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Abstract

Let an algebraic variety over a zero—characteristic ground field be given as
a set of common zeros of a family of polynomials of the degree less than d
in n variables. In this paper the following algorithms with the working time
polynomial in the size of input and d" are constructed: an algorithm for the
computation of the degrees of algebraic varieties, an algorithm for the compu-
tation of the dimension of the given algebraic variety in the neighborhood of
a given point, an algorithm for the computation of the multiplicity of a given
point of the algebraic variety, an algorithm for the computation smooth points

with their tangent spaces on each component of a given algebraic variety.
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Introduction

In the paper polynomial-time algorithms are suggested for the computation of such
basic numerical characteristics of algebraic varieties as degrees, dimensions of com-
ponents containing a given point, multiplicities of points. Besides that, smooth
points with their tangent spaces on each component of the algebraic variety are

constructed. The case of zero—characteristic ground field is considered.

This paper continues and uses the results and technics of [3], [4] and [5] where
the problem of the computation of the dimension of algebraic varieties and their
components was solved for the case of zero—characteristic, see Introductions of [3],
[5]. The case of non-zero characteristic for all the problems considered here is open.
The results of real algebraic geometry are essentially used in the present paper and
in [3], [4] and [5]. We consider an algebraically closed field of zero characteristic
as an extension of degree 2 of a real ordered field. The required property can
be formulated over this real ordered field. After that we can apply the “transfer
principle” | see [1], and reduce everything to the case of the field of real numbers.
For this field we have a developed theory. The result from [14] is crucial which in
its turn is based on the result of [13].

It should be emphasized that this paper can not appear until two principle steps
were made in [3] and [5]. In [3] the problem of the computation of dimension was
solved for the case of projective varieties. The algorithm from [5] for the compu-
tation of dimensions of all components of an algebraic variety required additionally
four embedded recursions. It is not clear whether one can avoid all this technique of
[5] for more simple problems, e.g. to find a point of an algebraic variety which does
not belong to a component of the highest dimension, or even to determine whether
there are components of different dimensions. Note also that in other terms the con-
struction from [5] is a polynomial-time algorithm for the choice of the projection

in the Noether normalization theorem.

Now we give the precise statements. Let k = Q(t1, ..., %, 0) be the field where
t1, ...,1; are algebraically independent over the field Q@ and @ is algebraic over
Q(ty1, ... ,t;) with the minimal polynomial F' € Q[ty, ... ,#, 7] and leading co-
efficient lcgz F' of F is equal to 1. Let homogeneous polynomials gg, ..., ¢, €
k[Xo, ..., Xn] be given. Consider the closed algebraic set or which is the same in

this paper the algebraic variety
V=_(zo:...:2n) : gi(zo,...,2,) =0V0 < i <m} CP™k).

This is a set of all common zeros of polynomials gq, ..., ¢, In the projective space
]P)”(E, where k is an algebraic closure of k. Below for brevity we shall use denotations

like V={g0=...=gm = 0}.

We shall represent each polynomial f = g; in the form

f= % Z Z gy, i 0T X0 - XD

10, in 0<s<degf



where ag, a;,, i,; € Z[t1,. ... ], gcdilywin’j(ao, @iy, i) = 1. Define the length
I(a) of an integer a by the formula (a) = min{s € Z : |a| < 2°7'}. The length
of coefficients {(f) of the polynomial f is defined to be the maximum of length of
coefficients from Z of polynomials ag, a;,,... ;. ; and the degree

degta (f) =  mnax .{degta(ao)’degta(aily"'yinhj)}’

21, 9tn,]

where 1 < o <[. In the similar way deg, [ and [(F) are defined.

We shall suppose that we have the following bounds

degx, . x,(9i) < d, deg, (9:) < da, l(gi) < M,
degZ(F) < dl, degta(F) < dl, Z(F) < My .

The size L(f) of the polynomial f is defined to be the product of {(f) to the number

of all the coefficients from Z of f in the dense representation. We have
d+
Lgi) < (( i ”) dy + 1)dy M

Similarly L(F) < dl1+1M1. Below if there is no special mention about it we set [ to
be fix.

Let Vs be the union of all the components of of V' of the dimension n — s where
0 < s < n. The degree deg Vs of V; is equal to maxgy #V; N H where the maximum

is taken over all the linear subspaces H of P"(k) of the dimension s such that

#V, N H < +o0. The degree degV of V is set to be > ., deg V5.

THEOREM 1. Let a projective algebraic variety V' over the ground field k
be given as a set of common zeros in ]P)”(E) of a family of homogeneous polynomials
90, -, 9m € k[Xo, ..., X,] of the degrees less than d. Then the degrees deg V; for
all 0 < s < n and deg V' can be computed within the time polynomial in d”, dy, ds,
M, My, m.

Let « € P™(k). The dimension dimy, V' of the variety V in the point # (or in
the neighborhood of the point z) is set to be maxy dim W where the maximum is
taken over all the components W of V' such that « € W. Denote by W the set of

all such components W.

THEOREM 2. Let z € P?(k). The dimensions of all the components con-
taining the the point «, i.e. the set {dimW : W € W} can be computed within the
time polynomial in d”, dy, ds, M, My, m and the size of the point x. Therefore,
the dimension dim, V' of the variety V in the point & can be computed within the

same time.

