�HTHt� ; 1 � j � s for themaximal possible qj; qj;1; : : : ; qj;� where in�k�` < t1 < : : : < t� andLHTHt1 ; : : : ;LHTHt� are all the linear polynomials in the plane H deter-mining hyperplanes H THt1; : : : ;H THt� (in H) which divide f (`)j with theindices t1; : : : ; t� greater than in�k�`. We assign to the constructed vertex thepolynomials f (`+1)j = ~f (`)j (Z1; : : : ; Zk; Y1; : : : ; Yn�k�`�1; 0) ; 1 � j � s. Onecould view the polynomial f (`+1)j as being de�ned on the plane H THin�k�`.If qj � 1 for at least one 1 � j � s then we label the constructedvertex. As in the base of the induction we observe that the linear polyno-mials LHTHt1 ; : : : ;LHTHt� do not vanish on L (due to the choice of in�k�l)and therefore these linear polynomials do not vanish at vL, hence the ex-pansion in the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k�l of LHTHt� , 1 � � � �contains nonzero constant term which is thereby its leading term (with re-spect to the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k�`). Thus, lm(vL)f (`)j co-incides with lm(vL) � ef (l)j Y qjn�k�l� up to a constant factor. Furthermore,lm(vL) � ~f (`)j Y qjn�k�`� = lm(vL) � ~f (`)j � � Y qjn�k�` = lm(vL) �f (`+1)j �Y qjn�k�`; 1 � j �s. So, the leading term of the new polynomial f (`+1)j up to a constant factor8



is obtained from the leading term of the former polynomial f (`)j by dividingon Y qjn�k�`; 1 � j � s. Thus, we have ascertained the maintenance propertyof the leading terms (see the base of induction). Also the vertex is labeled ifand only if Yn�k�` occurs in one of lm(vL) �f (`)j � ; 1 � j � s.This completes the inductive construction of T . Observe that to eachpath in T corresponds exactly one k-face represented by a ag marked on thepath. Vice versa, by the construction of T every k-face L which correspondsto the �xed path of d - DT T 0 with the testing polynomials f1; : : : ; fs, appearsin some leaf of T .Now let us estimate the number of leaves in T . By the assumption ofthe lemma and due to the property of the maintenance of the leading termson each path of T at least c(n � k) vertices are labeled. Observe that inthe inductive step of the described construction of T the constructed ver-tex (being a son of the vertex w of the level `; we utilize the introducedabove notations) which corresponds to the hyperplane H THin�k�` (in H) islabeled if and only if the linear polynomial LHTHin�k�` divides the productQ1�j�s f (`)j . Let u1 < : : : < up be all the indices such that LHTHuq dividesthe product Q1�j�s f (`)j ; 1 � q � p. By the observed above each labeled sonof the vertex w is marked with some Huq0 ; 1 � q0 � p. Since in the construc-tion of f (`+1)j ; 1 � j � s we divided by LHTHuq for all q > q0, we concludethat the degree deg �Q1�j�s f (`+1)j � � deg �Q1�j�s f (`)j � � (p� q0 + 1). No-tice that the polynomials f (`+1)j ; 1 � j � s depend actually on the particularson of the vertex w, although we do not reect this in the notations.Besides the labeled sons, any vertex in T could have at most m unlabeledsons (in fact, each unlabeled son is marked with some Hu with u < in�k�`+1,so there are less than m sons in general, but we stick with a rough bound mwhich su�ces).To estimate the number of leaves in T denote byM(R;Q;D) the maximalpossible number of leaves in a regular tree (actually, we could stick withsubtrees of T , so they are partially labeled) with the length of any path equalto R, with at most Q unlabeled vertices on any path and with a polynomialof degree less or equal to D assigned to any vertex (in T we assign thepolynomial Q1�j�s f (`)j to the vertex w, see the construction). Assume w � ` �o � g� that Q � R (if Q > R then set M(R;Q;D) = 0). Considering sucha tree and its subtrees with the roots being the sons of the root of the tree9



