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Abstract

In this paper we prove that rational functions can be reconstructed using
a polynomial number of black box evaluations. We consider two models:
oracles with exact computations and modular oracles depending on the sizes

of coeflicients.

*St. Petersburg Institute for Informatics and Automation of the Academy of Sciences of Russia
and Department of Computer Science, University of Bonn, 53117 Bonn. Research supported by
the Volkswagen—Stiftung, Program on Computational Complexity.

tDepartment of Computer Science, University of Bonn, 53117 Bonn and International Com-

puter Science Institute, Berkeley, California.



Introduction

In the paper an algorithm is described which, given a black box to evaluate a ¢—
sparse n—variable rational function (a quotient of two t—sparse polynomials) f with
rational coefficients, constructs the rational coefficients and integer exponents of a
t-sparse representations of f using 2(¢? —¢+ 1) black box evaluations, and the poly-
nomial in ¢*, » number of arithmetical operations and evaluations of the logarithm.
Herewith each evaluation of the logarithm requires O(nlogd) arithmetical opera-
tions where d is an upper bound for the degree of the numerator and denominator
of f. Previously known result [4] required (1"! logd)®(") black box evaluations and

arithmetical operations.

We consider also the modular black box oracle which computes for different
primes p the reductions modp of values of f in prescribed points, c.f. [1]. Let
the length of numerators and denominators of rational coefficients of f in some
t—sparse representation of f be less than M and d be an upper bound for the
degree of the numerator and denominator of f in this representation. We suggest
an algorithm which using this oracle constructs the coefficients and exponents from
a t—sparse representation of f within the time polynomial in ¢!, M, n, logd using

the polynomial in ¢, M| n, logd number of black box evaluations.

The last model, c.f. [1], affords to avoid the difficulties arising in other models
considered earlier [5], [6], [7] and consisting in the fact that the exact rational values
of sparse rational functions even in small integer points like 2,3 ... have exponential

length in the size of input.

Let @ be algebraic closure of the field of rational ©. Let for the rational func-
tion f € Q(X) there exist (¢;,ts)-sparse representation f = (D aea @aaX®)/(1 +
ZﬁeB by XP) where an,bs € Q; A, B CZ and #A =t,, #B =15 — 1,0 ¢ B. We
call this representation uniquely defined by its exponents if it uniquely defined by
the sets of exponents A, B, see Section 1 and Section 2 for the case of many variables.
Each representation of the rational function f which is minimally (¢1,%2)-sparse, see
[4], is uniquely defined by its exponents. Factually we construct in our algorithms
all the (t1,t2)-sparse representations of f uniquely defined by their exponents for
max{t;, 12} < t. They correspond to the isolated solutions of some systems of al-
gebraic equations and inequalities over the field of real numbers. Our reduction
from multivariable case to one variable is easier for (¢1,%2)-sparse representations
uniquely defined by their exponents than the reduction of [4] for representation

which are minimally (¢1,¢2)-sparse.

Complexity issues for {—sparse polynomial and rational functions have been dealt

in several papers. We refer for the bibliography to [4].
In this paper for an integer a we define the bitwise length
l(a) = min{s € Z : |a] < 2°7'},

and if ¢ € Q then {(q) = {(q1) + 1(g2) where ¢ = ¢1/q2; q1,92 € Z, GCD(q1,q2) = 1.



1 Interpolation of sparse rational functions in one

variable

Let 1 < ty,t; € Z. The rational function f € Q(X) is called (t1,ts)-sparse, c.f. [4],

if 1t is represented in a form

_ 219’91 a; X
L4230 i, 0 X7

where a;,b; € Q; «;,3; € Z, b; # 0 for all i,j and a;, # a;,, B;, # B, for all
i1 # 42, j1 # jo. We shall suppose that max; ;{|a;], 5]} < d.

f

(1)

So if t = max{ty,12} then f is {—sparse in the sense of the Introduction.

We shall show below, see Lemma 2 that if f € Q(X) and f is (t1,%2)-sparse
then there exists representation (1) for f such that a;,b; € Q for all 4, j.

Now we give some definitions. Representation (1) of the rational function f
will be called uniquely defined by its exponents if the coefficients a;, 1 < i < ty;
b;, 1 < j < t3 — 1, are uniquely determined by the exponents oy, 1 < ¢ < ty;
B, 1 <j <ty —1,1e. the equality

_ 219’91 a; X
L3y, 05X

f (2)

where af, b € Q entails that af = a;, by = b; for all 7 and j. The (t;,?5)-sparse
representation (1) of f is called minimal [4] if there exists no (¢; — 1,¢5)-sparse or

(t1,t2 — 1)—sparse representation of f.

Note that if (1) is minimal then it is uniquely defined by its exponents. Indeed,

if there exists representation (2) which is different from (1) then

F= 219’91(@;’ —a;) X"
Doi<i<e— (b5 — b;) X P

This contradicts to the minimality of (1) and proves our assertion.

Note that for every representation (1) there exists representation (2) such that
(2) is (m1,7m2)-sparse, 1 < 7 < 1,1 < 7 < t9 and (2) is uniquely defined by
its exponents. Indeed, order the pairs of integers (7, 7) lexicographically, i.e.
(r1,m2) < (7], 7)) iff ;. <7 or 7 =7 and 72 < 75. Let (11, 72) be the minimal pair
for which there exists representation (2) which is (71, m3)-sparse. This (11, T2)-sparse

representation is uniquely defined by its exponents and our assertion is proved.

Let a black box oracle be given which computes the values of f in rational points.
If ¢ € Q then the oracle computes f(q) € Q U {+}. If the value * is obtained then

one of the following conditions is satisfied

(1) there exists 1 < ¢ <y such that a; # 0 but o; < 0in (1),



(ii) there exists 1 < j <ty — 1 such that b; # 0 but 8; < 01in (1),
(iii) the denominator 1 + Zl<j<t2_1 big® =01in (1).
THEOREM 1 Let f € Q(X) and there exists representation (1) for f. One

can construct using the black box oracle described all the uniquely defined by their

exponents representations

_ 219’371 i X"
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of f as (m,72)-sparse rational function for all possible pairs (71, 7) such that

f (3)

1<n <t,1< 1 <1, 1e. construct rational coefficients ¢;, d;, and integer expo-
nents v;,d; for all ¢, j in these representations. The algorithm uses 2¢1ts + 2ty — 2
evaluations with the oracle and the polynomial in ¢, logd number of arithmetical

operations.