Now let a point z € Vs and 0 < s < n — 1. Denote by £ the set of linear

subspaces L of P"(k) such that dimZ = s, # € L and #V, N L < +oo. The
multiplicity p(z, Vs) of the point x of the variety V is defined by the formula

ple, V) = min{l +deg Vs — 3V N L}



This formula can be explained in the following way, c.f. [12]. By its initial meaning
the multiplicity p(z, V5) is equal to to the number of points infinitely close to # of
the intersection of a generic linear subspace E, dimL = s, which is infinitely close
to the point 2. So #V, N L = deg Vs. When one shifts this generic linear subspace
to the generic subspace L containing the point = (by an infinitely small shift) all
the points of the intersection which were in the infinitely small neighborhood of
x goes to z, other points of the intersection go bijectively to —1 + #V, N L =
maxrec{—1+ #V; N L} points. So one get this formula for p(z, V).

If # € V,, then p(x,V,) = 1. If x € V set S(z) = {s : « € V;}. The multiplicity
p(z, V) of the point x of the variety V' is set to be

p(z, V) = Z p(w, Vs).

s€S(x)

THEOREM 3. The multiplicities y(z, V) for all 0 < s < n and p(z,V) can
be computed within the time polynomial in d”, dy, d2, M, My, m and the size of
the point z.

THEOREM 4. Let a projective algebraic variety V' over the ground field k
be given as a set of common zeros in ]P)”(E) of a family of homogeneous polynomials
90, -, 9m € k[Xo, ..., X,] of the degrees less than d. Let V; as above be the union
of all the components of V' of the dimension j where 0 < s < n. Then one can
construct for every 0 < s < n a finite set A; of smooth points of V; and for every
point x € A, the tangent space T, of the variety V; in the point . The tangent
spaces are considered here as linear subspaces of ]P)”(E) Besides that, A; satisfy to
the property that for every component W of V; there exists a point x € A;NW. The
number of elements # A, < d°. The working time of the algorithm for constructing

all Ay, 0 < s < nispolynomial in d”, dy, ds, M, My, m.
REMARK 1. The working time of the algorithm from the theorems 1, 2, 3

and 4 is essentially the same as by solving system of polynomial equations with a
finite set of solutions in the projective space. So it can be formulated also in the

case when [ is not fixed, see [6]

1 Computation of the degree of algebraic varieties

and its smooth points

We need the following lemma.

LEMMA 1. Let Vi, 0 <s <n be the variety from the statement of Theorem
Land Lo, Lsy1, Lsta, ..., Ly be n—s41 linear forms from k[ Xy, ..., X,,] such that
VSQ{LOIL5+1IL5+22...ILHIO}:®

in P"(k). Denote by

p: Ve —P" k), (Xo ...t Xp)—= (Lot Lsyr o oot Ly)

which is a finite morphism [9]. Then



(i) there exists an open in the Zariski topology subset U of P*~*(k) such that for
every € U the cardinality #p~1(z) = deg Vj,

(i) if for some point # € P?~*(k) the cardinality #p~'(x) = deg V; then for every
y € p~!(z) the point y is a smooth point of the variety V; and the differential
of p in the point y

dyp : Ty vy, — Ty pr-s

is the isomorphism of tangent spaces Ty v, and T, pn-- of the varieties Vi and

P?~%(k) in the points y and « respectively.

PROOF. We can suppose without loss of generality that V, = W is irreducible
over k. Let Y € k[Xo, ..., X,] be a linear form. Consider the morphism

pr W — PP () (Xo oo X)) = (Y i Lot Leyr o L),

Since p is finite morphism p; (W) is a closed subset in P?~*+1(k) and pi (W) =
{G = 0} where G € k[Y, Lo, Lsy1,..., L] is a separable homogeneous polynomial
with leading coefficient lcy G' = 1.

By the theorem about the primitive element for fields there exists a linear form
Y € k[Xo, ..., X,] such that that the morphism

pr W — PPN E) (X oo X)) (Y i Lot Lyt @ L)

induces the birational isomorphism W — pi (W) which we shall denote p;. So
there exists an open subset U; C W such that ps(Uy) is open in p1 (W) and ps
induces the isomorphism U; — pa(U7).

There exists a projection ps : p1 (W) — P?*(k) such that p = ps ops. Denote
R = Resy (G, G% ) the discriminant of the polynomial G relatively to Y. Then 0 # R
is a homogeneous polynomial since (G is a separable homogeneous polynomial with
leading coefficient ley G = 1. If R(x) # 0 then the cardinality #p3 ' () = degy G,
for every y € p3'(x) the point y is a smooth point of the variety p; (W) and the
differential of p3 in the point y

dyps @ Ty p,wy —> Ty pr-s

is the isomorphism of tangent spaces T}, , () and T, pn-» of the varieties p; (W)

and P"¢(k) in the points y and z respectively. The last statement follows here just
from the fact that G% (y) # 0 since R(z) # 0.

Set U ={R# 0} \ ps(p2(W) \ p2(U1)). Then for every x € U

(i) the cardinality #p~!(z) = deg G,

(ii) for every y € p~!(x) the point y is a smooth point of the variety W and the
differential of p in the point y

dy : Ty,W — Txy]Pn—s

is the isomorphism of tangent spaces Ty w and T}, pn—» of the varieties W and

P?~%(k) in the points y and « respectively.



Show that deg G = degW. Let € > 0 be an infinitely small value relatively to the
field k. So the map of the standard part

st ]P”(w) — P"(k)
for every r > 0 is defined, see [5]. Denote by #; the set of families H of n—s+1 linear
forms Ho, Hyy1, Hs42, ..., Hp in Xo, ..., X, such that if one change in the formula-
tion of Lemma 1 the forms Lo, Lsy1, Lsya, ..., Ly for Ho, Hyy1, Hs4a, ..., Hy then
(1) and (ii) will be satisfied for U(H) and p(H) corresponding to U and p. Consider
H, as a subset of AP~s+¥D(+1)  Then [9] #, is an open subset of A?=s+D(+1) iy
the Zariski topology.

