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1 IntroductionThe MAX Problem of �nding maximum of n real numbers was studied exten-sively in the literature over the years (cf., e.g., [K73], [R72], [TY93]). M. Rabin[R72] has established the sharp lower bound n� 1 on the depth of any algebraicdecision tree solving this problem (see also [MPR94]). Surprisingly, H. Ting andA. Yao [TY93] have proved recentlyO((log n)2) upper bound on the depth of ran-domized algebraic decision algorithms for computing the maximum of n distinctreal numbers. The problem of a lower bound on the size of algebraic decision treesremained open since Rabin's result [R72]. Note that the following constructionexcludes the possibility of applying Rabin's method [R72] for the lower boundson the size of algebraic decision trees (the method yields n � 1 lower bound onthe length of any path from the root to the leaf only (!) for linear decision treesor decision trees with median tests [Y89]). Let us take an algebraic decision treewith the �rst test being p = x1� x22 � � � � � x2n � 1 : 0. Then the positive branch(p(x) > 0) ends in a leaf (is of length 1) with the output x1 = MAX. This'counting' di�culty has led to the situation that the only known lower boundon the size of algebraic decision trees (and this even for trees with quadraticpolynomials) for solving the MAX Problem was n� 1.The size of an algebraic decision tree characterizes its algebraic tree-programcomplexity, and in the case of linear and median-tests decision trees it playedan important role in establishing lower bounds for various selection problems (cf.[FG79], [Y89]) with MAX being their generic subproblem. As mentioned beforethe only known size lower bound on algebraic decision trees for the MAX Problemwas a linear one.In this paper we prove for the �rst time an exponential lower bound on the sizeof algebraic decision trees solving the MAX Problem. This gives also exponentiallower bounds for other selection problems. The method of our proof introduces2



a new lower bound technique which can be of independent interest.We consider in the paper standard ternary decision trees (cf. [SY82]) branch-ing according to the signs >;=; <. Notice that for binary decision trees stud-ied in [R72] (branching according to the signs �; >) the upper size boundn � 1 for the MAX= Problem is obvious, namely the tree successively tests,X1 � X2; X1 � X3; : : : ; X1 � Xn�1. Moreover, this construction works inthe same way for any polyhedron given by inequalities a1X � b1; : : : ; akX � bk.The corresponding binary tree has size k (and depth k as well, compare this withthe lower bound on the depth (logN) of [GKV95] where N is the number of all thefaces of a polyhedron). Observe also that if one studies the well-known problemof membership to a union of hyperplanes S1�i�k aiX = bi, then there is a ternary(as well as binary) algebraic decision tree of the size k. Namely, the tree tests(a1X � b1)2, then, if the sign is >, tests (a2X � b2)2, etc. Notice that this tree isnonlinear.Still it remains an open question whether there exists a binary algebraic de-cision tree with a subexponential size for solving the MAX Problem.2 Size of Algebraic Decision Trees for the MAXProblemAn Algebraic Decision Tree (ADT) T of degree d and dimension n for MAXProblem is a ternary tree with inner nodes being query nodes of polynomials ofdegree at most d and branching according to the sign. The input of the treeis an n-tupel (x1; : : : ; xn) 2 IRn, and each leaf of the tree is either labeled bya certain index i 2 f1; : : : ; ng or by the labels "yes"or "no". We say that thedecision tree T solves MAX (MAX=) Problem in dimension n if for an arbi-trary vector (x1; : : : ; xn) 2 IRn the path in T branching according to this vector3