PROOF

DESCRIPTION OF THE ALGORITHM Choose an integer p > 1.
Compute using the oracle f(p?®) for 1 < s < 215 + 25 — 2. Denote

S={s: 1 <s<2ta+ 2t —2& f(p*) # *}.

We shall show below that #S5 > 2t1t2 + ¢tz — 1. Enumerate pairs (71, 72) in the
lexicographical order starting from (1,1). For the current pair (7, 72) consider the

following system of equations and inequalities

Do<i<n UiYT = F0 )L+ 21 <<rm1 ViZ5), s €S,
Yi>0a 1§i§7—1a (4)
Z; >0, 1<j<m—1

in 21 4 219 — 2 variables U;, Y3, 1 <o <m; V;, 75,1 < j <1 — 1.

Apply the algorithm from [10] and construct a finite set A(m, m2) of solutions of
(4) such that for every connected component C of the variety of solutions of system
(4) there exists w € A(m, ) N C and the number elements #A(7, ) < P(¢') for
a polynomial P. Besides that, the number of arithmetical operations required for
constructing A(r, 72) is polynomial in ¢, see [10]. So the set A(r, m2) contains all

the isolated solutions of (4).

For every solution w = (u;, 4,1 < i < m3v5,%5,1 < j < m—1) € A(m, ™)
compute ¢; = u;, the integers v; < log,y; < v —1,1 <@ < 7, dj = vy, and
the integers d§; < log, z; < delta; — 1,1 < @ < 7 — 1. Denote by B(r,7) the
subset of A(7, ) consisting of such w for which all ¢;, d; are rational numbers and
p] = yi,pg = z; for all ¢ and j. We shall show below in Lemma 1 and Lemma 2 that
for every uniquely defined by its exponent representation (3) of f as a (71, T2)—sparse
rational function there exists w € B(ry, 72) for which the corresponding constructed

elements ¢;,d;, 7, d; are from (3). In any case the rational functions f and

=0 aX™)/(0+ > d;jx%)

1<i<n, 1<j<ra—1



are defined and coincide in at least 2¢1¢5 points of S, and therefore coincide identi-

cally.

If (11, m) # (t1,t2) then go to the consideration of the next pair in the lexico-
graphical order. If (71, 72) = (t1,%2) then choose among all the constructed repre-
sentations of f uniquely defined by their exponents representations. The algorithm

1s described.

CORRECTNESS OF THE ALGORITHM Note that for every posi-

tive pairwise different x4, ..., x, any minor of the Vandermond matrix (a:‘g)lsiijm

is different from zero, see e.g. [3].

It follows from here that the number of zeros of the denominator of f in the set
{p' : 1 <i< 2ty + 2ty — 2} is no more than t5 — 1. So #S > 21ty + 15 — 1.

Similarly the rational functions f and

=0 aX™)/(+ > diX%)

1<i<n, 1<j<ra—1

from the description of the algorithm are defined and coincide in at least 2¢1¢5 points

of S and therefore coincide identically, see Corollary 4 from [4].
Now we need only the following two lemmas.

LEMMA 1 Let representation (3) of the rational function f be uniquely defined
by its exponents. Consider system of equations and inequalities (4) Denote by W
the variety of all the real solutions of this system. Then the point = with the

coordinates, see (3),
Up=c;,Vi=d;,Yi=p", Z;=p", 1 <i<t;,1<j <ty —1
is an isolated point of W.

PROOF The point = gives a solution of (4) from W. Now it is sufficient to

prove that = is an isolated point of W.

Let the point =; from W give a solution u;,v;, 45,25, 1 <1<, 1< j <ty -1
of system (4) . Denote yg = vo = 1 and dy = 1, §o = 0. Then (4) and (3) entail

C > oD e =0 > A > wy), meS. (5)

0<j<ra—1 1<i<ty 0<j<ta—1 1<i<n
Denote

I={i:1<i<m,i€Z},J={j :0<j<m—1jeZ},

P={i:1<i<ty,i€eZ}, J ={j :0<j<ty—1,jeZ}

T=A{prz iel,jeJyu{piy :iel je '},

if w e T then I(w) = {(i,5) € I x J' : pPiy; = w} and J(w) = {(i,j) € I' x J :

Pz = wh.



Now (5) entails

Z( Z Civ; — Z uidj)wm =0, meSs. (6)

weT (i,j)€d(w) (i,4)el(w)
Since #T < 2t1t5 and w > 0 for every w € T we infer from (6) that for every w € T
Z Civ; — Z uidj =0. (7)
(i,4)€J(w) (i,4)el(w)

Denote

T={p' :i€Z},

L={i:yel,1<i<njand Ji={j: 2z €l,0<j<m—1}

Suppose that the distance |Z — 21| in R2(M+72=1 from = to Z; is less than

g = p~tming{vid5}

Then y; = p7* and z; = p% for all i € I) and j € J; since in this case y;, z;emT.

Now we deduce from (7)
(D X aX™) = QX)) wiXx™)
jESL i€l jeJ i€l

Further, v; X% # 0 since 0 € J; and vy = 1. Thus,

Zie[l u; X7
ZjEJ1 vjpéj

jEJ1
f(X) =

is a representation of f. Therefore, I = {1,...,7}, J1 = {0,...,7 — 1} and
ui = ¢;, v; = d; for all 4, j since (3) is uniquely defined by its exponents. So if

—_

|Z — 24| < & then 2 = Fy, i.e. Z is an isolated point of W. The lemma is proved.

LEMMA 2 TLet f € Q(X) and (3) be a uniquely defined by its exponents
representation for f. Then ¢;,d; e Qforall 1<i<mand 1<j<m -1

PROOF Changing f for X7 f for some integer v we can suppose without loss
of generality that the numerator and denominator in the left part of (3) are poly-
nomials in X. Let f = f1/f2 where GCD(f1, f2) = 1 and f1, f» € Q[X]. Let
Zlgsﬁ ;X" = gf; and ZlSjSTg—lde(;j = gfs where ¢ € k[X] for some al-
gebraic extension k of Q. Let e; = 1,e3,...,¢e4 be a basis of k£ over . Then

9 = 1cicy gi€i for the uniquely defined polynomials ¢1,. .., g € Q[X]. Then

_9nh
g1fo

is a (71, 2)—sparse representation of f with the same exponents in X as in (3).So

g1f1 = gf1 and g1 fo = gf2. The lemma is proved.

The correctness of the algorithm described is proved.



The bound for the number of arithmetical operations in the algorithm described
follows directly from the estimations for the working time of the algorithms applied.

The theorem is proved.