Therefore, there exists a family Ho, Hyy1, Hoq2,. .., Hy in Hyi(k(€)) such that
all the forms H; — L; have infinitely small coefficients. Thus, by Lemma & from [4]
for every x € U NU(H) for every y* € p(H)~!(x) the element y = st y* € p~(z).
The differential of p in the point y is the isomorphism. Therefore, by the theorem
about the implicit function there exists a unique y' € p(H)~1(z) such that sty’ = y.
Hence, v = y*. Thus,

deg W = #p(H) ' (z) = #p ' (x) = degy G
and, therefore, deg G = deg W and (i) is proved.

To prove (ii) note that if R(z) # 0 and y € p~!(x) then the point p;(y) is smooth,
the local ring O, () p, (w) of the variety pi (W) in the point p; (y) is integrally closed.
Therefore, the local rings

Oyw =~ Opl(y)ypl(w)

since Oy w 1s integral over Oy, () p,(w) and has the same fraction field. Thus, p; is
an isomorphism in the neighborhood of each point y € p~!(z). So we can suppose
that p~!(z) C U; and, therefore, € U. Now (ii) follows from the fact that for
each point x for which #p~!(z) = deg W there exists a linear form Y such that the
corresponding p; is birational, #p5*(¢) = deg W and so R(x) # 0 by the proved

above. The Lemma 1s proved.

We shall suppose without loss of generality that

deg(g:) = degxo,...,xn (9:) =d

for all 0 < ¢ < m changing if it 1s necessary each polynomial g; for the family of

X; deg(gi)+d

polynomials {g; Yo<j<n -

Remind that in [5] for each s the algorithm of polynomial complexity is suggested
which finds all the s for which V; # @. For every s at the step s the algorithm of [5]
(s)

constructs polynomials hy, ..., hs and linear forms L/, ... ,Lgf) n Xg, ...,X,

with integer coefficients of the size O(nlogd) such that

h; = Z /\Z'ngj, /\i,j e
0<j<m



for all ¢, j. Besides that, the following property is fulfilled. Let
Ws={h1=...=hy =0} C P"(k)

be the variety of all common zeros of polynomials Ay, ..., hs in ]P)”(E), the variety
W’ be the union of all the components U; of W such that diml/y = n — s, and W
be the union of all the components U; of W such that diml/; > n — s. Then the
subset of P"(k)

WL, = ... =1 =0}

n

1s finite and

WLl = =1 =0nw" = 0.

The form L(s) is such that it is not equal to zero in each point of W' N {Lg‘:}l =
= L =0}.

We shall denote also W' = W! W' = W/ when the dependence on s will be

5

essential.

Compute, see [3], [5], all the points {4 }1<u<n of the set W' N {Lg‘:}1 = ... =
Lgf) =0}. Let 2y = (2u0 :...: &u,n) where all @, ; are from a finite extension of
k. Construct a real structure for the field K = k(2w 0,...,%u ), see [3], [5], which

induces the real structure on k.

Let e1 > 0 be an infinitely small value relatively to the field K and e5 > 0 an
infinitely small value relatively to the field K(g1), the field Ky = K (e, £2).

Let Y, ..., Y, be new variables. For every 0 < u < N consider the following

system of equations and inequalities with coefficients in K,

=0, 1<1<s
Y,) =0, 1<i<s
—Yo,.. . Xn—Y,) =0, j€{0,s+1,...,n}
|X Ty il? < e,
WY — il <en,
WY — X2 > e,

%/-\
i
A

vy Mkm = F
I/\ I/\ I/\
I/\ I/\ I/\

LEMMA 2. Let W = W! as above. Then N = deg W' if and only if for
every 1 < u < N there exist no solutions of system (1, u) in A?"+2(K). If for every
1 < u < N there exist no solutions of system (1, u) in A2?+2(K,) then all the points

{Zu}1<u<n of the variety W’ are smooth and the differentials of the projection
pr W — P k), (Xo : ... Xpn) (Lgs) : Lg‘:}l S L(s))
in points {zy}1<u<n are isomorphisms.

PROOF. Follows directly from Lemma 1 when one changes gq, ..., ¢y for
hi,..., hs and therefore V; for W/ c.f. also the proof of lemmas 14, 15 of [5].

Return to the description of the algorithm. Our aim now is to compute deg .

Construct a solution of some system (1,u) or ascertain that for every 1 < u < N



there exists no solutions of system (1,u) in A?"*+2(K). In the last case by Lemma

2 the degree deg W' = N is already computed. Suppose that there exists a solution

(T, T Yoy -y Yh) € A2"+2(E)

of some system (1,ug). Denote ' = (2f : ... :zl) and ¥ = (y) : ... : y,), so

',y € PP(Ky). Set
Lh=1 — (L@ L) s+1<i<n, L) = LY.

Compute all the points from the set W' N {L.,,, = ... = L, = 0} in P"(K;.
Denote N = #W' Nn{L{,;, = ... = L, = 0}. By Lemma 8 from [4] for every
e W n{L,, = ... =L, =0} there exists 1 <wu < n such that st z* = 2,. So
N’ > N. Further, ',y e W N{L,y; = ... = L, =0}, 2’ #y and stz’ = sty
Therefore, N' > N +1> N.

Now apply the second auxiliary algorithm from [5] to Lg, Li,,,...,L; and
construct linear forms Mo, Msy1,..., My with coefficients from 7Z of the length
O(nlog d) such that

#W N {Myy1= ... =M, =0} > N/,
W/Q{Ms+12...2 n:O}ﬂW”:@andMo:Lg.

After that, return recursively to the beginning of the algorithm described chang-
ing the forms L(()s), Lgp ce Lgf) for Mg, Ms41, ..., M,. Since N’ > N there are at

most d® such returns in the algorithm.