terminates in a leaf labeled by i ("yes") if and only if xi = maxfx1; : : : ; xng(x1 = maxfx1; : : : ; xng, respectively).By the size (resp. depth) of T we mean the number of its nodes (resp. themaximum length of its paths). It is well-known [R72] that the depth of an ADTfor the MAX Problem is at least n� 1. This bound is optimal as one can easilyconstruct T with the depth n� 1 and size 2n�1.We prove the exponential lower bound on the size.Theorem. Any decision tree of degree d for MAX (MAX=) problem has thesize at least 2c0(d)n where c0(d) > 0 depends only on d.The proof will be conducted for the special case of the MAX= Problem.For any f1g � I � f1; : : : ; ng consider the following ('wall') set MI =f(x1; : : : ; xn) : xi > xj for any i 2 I; j =2 I and xi1 = xi2 for any i1; i2 2 Ig.Denote the plane PI = f(x1; : : : ; xn) : xi1 = xi2 for any i1; i2 2 Ig. ThendimPI = n� jIj+ 1 and MI is an open polyhedron in PI . Note that Pf1g = IRnand all PI are pairwise distinct. Obviously, the sets MI are pairwise disjoint andform a partition of the set x1 = maxfx1; : : : ; xng with 2n�1 elements. Observethat the Euclidian closure MI has a non-empty intersection with MJ if and onlyif I � J . Moreover, if MI TMJ 6= ; then MI �MJ . Thus, fMIg form a cellulardecomposition of the set x1 = maxfx1; : : : ; xng and the boundary @MI = SJ�I MJin the plane PI .The method of our proof is based on the analysis of a "touching frequency"of the sets computed along the branches of a tree T with the 'wall sets' MI .For a branch B of the tree T let the testing polynomials together with theirsigns along this branch be f1 = � � � = fk = 0; g1 > 0; : : : ; gl > 0. By WB � IRndenote the semialgebraic set ff1 = � � � = fk = 0; g1 > 0; : : : ; gl > 0g. We saythat WB touches MI if dim(WB TMI) = dimMI = n � jIj+ 1. Observe that ifWB touches MI then the label of B is \yes". Since for every MI there exists B4



such that WB touches MI then the theorem will follow from the following MainLemma.Main Lemma. For any branch B of T , WB can touch at most 2c(d)n sets MIfor some c(d) < 1 depending only on d.Remark. c(d) is determined recursively as follows. c(1) = 12 , then c(d) =c(d� 1) + 1�c(d�1)1+(log2(2d=2d�1)=d).We proceed to the proof of the Main Lemma.Proposition 1. WB cannot touch MI ;MJ such that I �6=J .Proof. Assume the contrary. Let fj1; : : : ; jn�jJ jg = f1; : : : ; ng n J . For anypolynomial f 2 IR[X1; : : : ;Xn] denote f (J)(X1;Xj1 ; : : : ;Xjn�jJj ) = f jXj=X1;j2J 2IR[X1;Xj1; : : : ;Xjn�jJj ]. One could consider f (J) as the restriction of f on theplane PJ with the coordinates X1;Xj1 ; : : : ;Xjn�jJj , where X1 = Xj for each j 2 J .Then f (J)1 ; : : : ; f (J)k vanish identically because these polynomials vanish on thesemialgebraic set WB TMJ of the full dimension in the plane PJ .By assumption there exists a point x 2MI such that g1(x) > 0; : : : ; g`(x) > 0.There exists a ball Bx(r) with a radius r > 0 centered in x such that g1; : : : ; glare positive everywhere on Bx(r). As x 2 MI � @MJ there exists a pointx0 2 (Bx(r)TPJ ) nMJ . The decision tree T being applied to x0 goes through thebranch B, since x0 = (x01; : : : ; x0n) 2 WB. We get a contradiction with that thelabel of B is \yes" since max(x01; : : : ; x0n) is not x01 as x0 =2 MJ . Proposition isproved. 2Remark. In fact we proved a stronger statement. Namely, if WB touchesMJ then WB TMI = ; for any I �6=J .Proposition 2. If WB touches MI then I is a minimal (with respect to theinclusion) among the subsets f1g � J � f1; : : : ; ng such that f (J)1 ; : : : ; f (J)k vanish5