REMARIK 1 Note that for every representation (3) from Theorem 1 it is ful-
filled
max{y;,d;} < 2d(2t — 1)
i

since, otherwise, (3) is not uniquely defined by its exponents, c.f. Lemma 3 (c) from

[4].

2 Interpolation of sparse rational functions in many

variables

Let . i

_ Z(z’l,...,in)eh Jig,in Xqt o X
L4230 iens finin X100 X0

where fi, ;. € Q, I, I CZ", #I; = t1,#1 = to — 1, max{|is| : (i1,...,in) €

L UL} < dforevery 1 <s<n. Set alsot = max{ty,ta}. Thus, f is (t1,t2)-sparse

and t—sparse, see Introduction.

f (8)

Consider the following oracle:
INPUT: a where a=(ay...,a,)€Qm

OUTPUT: f(a) € QU {*} and if the value x is obtained then one of the
following conditions is satisfied
(1) there exist 1 < j < n and (41,...,%,) € I1 U Iy such that fi, ;. # 0 but
i; <0, a; =0,

(i1) the denominator 1 + Z(il,...,in)elz fil,...,inail air = 0.
Representation (8) will be called uniquely defined by its exponents if the coefficients
Jiryoins (1, i) €1 UL

are uniquely determined by the exponents (i1,...,i,) € I1 U I3 i.e. the equality

/ i1 .

B Z(il,...,in)eqfil,...,inX1 X
- / i1 in
1+Z(i1,...,in)61; i X1 Xn

f (9)
where f{ ;€ Qand Ij C I, I4 C I entails that I{ = I, I} = I, and

ill,...,in = fi,, 4, forall (¢1,...,4,) € 1 UI,. The (t1,t2)-sparse representation (8)
of f is called minimal [4] if there exists no (¢; — 1,t2)—sparse or (¢1,%2 — 1)—sparse

representation of f.



Similarly to Section 1 one can prove that if (1) is minimal then it is uniquely
defined by its exponents. Also for every representation (8) there exists (r,72)—
sparse representation (9) with I1 C Iy, I, C I (and so and 7 <1, 79 < t3) which
i1s uniquely defined by its exponents. The analog of Lemma 2 is also valid for the
case of many variables. Namely, if f € Q(Xy,...,X,) and representation (8) is
uniquely defined by its exponents then all the coefficients f;, ;. € Q.

We need also the following fact.

REMARK 2 Let D,r,n and m be integers such that D = 2r4+1>1,n >0
and —(D" —1)/2 < m < (D" — 1)/2. Then one can construct in the polynomial

time the uniquely defined integers
—(D=-1/2<m<(D-1)/2,0<i<n-1
such that m = mg +m1 D + ...+ my,_1 D" 1. Indeed, in this case
(D" =1)/24m = (mo-+(D=1)/2)+(m1-+(D=1)/2) D .+ {ma_1+(D—1)/2) D"~

where 0 < (D?=1)/24m < D" —1and 0 < m;+(D—1)/2 < D—1 and, therefore,

m; + (D — 1)/2 are uniquely defined and can be computed in polynomial time

We need the following lemma

LEMMA 3 TLet f € Q(Xy,...,X,) and there exists representation (8) for f.
Let D=4d+1and f= f(X,XP, .. XP"7") e Q(X).

(a) Let representation (8) of f be uniquely defined by its exponents. Then the

representation

Lo C o1
Z(ily,,,yin)eh fil,...,inXll+Z2D+m+ZnD

T _ —
1_1_2(2'17.”72'71)612 fil,...,inX“+22D+W+ZnD

(10)

as rational function in one variable is uniquely defined by its exponents and

(t1,t2)-sparse. Besides that, we have
—(D" = 1)/2 <y +iaD+ . 4+ i, D" < (DM = 1)/2, |ij| <d

forall 1 <j<mnand (i1,...,i,) € 1 UIs.
(b) Let '
_Zien X (11)
1 + ZjEJ2 f]X]
is the uniquely defined by its exponents and (1, ¢s)-sparse representation of
the rational function f such that —(D" — 1)/2 < j < (D" — 1)/2 for all
JEJIUTs. S0 j =3 cucntu; D471 where iy j € Zand —(D—1)/2 < iy j <
(D —1)/2 by Remark 1 for all j € J; UJy. Let |iy ;| < dforall j € J; U.Js.
Set 17/./ = {(Z.Lj, .. aln,]) : _] S Jr}, r= 1,2 and Z/i,,ln = fil-l—igD-I—...-I—inD"_l
for all (i1,...,4,) € I{ UTJ. Then we have the representation
B Z(il,...,in)eq' z/ianil X

1+ Z(il,...,in)efg XX

which is uniquely defined by its exponents.

f=

f (12)



PROOF (a) Suppose that (10) is not uniquely defined by its exponents. Then
from the definition of representations uniquely defined by their exponents, the fact
that D = 4d 4+ 1 and Remark 1 we get that (8) is also not uniquely defined by its

exponents. The contradiction obtained proves (a).

(b) We have the equality (12) since representation (11) satisfy to the properties
from the statement of the Lemma, D = 4d + 1 and by Remark 1. Representation
(12) is uniquely defined by its exponents since, otherwise, (11) would not be also

uniquely defined by its exponents by the same reasons. The lemma 1s proved.

THEOREM 2 Let f € Q(Xy,...,X,) and there exist representation (8) for
fosuch that I, I C Z", #1 = t1,#, = t2 — 1, max{|is| : (i1,...,4,) € [ U
Iy} < d for every 1 < s < n. Set also t = max{ty,t2}. Then one can construct
using the black box oracle described all the uniquely defined by their exponents
representations '

_ Z(il,...,in)eli z'/l,...,inXil X
S+ Z(il,...,in)eI; fz'/l,...,inXil .
such that #I] = 7 < ty, #I, = m — 1 < t5 — 1. Besides that, for all 1 < j <
n, (i1,...,in) € I U Iy we have fi € @ and [i;] < 2d(2t — 1). In other

words one can construct all the uniquely defined by their exponents (7, 73)-sparse

f (13)

g

representations of f for all possible 1 < 7 < #;, 1 < 1 < ¢3. The algorithm uses
2t1ts + 25 — 2 evaluations with the oracle and polynomial in ¢, logd, n number of

arithmetical operations.

PROOF Note that for every representation (13) from Theorem 2 it is fulfilled

| < 2d(2t — 1
max Ll < 24021 1)

1<i<n, (iy,..,in) €]

since, otherwise, (3) is not uniquely defined by its exponents, c.f. Lemma 3 (c) from
[4].