Thus, we shall compute in the required time deg W' and we can suppose without
loss of generality by Lemma 2 that N = deg W, all the points z,, 1 < u < N are
smooth on the variety W’ and the differentials of the projection p, see Lemma 2, in

the points z,, 1 < u < N are isomorphisms.

Show how to choose among the points z,, 1 < u < N the points from V;. Let

1 < u < N. Consider the following system of equations and an inequality with

coefficients from k(eq)

hy=...=hy=0ho1 #0, > |Xi—aul’ <er (2, u)
0<i<n
LEMMA 3. The point z, = (Zu,o ... 2upn) € Vs if and only if system (2, u)

has no solutions in A"+ (k(eq1)).

PROOF. 1t follows directly from the fact that the point z, is smooth and from
the definition of polynomials hq, ..., hsy1, see above (and also [5]). The lemma is

proved.

Now construct, c.f. [3], [5], solving systems (2, u) the subset A C {1,...,n} of

all indices u such that system (2, u) has no solutions in A" (k(e1)).



By Lemmas 1, 2 and 3 we have #A = deg V, the set V; ﬂ{Lgl =...= Lgf) =
0} = {2y : u € A} and the differentials of the projection p, see Lemma 2, in the

points @, u € A are isomorphisms.

Thus, the degree deg V; and the set of smooth points {z, : u € A} C V; can be

computed for every s. Theorem 1 is proved.

To proves Theorem 4 it is sufficient now to construct the tangent spaces of Vj

in the points from {a, : u € A}.
LEMMA 4. Let ¢ = (¢1,...,¢¢) : V' — k", r > 0, be a morphism of

algebraic varieties which ¢4, . . ., ¢, 1s given by the coordinate its functions ¢4, . . ., ¢,
n ET, let the point y € V/ be smooth and the differential

dy¢> : Tyyvl — T¢(y),Er

of ¢ in the point y be the isomorphism of the tangent space T, v+ of V' in the point
=T .
y and T¢(y);r of k' in ¢(y). Denote

Cj:{(zl,...,zr)EE’" . Zm—¢)m(y):0’1§m§r’m7£j}

for every 1 < j < 7. Then D; = ¢7HCj) = {zx € V' : ¢p(2) — dm(y) = 0,0 <
m < r, m# j}is a curve in some neighborhood of y, the point y is smooth on D;,
so the tangent space Ty, p; of D; in the point y is the subset Ty p, C 1y v/. Finally,
we have ElSjST Typ; =Tyv.

PROOF. In the case when one changes k for C the statements of the lemma
follow directly from the theorem about the implicit function. In the considered
case it 1s sufficient to apply the transfer principle for the field supplied with a real

structure, c.f. [3], see [1]. The lemma is proved.

Now set V' = p_l({Lés) # 0}) C W’ where p is the projection from Lemma 2
and y = a, for some u € A. So {Ly # 0} ~ 77 Set ¢ = plv:. Apply Lemma 4.
We have

Dj={hi=...=h=0& L), —(L) /L) (@) L) = 0,1 < m < n—s, m £ j}
for 1 < 5 < n — s in some neighborhood of z,,.

Thus, construct general points of curves [); and Newton-Puiseux expansions
of coordinate functions of general points of D; in uniformizing elements in some
neighborhood of #,, c.f. [3] section 3, paragraphs (11), (12), (13) and also [5],
section 1, paragraph (16). Now one can easily construct the tangent space T, p,
of Dj; in the point z,. Hence, by Lemma 4 all the tangent spaces 15, v,, v € A, can

be constructed in the required time. Theorem 4 is proved.

2 Computation of dimensions of components con-

taining the point and the multiplicity of a point

Now we are going to prove Theorem 2. This theorem follows immediately from the

following lemma.



LEMMA 5. Let z € W' = W/, see Section 1. Then one can decide whether

x € Vs within the time polynomial in d”, di, d2, M, My, m and the size of the

point x.

PROOF. Construct the set {z, : u € A} of smooth points of V; such that

(vg cueAy=V,n{LlY, = ... =L =0}
, see Section 1. Construct a linear subspace L of P"(k) of dimension s+ 1 containing
the point # and the linear subspace {Lg‘:}l = ... =1 = 0} of dimension s. So
the linear subspace L = {Ls;yo = ... = L, = 0} where the linear forms L;,
s+2<¢<n,in Lgl, ce Lgf) are constructed.

The intersection L N V; is a curve Cs. Each irreducible component of Cf is an

irreducible component of the variety of solutions of the system
hi=...=hs=Lsya=...= L, =0. (3)

The points {z, : u € A} are smooth on the variety of solutions of (3) by the
construction of Section 1 and Cs D {z, : u € A}. So applying the algorithm from
[6], c.f. also [3],[5], construct in the required time the systems of equations which
gives one—dimensional irreducible components of the variety of solutions of (3),
then substituting in them the coordinates of the points from {z, : v € A} choose
among these irreducible components those which are components of Cs. Finally,
substituting in the systems of equations which gives irreducible components of C|
the coordinates of the point z decide whether & € C, i.e. whether x € V;. The

lemma is proved.
Theorem 2 is proved. Now we are going to prove Theorem 3.

Denote by con(z, V) the tangent cone of the variety V; in the point . It consists
by definition of the lines containing x which are limits of secants of V containing
z when another point of the intersection of the secant with V tends to «. Strictly
speaking this definition is valid for the case when the ground field is C. Another
definition of con(x, V;) is valid for arbitrary fields. The cone is defined as the variety
of zeros of the ideal generated by the forms of the lowest degree of the elements
of the ideal of the initial variety in the case when it 1s affine and the point # has
coordinates equal to zero, see just below. Factually, if one use the second definition

in many cases one can give the sense to the first one.