we get the following inductive inequality M(R;Q;D) � m �M(R � 1; Q �1;D) +P1�p�D M(R � 1; Q;D � p) (provided that R > Q, when R = Q wehave M(Q;Q;D) � m �M(Q� 1; Q� 1;D) where the �rst item in the rightside relates the unlabeled sons of the root and the second item relates thelabeled sons (see the bound on deg �Q1�j�s f (`+1)j �). >From this inequalitywe get a bound (by induction on R) :M(R;Q;D) � mQ DR�Q(R �Q)! RQ!:Indeed, the right side of the inequality by inductive hypothesis does not ex-ceed (provided that R > Q, when R = Q we have M(Q;Q;D) � mQ byinduction on Q)mQ DR�Q(R�Q)! R � 1Q� 1!+ X0�p�D�1mQ pR�Q�1(R�Q� 1)! R � 1Q ! �mQ0@ DR�Q(R�Q)! R� 1Q� 1!+  R� 1Q ! 1(R �Q� 1)! DR�QR �Q1A = mQ DR�Q(R�Q)! RQ!which was to be shown.Substituting nowR = n� k;Q = (n� k)(1 � c);D = deg( Y1�j�s fj) � sd;we obtain a bound m(n�k)(1�c) (sd)c(n�k)(c(n� k))!2n�kfor the number of leaves in T .So far, we've considered one path of the d-decision tree T 0 (with thetesting polynomials f1; : : : ; fs along this path) and proved that to this pathat most m(n�k)(1�c) sdc(n� k)!c(n�k)2c1(n�k)10



k-faces L for an appropriate c1 > 0 could correspond. Denote by t the depthof T 0 (thus, T 0 has at most 3t paths). Since each k-face corresponds to acertain path of T 0 (see the beginning of the proof of the lemma), we concludethat M � 3tm(n�k)(1�c) tdc(n� k)!c(n�k)2c1(n�k)which implies the lower bound 
((n � k) logm), taking into account theassumptions of the lemma. 2Now we apply lemma 2 to obtain lower bound on the depth of d - RDT T ,which recognizes either the complement S to an arrangement or a polyhedronP . Still we �x 0 � k = c1n < n, c1 > 0. Take a k-face L. Then atany of its points v we can choose the coordinates Z1; : : : ; Zk; Y1; : : : ; Yn�k.For any polynomial f 2 IR[X1; : : : ;Xn] considering it as an element of thering IR(Z1; : : : ; Zk)[Y1; : : : ; Yn�k] (cf. above) we take its leading term in thevariables Y1; : : : ; Yn�k letlm(v)(f) = efY q11 � : : : �Y qn�kn�k ;where ef 2 IR[Z1; : : : ; Zk]. If we take any other point v1 2 L then the leadingterm lm(v1)(f) = ef (v1)Y q11 � : : : �Y qn�kn�k with respect to the coordinates in aneighbourhood of v1. In particular, if the value of ef at v1 is not zero thenef (v1) contains a constant nonzero term, then the leading term of f withrespect to all variables eZ1; : : : ; eZk; Y1; : : : ; Yn�k in a neighbourhood of v1 isY q11 � : : : �Y qn�kn�k . Thus, the variety of points in L in which the leading term off vanishes, has the dimension less than k.For each k-face L choose a point vL�L such that for any testing polyno-mial from any of the d - DT T� from the collection determining d - RDT Tits leading term does not vanish at vL. Choose now the coordinates in theneighbourhood of vL as described above: Z1; : : : ; Zk; Y1; : : : ; Yn�k, in partic-ular, the coordinates of vL are all zeroes.Similar to the section 1 take a point EL = (0; : : : ; 0; "1; : : : ; "n�k)and in the case of the polyhedron P take the points E(+)L;i =(0; : : : ; 0; "1; : : : ; "i�1;�"i; "i+1; : : : ; "n�k); 1 � i � n � k. The point EL 211