Set D = 8d(2t — 1) + 1. Applying Lemma 3 and the algorithm from Theorem
1 to the rational function in one variable f from Lemma 3 we get the required
representations of f. The estimations for the number of evaluations using the
oracle and the number of arithmetical operations follow directly from Theorem 1

and Lemma 3. The theorem is proved

3 Modular black box oracle for interpolation of

sparse rational functions. Preliminary results

Let ' |
Xl imen Jinein X X0

L+ Z(il,...,in)612 fil,...,inXil X
where Iy, I, C Z", #5h = t1, #1 = t2 — 1, fi,, i, € Qforall (i1,...,in) € L ULy,
M > maxg,  iyenun (i, i), max{]is| © (i1,...,4,) € [ UL, 1 <s <n}<d.

f

(14)



Therefore the size of f is less than 2¢(M + n(1 + logd)). Set also t = max{t1,t2}.

Thus, fis (¢1,t2)-sparse and {—sparse, see Introduction.
Consider the following oracle:
INPUT: (@ p) where pis a prime number, @ € 2 = (Z/pZ)*.

OUTPUT: f(@) = f(a) modp € F, U {x} where a = (a;...,a,) € Z", a mod

p = @ and if the value * 1s obtained then one of the following conditions is satisfied

(1) there exists (¢1,...,4,) € I1 U Iy such that f;, ;. # 0 but p divides the

denominator of f;, .,

(ii) there exist 1 < j < n and (i1,...,4,) € I1 U1y such that f;, ; # 0 but
t; < 0, a;j = 0 mod p,

(i) 14 Y0, iners firoin@) - @i = 0 mod p.

We suppose that the working time of this oracle for input (@, p) is polynomial

inlogp, t, n,, logd.

Denote by [; the ith prime number for ¢ > 1. For every ¢ > 1 define the sequence

pij, J=1,2,... of prime numbers such that

(1) pi1 is the minimal prime number such that p; 1 = 1 mod /;,

(2) If j > 1 then p;; is the minimal prime number such that p; ; > p; j_1 and
Pij = 1 mod lz

LEMMA 4 There exist polynomials P; and P, such that I; < Pi(i) and p; ; <
Py(4, ) for all 4,5 > 1.

PROOF The existence of P, follows immediately from the asymptotic law of

distribution of prime numbers. Show that there exists P,. Set

pl(o‘) —min{p : pis prime & p = 1 mod [;1,}

for every a > 1. Then by Linnik’s theorem [8] pl(»a) < (l4)¢ where ¢ is a constant.
So there exists a polynomial Ps such that pl(»a) < Ps(i, ) for all 4,0 > 1.

Denote p;(a) = max{pl(ﬂ) : 1< B <a}forevery oo > 1. So pi(a) < Py, o) for
a polynomial P, and p;(a) = p; ;, for some j, > 1. Further,

2< [T o< I »p< I pis

1<p<a pe{p'® 1<p<al 1<<]a
Therefore, jo > af log Py(7, ). Hence, a < Ps(%, jo) for a polynomial Ps.

Thus, for all @ > 1 and jo_1 < j < jo it is fulfilled p; ; < Pa(i, a) < Ps(4, ja)
for a polynomial Ps. Further, j > jo—1 > (o — 1)/log Py(é,« — 1) for these j, o
Hence, Pr(i,j) > a for all @ > 1 and jo—1 < j < ja.

10



Now we have
Jo < pijjo < Pali, o) < Pa(i, P7(i, j)) = Ps(i, j)

and
pi < Psli,jo) < Psli, Ps(i, §)) = Pa(i, )

for all @« > 1 and jo,—1 < j < ju. The existence of P now follows from the fact that

limg—y 400 Jo = +00. The lemma is proved.

The following lemma provides a zero—test for rational functions given by a mod-

ular oracle.

LEMMA 5 Let for the rational function f € Q(X) there exists representation
(14) for n = 1, X = X; and t, M, d are the same as in (14). Let /; and p; ; be as
above. Let the integer s be minimal such that [[, ., i > (4d)t2(t2_1)/2 and the
integer r; be minimal such that ngjsr,pivj > 1292Mi+2M o every 1 <i <s. Let
& j € Z/p;jZ be a primitive root of the /;th degree from 1, i.e. &’le] =1, &; #1
Then I, < P(tlogd), psr, < P(Mtlogd) and the rational function f is not equal
identically to zero if and only if the oracle outputs at least one value different from

0 and * for one of the inputs from the set
S={& ;modl; 1 1<i<s,1<j<r, 0<v<—1}

Thus, the fact that f = 0 identically can be ascertained within the time polynomial
in Mt logd.

PROOF The inequalities Iy < P(tlogd) and p; ,, < P(Mtlogd) follows directly

from Lemma 4.

Let f(1) and f® be the numerator and denominator of representation (14) of
f. Let §;, i = 1,2 be the least common denominator of all rational coefficients of
f@ . Then the t*-sparse polynomial F = X?4§,d,f(1) f(*) € Z[X] has coefficients
F, such that |F,| < t?222M+2M for all v and deg F' < 4d. Note that F # 0 is
equivalent to f # 0.

It is sufficient to prove that if f # 0 then there exists s € S such that F(s) # 0
in the corresponding finite field. Indeed, in this case the oracle for f at input s

gives an output which is different from 0 and *.

Let FF # 0 and F = (¢, <2 FuX"* where F,, v, € Z and the exponents v,
are pairwise distinct for all u. The product IT = I, <, 1vin — il < (4d)t* (=172,
Therefore, there exists 1 < ¢ < s such that | = I; does not divide II and hence,
v, mod [ are pairwise distinct for all u. Consider the ring Z[o] = Z[X]/(X' — 1)
where ¢ = X mod (X' — 1). We have proved that 0 # F (o) € Z[o].

Let £y # 0. There exists 0 < j < r; such that £, mod p; ; # 0. Denote p; j =p
and consider the ring F,[o] = F,[X]/(X' — 1) where ¢ = X mod (X' —1). We have
proved that 0 # F(o) € F,[o].

11



The ring [F,[0] = F,[X]/(X' — 1) is isomorphic to the direct product

[I EX/(x-¢).

0<v<i-1
Thus, there exists 0 < v <[ — 1 such that F'(§};) # 0. The lemma is proved.

COROLLARY Let for the rational function f € Q(Xjy,...,X,) there exists
representation (14) and ¢, M, d are the same as in (14). Then one can ascertain
whether f = 0 identically using the polynomial in ¢, M, n and logd number of
computations with the oracle described. Namely, one can construct within the time
polynomial in ¢, M, n and logd the set S’ of inputs for the the oracle such that
#5 < P(t,M,n,logd) and f = 0 identically if and only if the oracle outputs only

the values 0 and * for all inputs from 5’.
PROOF Follows directly from Lemma 5 and Lemma 3.
Now we give some deinitions.