We can effect a linear automorphism of ]P)”(E) and suppose without loss of gen-
erality (may be changing the ground field k) that # = (1 : 0 : ... : 0). We
have the following definition of the cone con(z, V). Identify A" (k) with {X, #

0} C P*(k). Let Xi,...,X, be the coordinate functions in A" (k) correspond-
ing to X1/Xo,...,X,/Xo in P*(k). Denote Us = Vi, N {X, # 0} C A" (k). Let
I(Us) C k[X1,...,Xp] be the ideal of the affine variety Us;. Fach element of
F € k[Xy,...,X,] is represented as a sum F = F, + Fo.qy1 + ...+ F,, of homo-
geneous polynomials F; in Xq,...,X,. So for each element of F' € k[X;,..., X,]

the form of the lowest degree F, is defined. Denote by I'(Us) (respectively I’ (V}))

10



the ideal generated by the forms of the lowest degree of the elements of I(Uy). Then
con(z, V)N{Xy # 0} (respectively con(x,V)) is set of zeros of the ideal I'(U;) (re-
spectively I'(V;)). About the equivalence of the definition with secants, this one
and other definitions of the tangent cone see [10], [15].

Note that in the case of a field of zero—characteristic with a real structure the
equivalence of the definition with secants and the second given here can be proved
by applying the transfer principal [1] if this equivalence is known in the classical
case. It is essential here that the fact that the point y belongs to the variety of
zeros of the ideal I'(V;) can be expressed in the language of the first order theory
of real fields, since one can bound the degrees of generators of I’(V;) by a function

in d and n.

Let € > 0 be an infinitely small value relatively to the field k. So the map of the
standard part
D P (k(2)) — BT (k)

for every r > 0 is defined, see [5]. Let hy,..., h, be as in Section 1. Consider the

following system of equations and an inequality with coefficients from k(¢)
hy—eX{= . . =h,—eX?=0. (4)

Denote by V! the variety of solutions of system (4) in P*(k(e)). Each irreducible
component of V! has the dimension n — s. Set V' = st(V). Then, c.f. [6], V' is an
algebraic variety in ]P”(k’) and each irreducible component of ¥V’ has the dimension

n — s. Besides that each component of V; is a component of V', see [6]. Set

Ul=V!N{Xo#0} and U’ = V' N{Xy # 0}. These are affine varieties.

Construct using the algorithm from [3] the family Lo, Lsy1, Lsy2, ..., Ly, of linear

bl

forms with integer coefficients of the size O(nlogd) such that

V;ﬂ{LQILs+1IL5+22...ILHIO}I@ (5)

in P"(k(¢)) and Lg is not vanishing in each point of V! N {Ly = Ls41 = Lsq2 =
... = L, = 0}. Condition (5) is equivalent, c.f. [6], to V' N{Ly = Ls;4y1 =
Liya=...= L, =0} =0 in Pk
that Lsi1(2) = Lsy2(x) =

We shall suppose without loss of generality

k).
Lp(x) = 0 changing if it is necessary each IL;
L < n

for Ly — (Li/Lo)(x) Lo, s+ 1 < i So Lst1,Lsta,..., L, are linear forms in
Xq,.. ., X,
Our aim now is to construct a family of linear forms My, M1, Mo, ..., M,

such that My = Lo, the forms M1, Msyo,..., M, € k[ X4, ...
ficients from 7Z of the length O(nlog d),

, X,,] have the coef-

V/Q{MQIM5+1IM5+22...IMHIO}:®
in P"(k) and

con(z, VYN{My = Msy1 = Ms4o=... =M, =0} =0

11



in P7(k).

We need the following definition. Let an algebraic curve C' C A" (k) and its
branch C* in the point (0,...,0) with a uniformizing element 7 be given. So we
have the decompositions of coordinate functions of the branch C* in formal power

series

T =YimT  + g YT, 1 <i <,
m<jEL

where v; ; €k forall 1 <i<n,m<j€Zand (Yim,---,Ynm) # (0,...,0). Then
the tangent line [ to this branch is defined by the formula

L={(Y1my-- s ¥nm)t : t €K}
As in Section 1 construct a real structure for the field k, see [3], [5], which
induces the real structure on k. Let
€p > 0 be an infinitely small value relatively to the field %,
£1 > 0 an infinitely small value relatively to the field k(gg),
£9 > 0 an infinitely small value relatively to the field k(eg,e1),
the field Ky = k(eg,£1,22).

Denote I = {Ls4y1 = Lsy2 = ... = L, = 0} C A" (k) where A" has the
coordinate functions Xi, ..., X,. Consider the following system of equations and
inequalities with coefficients from the field Ky in Xy ..., X,,,Y7...,Y,

hi(1, X1 ..., X)) —e2 X3 =0, 1<i<s

219’9 |Xi|2 = 6%,
iV, ¥a) =0, s+1<j<n,
Doi<i<n | Xi — Yi|? < goe?.

LEMMA 6. Let the family Lo, Lsy1, Lsya, ..., Ly of linear forms be as above.
The following conditions are equivalent

(i) con(z, V)N {Lo = Lsy1 = Lsya =...= L, =0} = @ in P"(k)

(ii) con(z,UYN{Lsy1 = Lsya =...= L, =0} = {z} in A" (k)

(iii) system (6) has no solutions in A" (Ks).

PROOF. The equivalence of (i) and (ii) is straightforward.

Let 0 < <2 Ifz € m is not infinitely great relatively to the field
m the the standard part st.,(z) € m is defined, see [5], If
z=(z1,...2n) € A" (m) and all the standard parts st.,(z;), 1 < j <n
are defined then set

ste, (2) = (ste,(21), ... ste,(2n)) € A" (k(c0, ..., 8i21)).