P;E(+)L;i 62 P; 1 � i � n � k. Using the theorem on the diminishing of theerror of d - RDT at the expence of the increasing the depth [M85a], we canassume w:l:o:g: that for arbitrary �xed in advance c < 1 the probability thatthe output of T for the point EL is correct (so, "yes") and the outputs forat least c(n � k) points among E(+)L;i ; 1 � i � n � k are correct (so, "no"), isgreater than 23 .In the case of the complement S to arrangement we consider the pointsE(0)L;i = (0; : : : ; 0; "1; : : : ; "i�1; 0; "i+1; : : : ; "n�k); 1 � i � n � k (cf. section1). The same arguing as in the previous paragraph holds for E(0)L;i instead ofE(+)L;i ; 1 � i � n� k.Let the set P (resp. S) contain M1 k-faces. Because the describedproperty for the points EL; E(+)L;i (resp. Ei; E(0)L;i) is valid for all k-faces L,we deduce that there exists d - DT T� for which this property holds forat least 12M1 of k-faces. Take any k-face L among these 12M1 and a path(which is unique) of T� along which T� runs for the (input) point EL. Letf1; : : : ; fs be the testing polynomials along this path. We claim that for each1 � i � n � k such that the output of T� for E(+)L;i (resp. EL;i(0)) is correct,the variable Yi occurs in one of the leading terms lm(vL)(fj); 1 � j � s(in the notations of lemma 2 this means that Var(vL)(T�) � c(n � k)).Indeed, otherwise, arguing as in the proof of the theorem 1, we get thatsgn(fj(E(�)L;i)) = sgn(lm(vL)(fj(E(�)L;i))) = sgn(lm(vL)(fj(EL))) = sgn(fj(EL))where � stands for either + or 0, respectively, taking into account the choiceof the points vL.Finally, we apply lemma 2 to the set of M = 12M1 k-faces and obtain thefollowing theorem.Theorem 2 If d-RDT T recognizes either the complement to an arrange-ment or a polyhedron generated bym � n hyperplanes, which hasM k-faces,for some k = nc1; c1 < 1, then the depth of T is greater than 
(n logm),provided that M > 
(m(n�k)(1�c+c0)d(n�k)(c+c0)) for certain c0 > 0; 0 < c < 1.Corollary 1 When d = const the statement of the theorem holds, pro-vided that M > 
(mnc0) for a certain c0 > 0.To prove the corollary notice that c could be taken as close to 1 as desired.As a consequence we get 
(n2) lower bound for the depth of d - RDT,recognizing the knapsack (cf. [M85a]), when d = const. Similarly, for thedistinctness problem f(x1; : : : ; xn) : xi 6= xj; i 6= jg 2 IRn we get 
(n log n)lower bound (cf. [M85a]), when d = const.12



Corollary 2 For degree d �xed:(a) Lower bound for the depth of a d{RDT recognizing the knapsack problemis 
(n2).(b) Lower bound for the depth of a d-RDT recognizing Element Non-Distinctness Problem is 
(n log n).5 Conclusion and Open ProblemsWe have proven that the known counting lower bounds for DTs carry overto RDTs for sets being �nite unions of hyperplanes and intersections of half-spaces. Two important questions remain open:� Does our lower bound for RDTs hold also for sets of other structure,e. g. �nite languages?Using the method of Example 2 in [BKL93] on polynomial zero-tests wecan construct a �nite set of n! points (permutations) in IRn, for whichan RDT with degree n (cf. also the restriction on M in Theorem 2)needs a constant time. For Randomized Computation Trees (RCTs) theabove algorithm needs depth O(n) and Ben-Or's ([B83]) lower bound
(n log n) holds for deterministic CTs. Our lower bound does not givenontrivial bounds for RDTs of degree m for this problem.� Is there some analog of Theorem 2 also possible for randomized com-putation trees (RCTs) ?References[B83] M. Ben-Or, Lower Bounds for Algebraic Computation Trees,Proc. 15th ACM STOC (1983), pp. 80{86.[BLY92] A. Bj�orner, L. Lovasz and A. Yao, Linear Decision Trees: VolumeEstimates and Topological Bounds, Proc. 24th ACM STOC (1992),pp. 170{177.[BKL93] P. Buergisser, M. Karpinski, T. Lickteig, On Randomized AlgebraicTest Complexity, J. of Complexity 9 (1993), pp. 231-251.13
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