Let 0<leZand ( = = 2™ =1/1 be the primitive root of the lth degree from
1. Let k be a finite extension of () such that the minimal polynomial of { over Q

coincides with the minimal polynomial of { over k, i.e. k is an algebraic extension

of @ linearly disjoint with Q[(] over Q.
Let ¢ € Q[¢]. Consider the representation of the element ¢ in the field Q[(]

_ 219’91 i
1T+ i, diC%

where ¢;,d; € k and +;,4d; are integers such that 0 < v < {, 0 < d; < [ for all

@ (15)

i and j. Representation (15) of the element ¢ will be called uniquely defined by
its exponents if the coefficients ¢;, 1 < 7 < #; d;, 1 < j < 19 — 1, are uniquely
determined by the exponents v;, 1 < ¢ <13;3d;, 1 <j <ty — 1. More precisely, if
k' is a finite extension of k such that the minimal polynomial of ¢ over @ coincides

with the minimal polynomial of ¢ over £’ and

o= 219’91 i X
L+ icjcta i X%

where ¢, d; € k' then ¢; = ¢; € k and d} = d; € k for all ¢ and j.

(16)

Now return to representation (1) of f. Set Sy = 0 and

L ={i:1<i<i},

L={j:1<j<t—-1}U{0},

U=10,i) €l x1Is: B > B},

V=A(i,j,i1,j1) €L x Is x Iy x Iy o + B; > iy + By, 1,

A = H(j,jl)eU(ﬁj - 6j1)a

12



Ay = H(i,j,il,jl)ev(ai + B — iy, — Bj)-

So the integer A is the product of all non—negative differences of exponents of
the denominator of representation (1) and A, is the product of all non—negative
differences (a; + f; — i, — B5,). We have Ay divides A, since t1 > 1.

Note that the length of the integer Aq is less than Py (¢, log d) for some polynomial
Pi.

The integer ! will be called good for exponents of representation (1) if { does not

divide A5 and for every prime divisor I’ of [ it is hold I’ > 2t;t,.

Denote by k the field generated over Q by all the coefficients a;, b; of represen-
tation (1). The integer ! will be called good for representation (1) of the rational
function f if it is good for exponents of representation (1) and the minimal polyno-

mials of { over k and @ coincide.

In particular if all the coefficients a;, b; of representation (1) are rational then {

is good for representation (1) if it is good for exponents of representation (1)
We shall need the following lemma

LEMMA 6 Suppose that [ is good for representation (1) of the rational function
f and representation (1) is uniquely defined by its exponents. Set @; = o; mod [,
0 <@ < Bj = B;modl, 0 < Bj < I @,Bj € 7Z. Then there exists the

representation

o= —Dissmac_
L) gyt bi¢7

and it is uniquely defined by its exponents.

(17)

PROOF Set 3, = 0and by = 1. The denominator in the right part of (17) is not
equal to zero. Indeed, otherwise all the conjugates over & of this denominator would
be also equal to zero. Note that ¢*,1 < i < t5 are different conjugated to ¢ since
for every prime divisor I’ of [ it is hold I’ > 2t1t5 > t5 and k is linearly disjoint with
QI¢] over ©@. Further, the Vandemond determinant det(ciﬁj)lgith,OSjth—l #+0
since [ fA1, This contradicts to the fact that not all b;, 0 < j <t; — 1 are equal to

zero and our assertion is proved. So (17) gives a representation of f(¢).
Suppose that there exists another representation

o) = s i
L+ Yigigram1 B¢
which is different from (17) where af, b € k" and the field & D k is linearly disjoint
with Q[¢] over @. Then
2oi<i<t, a;i (™ _ 2oi<i<t, aj(™
1+Zl§j§t2—1bjcﬁj L+ icjcta b}cﬁj.

Set J = {@; —1—37» 1 <i<t,0<j<ty—1}. Since l fAs and for every prime
divisor I’ of [ it is hold I’ > 2t1ts > t1t» and, finally, k is linearly disjoint with

(18)

13



Q[¢] over Q@ we have det(¢")1<;<4sjes 7 0 Now we get directly, c.f. the proof of
Lemma 1, that equality (18) is equivalent to the equality of the rational functions
219’91 a; X _ 219’91 a; X
IR DDIPIPTNE D CC R D PP PR P O

So aj = a; and b} = b; due to the fact that (1) is uniquely defined by its exponents.

The lemma is proved.

For arbitrary integer [ if representation (17) is defined then it will be called the
reduction in the ring Q[¢] of representation (1).

LEMMA 7 Suppose that the prime number [ is good for representation
(1) of the rational function f € Q(X) and representation (1) is uniquely defined
by its exponents. Let the integer u > 0 be such that [ does not divide u and
y = 2V =T/ W) e
_ 219’91 cin’
S+ Doi<i<tamt djn’

where ¢;,d; € Q@ and the integers v; = gy modl, 0 < v < lu, §; = ﬁ_jmodl,

f(n) (19)

0 <6; < lufor all ¢ and j. Then ¢; = a;, d;j = bj, v; = ; mod lu, §; = §; mod lu
for all ¢ and j, i.e. representation (19) satisfying to such conditions is unique and

coincides with the reduction in the ring @[] of representation (1).
PROOF Let ¢ =9 vy € Z and v = uvy + 1 Then GCD(v,lu) = 1 and

ViV
_ 219’91 il
- 0
L) i cjce,—1 din®™

Fr)
or l
. leiftl 6”771 C’Yz
1+ Zl§j§t2—1 djnéjlcéj .
Set k = Q[1']. The representation

")

_ Zlﬁiﬁtl ainoc,lXoc,
1+ Zl§j§t2—1 bjnﬁleﬁj

induced from (1) by substituting 7' X instead of X is uniquely defined by its expo-

f

nents. Therefore (20) is uniquely defined by its exponents by Lemma 6. Now the
statement of the lemma follows from the definition of the representations which are

uniquely defined by their exponents applied to (20).