12



Besides that, the maps of the standard part
ste, : P"(k(co,...,e:)) — P"(k(eo, ..., €i-1))

are defined, see [5], for ¢ = 0, 1,2. The restrictions of these maps to A" = {X # 0}
coincide with the standard part of the elements of A" as above when the latter 1s

defined.

Suppose that there exists a solution (%, ..., 2%, ¥}, ..., y) € A" (K3) of system
(6). Denote z* = (x7,..., ;) and ¥ = (¥7,...,y;). Then one can see immediately

that the line (the standard parts here are considered in A™)
[ = {st., ost., (ste,y"/e1)t : t €k} Ccon(x,UYN{Lsy1=...,L, =0},

since { is in the set of zeros of the corresponding ideal of the forms of the lowest

degree.

Conversely, suppose that there exists a line { C con(z,U") N {Ls41 = Lsy2 =

...=L,=0},zel Letl={Ly=...= L, =0} where Lo,..., Ly are linear
forms in Xy,..., X,. Hence,
I Ccon(z,U'N{Ls=...= Ly =0})

by the definition of the cone as the ideal of forms of the lowest degree. But U'N{Ly =
...= Ls; = 0} is a curve. One can see that [ is a tangent to some branch of this
curve. If one takes 7 as a uniformizing element of this branch in the point z one can
easily get the existence of a solution of (6) considering the coordinate functions of
this branch as functions in 7. The lemma is proved. Factually, one can also prove

this lemma applying the transfer principle.

Suppose that system (6) has a solution z*. Construct such a solution, see [3],
[5], Let the line

l = {st., ost., (ste,x*/e1)t : t €k} C con(z,U’)

and ! = {Ls = ...= L, = 0} in the denotations of the proof of Lemma 6. Construct
linear forms Lo, ..., Ls and also L1 in Xy, ..., X, such that Lq,..., L, are linearly
independent over k, see [3], [5],. Denote L' = {L; = Lyy1 = Lyjo = ...= L, = 0}.

This is a linear subspace such that L' +1 = L.

Let the line
U'={z*t : t € Ky} C con(z,U").

Construct the linear subspace I’ + I’. Then the subspace L’ + [’ is infinitely close

to L' + 1 since z* is a solution of (6). Construct linear forms L{,,,...,L; €
Ky[Xy,...,Xpn] such that L'+ = {L},, = ... = L, = 0} in A" (K5). Set also
Li = Lo.

Since L’ 4+’ is infinitely close to I’ +1 we can suppose without loss of generality

(may be changing equations of L' + ' and L’ + () that the linear forms L; — L;,

13



s+1 < i < n have infinitely small coefficients relatively to the field k. So by Lemma

8 from [4] we have

#V' N {Lgg1=Lego=.. =Ly, =0} <#V'0{Liy, =L ,=...= L, =0}
Further, there exist two points x,z* € V' N{L,,, = L{,, = ... = L = 0} such
that their standard parts in ]P)”(E) are equal to . Therefore, N =
#V' W {Llep1 =Leqo=... =L, =0} <#V' N{Liy, =L, =...=L, =0} =
N'.

Set My = Lp. Now apply the analog of the second auxiliary algorithm from

[5] to the linear forms Lg, L, 4, ..., L) and construct linear forms Myy1,..., M,
in Xy,..., X, with coefficients from Z of the length O(nlog d) such that #V’' N
{Ms+1 = ... = Mn = 0} Z N/ and V/Q{MQ = Ms+1 = ... = n — 0} == @

After that, return recursively to the beginning of the algorithm described changing
the forms Lo, Lsy1, ..., L, for Mo, Ms1q,..., M,. Since N’ > N there are at most

d’® such returns in the algorithm.

So we shall obtain finally by Lemma 6 a family of linear forms My, M;41,
Msyo, ..., M, such that My = Lo, the forms M1, Msyo, ..., M, € k[X1,..., X,]
with coefficients from Z of the length O(nlog d),

V/Q{MQIM5+1IM5+QI...I nIO}:Q
in P"(k) and

con(z, VYN{My = Msy1 = Ms4o=... =M, =0} =0

in P"(k). We shall suppose changing as described above the forms Lo, Ls41,..., Ly
for Mo, Msq1, ..., My, that these properties are satisfied for Lo, Lsq1,..., Ly, l.e.
the forms Ls41, Lsya, ..., Ly € k[X4,..., X,] have the coefficients from Z of the
length O(nlog d),

Vin{lo=lsgg1=Lsyo=...=L,=0}=0
in P"(k) and
con(z, VYN{Lo=Lsy1 = Lsy2=...=L, =0} =0
in P7(k).
Our aim now is to construct a family of linear forms My, M1, Mo, ..., M,

such that My = Ly, the forms Msy1, M1, ..., M, € k[X1,..., X,] have the coef-
ficients from 7Z of the length O(nlog d),

V/Q{MQIM5+1IM5+22...IMHIO}:®
in P7(k),

con(z, V') N{Mo = Msy1 = Msys = ... = M, =0} =0

14



in P"(k) and all the points from V' N {M;41 = Ms42 = ... = M, = 0} \ {z} are
smooth points of the variety V.

Construct, c.f. [5], all the points of the set V! N{L;11 = Lyqo = ... = Ly =
0} and then taking their standard parts all points #,, I < u < N from the set
ViNn{Lsy1 = Lsyo = ... = L, = 0} in ]P)”(E) We can suppose without loss of
generality that 1 = 2. Construct a linear form L{ in Xy, ..., X,, with coefficients

from Z of the length O(nlog d) such that L{(x,) # 0 forall 2 < j < N.
Consider the projection
p: V' \{z} —P" k), (Xo:...: Xn) = (Lh : Leg1:...: Lp).