identically.Proof. Firstly, as we have seen in the proof of Proposition 1 that f (I)1 ; : : : ; f (I)kvanish identically. Secondly, assume that J �6=I such that f (J)1 ; : : : ; f (J)k vanishidentically. As WB touches MI , there exists a point x 2 MI TWB, then g1(x) >0; : : : ; gl(x) > 0. Then g1; : : : ; gl are positive everywhere in a ball Bx(r) for asuitable r > 0. Since x 2MI � @MJ , the open set Bx(r)TMJ in PJ is nonempty,and Bx(r)TMJ � WB by the assumption. Thus, WB touches MJ and we get acontradiction with the Proposition 1, which proves the proposition. 2The Main Lemma would follow from the Proposition 2 and the followingproposition.Proposition 3. For any polynomials h1; : : : ; hm 2 IR[X1; : : : ;Xn] with de-grees deg(hi) � d the number of sets minimal (with respect to the inclusion)among the subsets f1g � I � f1; : : : ; ng such that h(I)1 ; : : : ; h(I)m vanish identi-cally, does not exceed 2c(d)n.We prove the proposition by induction on d. For d = 1, each hi =P1�j�n �ijXj + �i; 1 � i � m is a linear polynomial. Let f1g � I � f1; : : : ; ngbe a minimal set for which h(I)1 ; : : : ; h(I)m vanish identically. Then �i = 0 and Icontains all j such that �ij 6= 0 and �nally P1�j�n �ij = 0. Thus, I consists off1g and all j 2 f1; : : : ; ng for which there exists 1 � i � m such that �ij 6= 0,provided that �i = 0;P1�j�n �ij = 0 for every 1 � i � m.Therefore, I is unique and we can take as c(1) any constant 1 > c(1) > 0. Forde�niteness, put c(1) = 12.Inductive step. Consider two cases. Denote 0 < c = 1�c(d�1)1+(log2( 2d2d�1 )=d) < 1 �c(d� 1).1. In the �rst case there does NOT exist a cover set V � fX2; : : : ;Xng of vari-ables of size jV j � cn; namely, such a set that each monomialX�11 ; : : : ;X�nn6



occurring in at least one of the polynomials h1; : : : ; hm contains a variableeither from V or X1.Let us construct sequentially a set fb1; b2; : : : ; blg of monomials occurring inat least one of h1; : : : ; hm such that they are pairwise disjoint in the variablesand contain only the variables from fX2; : : : ;Xng (so, do not contain X1)while it is possible. Suppose that it is impossible to continue with b1; : : : ; blsatisfying the latter conditions. Then b1; : : : ; bl contain at most dl variablesamong fX2; : : : ;Xng, they constitute the cover set. Hence dl � cn.Observe that for any set f1g � I � f1; : : : ; ng such that h(I)1 ; : : : ; h(I)mvanish identically the set fXi; i 2 Ig should have a common variable witheach monomial b1; : : : ; bl. Therefore, the number of all such sets I does notexceed 2n  2d � 12d !l � 2n  2d � 12d ! cnd (1)2. In the second case such cover set V does exist. Consider any minimalf1g � I such that h(I)1 ; : : : ; h(I)m vanish identically. Denote by I0; I1 suchsets that fXi; i 2 I0g = V n fXi; i 2 Ig; fXi; i 2 I1g = V \ fXi; i 2 Ig. Weuniquely expand h(I1[f1g)j = X1hj;X1 +P=(���i ���)(Qi2I0 Xii )Pj; ; 1 � i � m,where the polynomials Pj;; hj;X1 are in the variables Xi =2 V . Note thatPj; ; hj;X1 depend on I0. Since V is a cover set, degPj; � d � 1 for eachmultiindex , obviously deg(hj;X1) � d� 1.Since h(I)j vanishes identically, the polynomials P (InI1)j; also vanish identi-cally, and furthermore, the polynomial h(InI1)j;X1 vanishes identically as well.Thus, I n I1 is a minimal set for which the polynomials P (InI1)j; ; h(InI1)j;X1 , forall 1 � j � m, vanish identically.By inductive hypothesis there are at most 2c(d�1)n such sets I n I1.Since there are at most 2cn possibilities for the sets I0, in total we have at7
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