Denote by S = {z € C : |z| = 1} the circumference of the radius one in the
complex plane. Let U;,Y;,1 <¢ <t%; and V;,7;,1 < j <13 — 1 be new variables.
Denote by V the subset of C2(t1+t2=1) defined by the system of equations

Yil=1Z;| =1, ImU; =ImV; =0, 1 <i<t,1<j<t,— 1.
LEMMA 8 Let representation (1) of the rational function f be uniquely

defined by its exponents and all the coefficients a;,b; € Q in (1). Let  be a good

integer for representation (1) and ¢ = 2™/ =1/l Consider the system of equations

FEMA+ Y vz = Y Uy 1 <m <24t (21)
1<j<to—1 1<5<t;

14



Denote by W the set of all the solutions of this system from the set V. Then the

point = with the coordinates, see (1),
Ui:aia‘/j:bjayizcalazjzcﬁja 1§Z§t1a1§j§t2_1a
is an isolated point of W.

PROOF Note that f(¢™) is defined since [ is good for (1), c.f. the beginning
of the proof of Lemma 6. The point = gives a solution of (21) from W. Now it is

sufficient to prove that = is an isolated point of W.

Let the point =; from W give a solution u;,v;, 45,25, 1 <1<, 1< j <ty -1
of system (21) . Denote yg = vg =1 and by = 1, o = 0. Then (1) and (21) entail

( Z vizi')( Z a;i¢*™) = ( Z biC% ) Z uiy*), 1 < m < 2t

0<j<ta—1 1<i<ty 0<j<ta—1 1<i<ty
(22)

Denote
IT={i:1<i<ty,i€Z}, J={j:0<j<ta—1,j €7},
T={C%z iel, jeJtu{liyi :iel, jeJ},
if w € T then I(w) = {(3,7) : ¢Piy; = w} and

J(w) =4(1,5) : ¢z =1}

Now (22) entails

Z( Z a;vy — Z uibj)w™ =0, 1 < m < 2tts. (23)

weT (i,j)ed(w) (i,4)el(w)
Since #T < 2t1t5 we infer from (23) that for every w € T
Z a;jv; — Z Uibj =0. (24)
(i,4)€J(w) (i,4)el(w)
Denote
To={¢ :i=0,1,...,0-1},
11:{2 : yZETl,lglgtl} andle{j D Zj ETl,OSjStz—l}.

Suppose that the distance |2 — 21| in C2(t1+2=1) from = to Z; is less than
e =1]1—¢|. Then y; = ¢* and z; = (P for all i € [; and j € J; since in this case
Y,z €T

Now we deduce from (24) and the fact that [ is good for (1) that

(D o XPQaX®) = Qb X" (D wiX™)
j€J1 el jed i€l
Further, ZjeJl v; XPi # 0 since 0 € J; and vg = 1. Thus,
Zie[l u X

f(X) = ZjEJI chﬁj
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is a representation of f. Therefore, I} = {1,...,t1}, J1 = {0,...,is—1} and u; = a;,
v; = a; for all 4, j since (1) is uniquely defined by its exponents. So if |2 —E¢| < ¢

then Z = =, i.e. = 1s an isolated point of W. The lemma is proved.

LEMMA 9 Let representation (1) of the rational function f be uniquely
defined by its exponents and all the coefficients a;,b; € Q in (1). Let  be a good
integer for representation (1). Let ¢ = max{t;,?2}, the length of the numerators
and denominators of rational coefficients of f in representation (1) be less than M
and d be an upper bound for absolute values of the degree of the numerator f; and
denominator fo of f in this representation. Then there exists an integer N with
the length [(N) < P3(M,t,logd) for some polynomial Py, and such that N satisfies
to the following property. For every prime number p [N, p = 1 mod ! and every
element ¢ € F, = Z/pZ such that & =1, € # 1 it is fulfilled f2(¢') # 0 mod p for
all integers 0 < ¢ < [.

PROOF Denote by § the product of all the denominators of rational coefficients
of fo. Set N = 5H1<i<l_1(5f2(62”\/__”/l) € Z. Then N # 0 since [ is good for
(1), cf. the beginning_o_f the proof of Lemma 6. The length [(N) is polynomial in
M, t logd and satisfies to the required property. The lemma is proved.

4 Algorithm for reconstruction of rational num-

bers by the Chinese remainder theorem

The important particular case of the modular interpolation of rational functions is

reconstruction of rational numbers by their reductions modulo different primes.

Consider the oracle which for a given prime [ at input computes ¢ mod! €
ZNZ U {x} where ¢ = q1/q2 € Q, l(q1) < M, l(¢q2) < M and if the value x is
obtained then [ divides g5. The working time of the oracle at input p is polynomial
in M and logl.

Let {1, ...,l; be arbitrary different primes such that [], .. i > 22M  Note that
¢ = 0 1f and only if the oracle outputs the values 0 and * for inputs {1, ...,l;. So we
can always check within the polynomial time whether the considered number § € Q

coincides with g¢.

The reconstruction of integers using the Chinese remainder theorem is well
known. The case of rational numbers requires additionally the technics of con-

vergent fractions of continuous fractions.

LEMMA 10 One can reconstruct q using the oracle described within the time
polynomial in M. More precisely, let p; < ... < p, be primes and the set J = {j :
1 <j<r&qgmodp; # *} where the value ¢ mod p; is computed using the oracle
(so if p; does not divide the denominator g5 of ¢ then j € J). If H1<j<rpj > 23M+1
then HjEJpj > 22M+1 o qf HjEJpj > 22M+1 then one can reconstruct ¢ knowing
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g mod p; for j € J in time polynomial in Zl<j<rl(pj)' In particular if p; is the

jth prime then the working time is polynomial in M.

PROOF We suppose that pi, ..., p, are given. Compute using the oracle q; =
g mod p; € Z/p;Z for every 1 < j < r and construct the set J.

Compute b = Hjejpj' Compute using the Chinese remainder theorem the
integers 0 < a; < b and 0 < ay < b such that

g=a; modb and ¢~ = as mod b.

Hence, g1 —a1q2 = —c1b and gs—asq1 = —c2b where ¢1 and ¢» are integers. Compute

¢1 and ¢, We have

ai c1 q1 asz C2 42
2= oand |22 2= A2 25
b g2 g2b b ¢ @b (25)
Suppose that |¢| <1 Then
ay C1 < 1 < 1 < 1
booqa| T b T 22MAL = 943

since |qo| < 2M. Therefore, see [9], ¢/ coincides with the uniquely defined con-
vergent fraction in the decomposition of aq/b into the continuous fraction. Thus,
one can find in this case ¢1 /g and after that ¢; and ¢o. Similarly, if |¢| > 1 then
one can consider the second equality in (25) and also construct ¢z and ¢; in the

required time. The lemma is proved.