Show that for every irreducible component W of V'’ such that there exists u > 2 for
which z, € W the morphism p; = p|w\ ) is dominant.

Indeed, we should show that for every such component W of V'’ the closure F

in the Zariski topology of the image p(W \ {«}) coincides with P"~*(k). For every

Ast1y - -y An € k() which are infinitely small relatively to the field & by Lemma 8

from [4] the set W {Lsjy1—As41 L0 = ... = Lp=A Ly = 0\ {z} D in P~ *(k(e)).

Therefore, p=(1 : Agp1 1 ... Ay) is not empty in P*~%(k(g)). Therefore,

Fk(e)) =P (k(e)),
and hence, F' = P"~(k).
We have the following analog of Lemma 1.

LEMMA 7. Let the variety V', its component W, z, € W, u > 2, the linear

forms L, Ls41, Ls42,..., Ly and the projection p; : W\ {#} — P"*(k) be as

above.

(i) there exists an open in the Zariski topology subset U of P"~*(k) such that for
every #* € U the cardinality #p7'(z*) =6 > 0

(i) if for some point #* € P?~*(k) the cardinality #p] ' (x*) = & then for every
Yy € 101_1 (z*) the point y is a smooth point of the variety W and the differential
of p in the point y

dyp : Tyw — Ty pr-s

is the isomorphism of tangent spaces Ty w and Ty+ pa-s of the varieties W

and P"~#(k) in the points y and z* respectively.

PROOF. The proof is similar to the proof of Lemma 1. The lemma is proved.

Let @y, = (2uo : ... : %un) where all #,; are from a finite extension of k.
Construct a real structure for the field K = k(zuo,...,%un), see [3], [5], which

induces the real structure on k.

Let e1 > 0 be an infinitely small value relatively to the field K and e5 > 0 an
infinitely small value relatively to the field K(g1), the field Ky = K (e, £2).

15



Let Y, ..., Y, be new variables. For every 0 < u < N consider the following

system of equations and inequalities with coefficients in K,

hi =0, 1<i<s

hi(Yo, ..., Yn) =0, 1<i<s
Li(Xo=Yy, ., Xp—=Y,)=0, s+1<j<n
Li(Xo—Yo, ..., Xn = Yp) =0, (7, u)

2o<i<n X — @yl < e,
> o<i<n 1Yi— zyil* < e,
Docicn [Yi— Xi* > e,

We have the following analog of Lemma 2

LEMMA 8. Let V' and the projection p : V' \ {2} — P"~%(k) be as above.
If for every 2 < u < N there exist no solutions of system (7,u) in A?**+2(K;) then
all the points {xy}o<u<n of the variety V'’ are smooth and the differentials of the

projection p in points {z, }1<u<n are isomorphisms.

PROOF. Follows directly from Lemma 7 and Lemma 8 from [4], c.f. also the
proof of lemmas 14, 15 of [5].

Return to the description of the algorithm. Construct a solution of some system
(7,u) or ascertain that for every 2 < u < N there exists no solutions of system
(7,u) in AZ"*2(K). In the last case by Lemma 8 all the points {#u}a<u<n of the
variety V'’ are smooth and the differentials of the projection p in points {2y }1<u<n

are isomorphisms.

Suppose that there exists a solution

(T, T Yoy -y Yh) € A2"+2(E)

of some system (1,ug). Denote ' = (f : ... :zL) and ¥ = (v : ... : ¥},), so

',y € PP(Ky). Set
I’

K3

=L; — (Li/Ly) (&)L, s +1 < i < n.

Compute all the points from the set V' N {L,,, = ... = L, = 0} in P"(Ky).
Denote N' = #V'Nn{L,,, = ... = L, = 0}. By Lemma 8 from [4] for every
eV n{Lli,, = ... = L; =0} there exists 1 <u < N such that st 2™ = z,. So
N"> N. Fuarther, ',y e V'N{L,,, = ... = L), =0}, ' # ¢/ and st a2’ = sty
Therefore, N' > N +1> N.

n

Apply the second auxiliary algorithm from [5] to the linear forms L}, ..., L]
and construct linear forms M;s41,..., M, in X5, ..., X,, with coefficients from Z of

the length O(nlog d) such that
#V'N{Msy1= ... =M, =0} >N >N,

ViN{Lo=M;y1 = ... =M, =0} = O and set also My = Lg
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in P7(k).

After that, return recursively to the beginning of the algorithm described chang-
ing the forms Lo, Lsy1,..., L, for Lo, Msy1, ..., M,. Since N’ > N there are at

most d® such returns in the algorithm.

Thus, effecting this recursive construction till the end we can suppose without
loss of generality by Lemma 8 that all the points z,, 2 < u < N are smooth on
the variety V’ and the differentials of the projection p, see Lemma &, in the points
Ty, 2 < u < N are isomorphisms. That is we can construct the required M; = L;,
j=0,s+1,s+2,...,n.