5 Description of the algorithm for modular inter-

polation of rational functions

THEOREM 3 Let the modular black box oracle described in Section 3 for the
computations of values of a (¢1,¢3)—sparse rational function f in representation (14)
be given and all the coefficients a;,b; € @ in (14). Let

t=max{ty,to}, #h =t, #l=t2—1, fi, i, €Q
for all (i1,...,4,) € [; U Iz and

M > max Wfir, i), max{|is| : (d1,...,0n) €[ UL, 1 <s<n}<d,
(41,...,tn)ETLUI,

i.e. the length of the numerators and denominators of rational coefficients of f in
representation (14) be less than M and d be an upper bound for the absolute value
of degree of monomials of the numerator and denominator of f in this (¢, ¢3)-sparse
representation. Then one can construct using the black box oracle described all the

uniquely defined by their exponents representations

/ i1 in

_ Z(il,...,in)eq [P, LR, &}
- / i1 in
1+Z(i1,...,in)61; fian Xt Xy

f (26)
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such that #I1 = 7 <y, #I, = 7 — 1 < 15 — 1. Besides that, for all 1 < j < n,
(i1,...,in) € 11 U I we have fi

g i

€ @, the length of the integer numerator

and denominator of f,  ; is less than P3(M, ¢, n, logd) for a polynomial P53 and
li;] < 2d(2t — 1). In other words one can construct all the uniquely defined by
their exponents (7, 72)-sparse representations of f for all possible 1 <7 <1, 1<
79 < t3. The working time of the algorithm is polynomial in #*,logd, n, M and
the number of black box computations using the modular oracle is polynomial in

t,logd, n, M

PROOF The estimation |i;| < 2d(2t — 1) was proved in Theorem 2. Applying
Lemma 3, c.f. the proof of Theorem 2, we reduce our problem in polynomial time
and with polynomial estimations for the length of coefficients and length of degrees
to the case of one variable functions. Further we shall suppose that the modular
black box oracle described in Section 3 for the computations of values of a (¢1,%2)-
sparse one variable rational function f in representation (1) be given and all the
coefficients a;, b; € @ in (1), the length of the numerators and denominators of ra-
tional coefficients of f in representation (1) be less than M and d be an upper bound
for the absolute value of degree of monomials of the numerator and denominator of
f in this representation. We should construct all the representations (3) for f, see
Theorem 1, with the working time of the algorithm polynomial in ¢ logd, n, M
and the number of black box computations using the modular oracle polynomial in
t,logd, n, M

Note that every coefficient f; , from (26) is equal under our reduction to

)2

some coefficient ¢;,d; in (3). Let I be a good prime for (1) and (3) such that the
the length of ! is less than P (M, ¢,logd) for a polynomial P, see Section 3. Set
(= ¢2™V/=1/l Then

_ 219’371 ¢

I+ Ygenm diC

The coefficient ¢;, d; in this representation are uniquely defined and can be found

f©)

by solving the linear system over Q if f(¢) is known. The size of f(¢) is polynomial
in M,t,logd due to estimations for (1). So the length of the integer numerator and
denominator of every ¢;,d; (and therefore f/ ;) is less than P3(M, ¢, n, logd)

for some polynomial P3. We got the required estimations for representations (3)

(and (26)). Now we shall describe the algorithm for constructing all representations
(3)-
Set d' = 2d(2t — 1) and M’ = P3(M, t, n, logd). Denote by R some uniquely

defined by its exponents representation (3) which we should construct.

Construct the primes {q,...,l, such that {; > 2t%, for every i > 1 the prime
l; > l;_1 and [; is minimal satisfying to this condition, and finally, s is minimal such
that
H I, > 4d'2P1(tlegd)).
1<i<s
Remind that the integer As corresponds to R and the length I(As) < Py (¢, logd'),
see Section 3. By Lemma 4 the prime I, is bounded by a polynomial in ¢, logd’.

18



Denote

IT={i:1<i<s&l; fAs}.
So HZ»E] l; > 2d’.

For every integer | = [;; 1 < 7z < s construct the finite sequence of primes

Dii,---,Pir, such that

(1) pi1 =1 mod!{ and p; 1 is minimal,

(2) for every j > 1 the prime p; ; = 1 mod{, p;; > pij—1 and p;; is minimal

satisfying to such conditions,

(3) r; is minimal such that H1<j<r,piyj > 2P2(M tlogd' )+3M'+1

Remind that {(N) < Po(M',t,logd’), see Lemma 9. By Lemma 4 the primes p; ;
for all 1 <i<s, 1< j<r; are bounded by a polynomial in M’ ¢, logd’ .

For every 1 <:¢<s,1<j<r;and! =1I;, p=p;; find by the enumeration an
element & ; = & € F, = Z/pZ such that ¢ =1, ¢ # 1. Compute using the oracle
F(€™) for all 1 <m < I. Set

Ji={j V1< m <I[f(&;) # #]}.

For every 1 < i < s, j € J; solve the system of linear equations with coefficients

from IF,

XL =f(E), 1<m <,

0<u<i—1
relatively to variables X,,0 < w < [ — 1. This system has a unique solution
X, = /\z(f’]), 0 <wu<!{—1since det(" )y m # 0.

Consider the ring F,[¢] = F,[X]/(®;(X)) where &;(X) = X'7L + X724 .. . +1
and ¢ = X mod ®;(X). So we have f({) = D 0<uciot M,C in the ring F, [(].

U

Construct the set
L={i:1<i<s& [] piy>22M*1
jedi
We have I C I; by Lemma 9.
Denote ¢ = ¢ = €™V~ for every [ = I;, 1 < i < 5. Note that if J; #+ @ then

the value f({) is defined,
o= A

0<u<i—1

where A, € Q and p; ; does not divide the denominator of /\l(j) and /\l(f) mod p; ; =
/\z(f’]) for every 7 € J;.
For every ¢ € I} and 0 < uw <[ — 1 apply Lemma 10 and find A, € Q such that

Aw mod p; ; = /\I(Lj),j € J;.
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Now for every 1 € 1, I =1;, ( =, = 2™V =1/li and integers 11, Ty such that

1<m <t,1 < m <ty consider the following system of equations

L+ 2 1 <per ValZun +V=12,2)) F(C™) =

Zl<u<7’1 UV(YVyl + \% _1YV72)m = 0’ 1 S m S 27—17_2a
ZZ,l"'ZZ,z:la 1< pu<mn—1,
YV2,1+Y1/2,2:L 1§I/§T1

(27)

in 37 + 31 — 3 variables V,,, 7,1, 2,2, 1 < p <m—-10,,Y,1,Y,2, 1 <v <7

which take real values.