Now construct applying Lemma 5 the subset of indices A C {2,..., N} such
that

{ey tue Ay =V,n{Llsy1= ... =L, =0} (8)
in P7(k).
LEMMA 9. Let W be an irreducible component of ¥V’ and linear forms
Lo, L), LY, i = 0,1 be such that for i = 0,1 it is hold L), ..., L\ €
E[Xla .. 'aXn]a

Wn{Ly=L{, = ... =L =0} =0,
con(ar:,VV)ﬁ{Lo:Lgi_l)_1 = ... =LW=01=0
in P*(k). Further, let for i = 0,1 all the points of Wﬁ{Lg?_l =...=19= 0\ {z}
be smooth and the differentials of the projection
p(i) W — ]P)"_S(E), (Xo:...: Xpn) = (Lo : Lgi_l)_l CL Lﬁf)).
are isomorphisms in all the point from W N {Lgi_l)_1 =...=1¥ = 0} \ {z}. Then
#wn{rQ = . =10 =0=¢#wn Ll = ... =L =0}

PROOF. Suppose contrary, that

#wn{llY = =10 =0y <gwn{ = .. =LV =0}

J,r
Consider the product of projective spaces P™ x P! with the coordinates ((Xj :
X)), (Zh 2 Z7)). Let

L={zl" + 2L =0, s+ 1< j<n}
be the variety in (P”xP1)(k). Define C' as the union of components of ED(WX]P”(E))
which are not equal to {X; = ... = X, = 0} and not contained in a union of a
finite number of hyperplanes {17} —coZ) = 0} where ¢g,¢; € k. Then C'is a curve
in (P x PY)(k) since, c.f. [6], #L N (W x PY(k)) N {c1 2} — co 2} = 0} < 400 for all
points (co : ¢1) € P1(k) excepting a finite number of them.
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Let £ > 0 be an infinitely small value relatively the field & as above. So the map
of the standard part

st 1 (P" x PY(k(g)) — (P x PY)(k)
is defined, c.f. [B].

Show that the point (z,(1:0)) € C. Indeed, c.f. [6], #C N {Zbe — 7] = 0} =
aw (L perl =0, se1<j<ny > #wnrl) = ... =L = 0} Let
25,1 < i< Ny be all the points of CN{Z,e—Z} = 0}. Then st(z}) € cn{z, =0},
i.e. st(a:;f) has the form ((z’,(1 : 0)) where 2’ € W N {Lg?l_)l = ... = Lglo) =
0}. The differentials of the projection p(9) are isomorphisms in all the point from
wn {Lg?l_)l = ... .=1Y = 0} \ {z}. Thus, by the theorem about the implicit
function for every ' € W nN {Lg?l_)l =..=1= 0} \ {#} there exists a unique
1 < j < Ny such that st(z}) = z’. So there exists at least one 1 < jo < N; such
that st(z} ) = . Thus, (z,(1:0)) € C and our assertion is proved.

Denote by m : P? x P! —s P” the projection to the first factor P” and set
Cy = n(0), Cy = C1N{Xy # 0} C {Xo # 0} = A”(k) € P*(k). Then by the
proved z € Cs. Denote 2* = m(x},) € Cs5 and by the y* the projection (which is
defined when a real structure is defined ) of the point #* to the linear subspace
{Lg?l_)l = ... =10 = 0} N{Xo # 0} C A?(k). Denote z* = (2F,...,x}) and
v = (yi,.-,u5). Then S e |2l — UF 1P/ D 1 cicn |27|? is an infinitely small
P e (1
J
0, s+ 1 < j < n}is infinitely close to {Lg?l_)l =...= Lglo) = 0}. Therefore, c.f. the

proof of Lemma 6, the line

value relatively to the field k since the linear subspace, see above, {L;O) + el

L= {ste(y' /(D I YAt 1€ R} Coonle, W) N {LY, = ... = L = 0}.
1<i<n

We get a contradiction. The lemma is proved.

Return to the consideration of the algorithm. Note that the condition that the

differentials of the projection
p(W) : W — P 5(k), (Xo:...: Xp) = (Lo Lggr:...: Ly).

are isomorphisms in all the point from W N {L;y; = ... = L, = 0} \ {«} follows
from the condition that the differentials of the projection

Py W\{J;}—)ED"_S(E), (Xo:...:Xp) = (Lo : Lgg1 : ... Ly).

are isomorphisms in all the point from W N{L;11 = ... = L, = 0} \ {#}. This

fact follows directly from the theorem about the implicit function.

LEMMA 10. Let u(z,V;) be the multiplicity of the point = on the variety Vi
as above. Then

plz, Vi) = deg V, — #A. (9)
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PROOF. TLet W be an arbitrary irreducible component of V'’ and A(W) C
{1,..., N} be the subset of indices such that

{ey tue AWM =Wn{lsy1= ... =L, =0}

in P™(k). Tt is sufficient to prove that p(z, W) = degW — #A(W) since all the

terms in this formula are additive relatively to the union of components of varieties.

Consider the set of families H of n — s linear forms Hs11,..., Hpin X1,..., X,
with coefficients from k as the affine space A?=#)" (k).

Denote by Us the subset of A(?=s)" (E) of such families H;11,..., H, for which

WQ{LQIH5+1I IHHIO}:Q,
con(e, WYN{Hy=Hs41 = ...=H,=0}1=0
in P7(k), all the points of W N {Hsy1 = ... = H, = 0} \ {2} are smooth and the

differentials of the projection
p(HY : W — P %(k), (Xo:...: X)) (Lo : Hepy .o Hy).

are isomorphisms in all the point from WN{H,41 = ... = H, = 0}\{z}. Then Us
is open in the Zariski topology. So by the definition of the multiplicity there exists
such a family H = {H;}.y1<j<n for which p(z, W) = degW — #(W N {H41 =
= H, =0\ fe])

By the remark just after the proof of Lemma 9 the conditions of Lemma 9 are
satisfied for L;O) = L; and L;l) = H;, 0 < j <n. Now applying Lemma 9 we get
the required formula p(z, W) = deg W — #A(W). The lemma is proved.

Thus, by Lemma 10 we can compute the multiplicity p(x, V;) and, therefore,
p(z, V). The algorithm for the computation of the multiplicity of a point is com-
pletely described. Theorem 3 is proved.
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