Every of the first 277 equations ¥, = 0 of this system is equivalent to two
equations ¥, ; = 0 and ¥,, » = 0 where ¥,;,; = ReV¥,,, ¥,, = Im¥,,. Besides
that, the polynomials ¥,, ; and W¥,, » have real coefficients from the field & =
Q¢+ ¢, (¢ = ¢ /V/=1] for all m. So we construct the system

U1 =¥pm2=0, 1<m<2nm,
Ziv+Zi,=1, 1<p<m—1, (28)
YV%1+YV%2:1, 1<v<mn

which is equivalent to (27) and has real coefficients.

We are interested in the isolated solutions of (28). The length of coefficients
of equations in (28) is polynomial in ¢, M, n,logd. Apply the algorithm from [10]
(c.f. also [2] where the case of general fields of coefficients is treated in details) and
construct a finite set A(l;, 71, 72) of solutions of (28) such that for every connected
component C of the variety of solutions of system (28) there exists w € A(l;, 71, =2)NC
and the number of elements #A(l;, 71, 7) < P(t') for a polynomial P. Besides
that, the size of every element w € A(l;, 71, 7) is less than P (', M, n,logd) for
some polynomial P. The time required for constructing A(l;, 71, 72) is polynomial
int', M, n,logd, see [10].

Construct the set B(l;, 71, m2) consisting of the elements
({vu, B, W) Yo<pcrss {uw, alli, v) hicv<r)
such that there exists
W=V, 21,22, L < pu<m—1u,y1,Y%,2 1 <v<m)eAl,n,m)

for which the following properties are satisfied forall | < u<m -1, 1<v<n

(a) zu1+vV—=1lzu0 = ¢PUm) and Yo+ V—1yys = cottim)
(b) 0 < alli,v), Bl ) < bi; a(ly, v), B(li, p) € Z and B(1;,0) = 0,

(€) vy, uy, €Q,v0 = 1.

i.e. the elements of B(l;, 7, m) correspond to the solution of (27) with rational

Uy, v and g1+ =Tyu2, 21+ V=Teu €{1,¢, 0 ¢
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Now for every pair (é,41) € I1 x I; such that ¢ # ¢; apply the algorithm described
to { = l;l;, instead of [ ={; and construct all the similar sets B(l;l;,, 7, ) for all
1< <y, 1<m <ty

Note that by Lemma 8 if ¢ € I and the representation R, see above, for the
rational function f is (7, 72)-sparse then B(l;, 71, 72) # @ and B(l;, 1, ™) con-
tains the element ({vy, B(li, ) Yo<p<rs, {8, @(li, ) }1<p<r,) which corresponds to
the reduction

_ 219’371 u, ()
fl¢) = T 51y, 0nCP0 )

in the ring Q[{;,] of the representation R of f. Further, by Lemma 7 in this case

the set B(l;l;,, 71, 72) contains the element which corresponds to the reduction in
the ring Q[(,, ] of the representation R of f where (1,1, = 2™V =1/l )

Construct the graph G with the set of vertices

V(G) = | Blli,n,m)U UJ B(lili,, 71, 7)

i€l (i,i1) €Ty x I1 i#51

and such that every edge of this graph has the form

{({vua 6(liaﬂ)}0§u<'rza {uw, a(li, V)}lgug'rl)a
v, BUiliy, ) Yo<u<rs {uws alliliy, V) Yi<o<n) }

where (i,41) € I x I i # i and
Bllils, 1) = B, ) mod &, a(lily,,v) = a(l;, v) mod I;
foral0 < p<m, 1<v<m.

Enumerate the vertices of G from | B(li,m,m). Let ig € I, I =1, and

1€l
p = {vu, BU ) Yo<ucrs {uw, el v) hicvr,) € B(l, 11, 72)

the considered vertex among enumerated. Construct the set B(p) consisting of the
vertex p and all the vertices p; € Uie[1 B(l;, 1, m) such that

(i) p1 € B(li, 71, m) for some i € I}, i # iy,

(ii) there exists a unique edge {p, p2} such that ps € B(ll;, 7, 1),

(iii) there exists a unique edge {p1, p3} such that ps € B(ll;, 7, 1),

(iv) p2 = ps3,

(v) for every 0 < i, py < 712, 1 < w11 < 1y the congruence

all,vy+ 8L pw) = a(l, 1) + B, p1) modl

is equivalent to the congruence

O[(llay)"i—ﬁ(lla/'t) = a(llayl) +6(lla/'tl) mOdll
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Construct the set of primes
Lip) ={l' : 3 e 13py € B(p) N B(li, 7, )" = L]}

If Hl’EL(p) I’ > 2d’ then apply the algorithm from the Chinese remainder theorem
to the problem of finding the integers a(v), 1 <v < m and f(u), 1 < p<m—1
such that —d' < a(v) < d', —d’' < B(p) < d" and

av)=a(l’,v)mod ', B(u) =B, ) mod I’
for every I’ € L(p) and

P1 = ({vu’ﬁ(l/’ﬂ)}03u<7'2a {ulﬁ O‘(l/’ V)}lﬁVSTl) € B(p) n B(l/’ 71, T2)

Thus, we shall construct in the required time the uniquely determined «(v), 3(x)

or ascertain that this problem has no solution or has not unique solution.

Now suppose that ig € I, i.e. [;, is a good integer for the representation R and
p corresponds to the reduction in the ring Q[¢] of the representation R for f. Then
by (v) the prime /; is good for R for every p1 € B(l;, 71, 72) N B(p). Further, by
Lemma 7 L(p) coincides with the set of all good primes for R amongl;, i € I, i.e.
L(p) = {li : i € I}. Therefore, [];1¢p(,)!" > 2d’ in this case and by the Chinese
remainder theorem there exist uniquely determined a(v), 5(p) which coincide with
the exponents in the representation R. Thus, the representation R has coefficients

vy, Uy and the exponents a(v), B(p) forall I<v <7 and 1 <p<m—1.

Now if for the considered p we got «(v), B(p) then apply the zero—test from

Lemma 5 to the 2t?-sparse rational function

Zl<u<7’1 UVXQ(V)
L) icvcm v X P

- f

and ascertain whether

Zl<u<7’1 UVXQ(V)
/= Lt 3 cvcrym va XA

gives a (71, Ta)-sparse representation for f.

Thus, after the enumeration of all (71, ) and all p we shall construct in the
required time the set of all the uniquely defined by their exponents (7, m3)-sparse
representations of f for all possible 1 < 1 < #;,1 < 1 < 3. The theorem 1s

proved.
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