
Almost Optimal Sublinear TimeParallel Recognition Algorithmsfor Three Subclasses of C
'sLawrence L. Larmore �Wojciech Rytter yAbstractSublinear time almost optimal algorithms for the recognition problem for three basic sub-classes of context-free languages (unambiguous, deterministic and linear) are presented.Optimality is measured with respect to the work of the best known sequential algorithmfor a given problem.1 IntroductionThe basic aim of parallelism is to reduce the time, however this is frequently done by increasing thetotal work of the algorithm. By work we mean the time-processor product. Polylogarithmic timealgorithms typically have much greater work than corresponding sequential algorithms. Sublineartime algorithms are usually better in this sense.We say that a parallel algorithm for a given problem is �-optimal if its work matches the work ofthe best known sequential algorithm within a factor of O(n� log2(n)). For each of three subclassesof context-free languages (CFL for short) considered in this paper, there are polylogarithmic timerecognition algorithms which are optimal within a factor of O(n � log2(n)).We gain e�ciency at the expense of parallel time and we present sublinear time recognitionalgorithms which are �-optimal for � arbitrarily close to 0. Such algorithms cannot be simply�Department of Computer Science, University of Nevada, Las Vegas, NV 89154{4019, USA. Partially sup-ported by National Science Foundation grants CCR-9112067 and CCR-9503441, and by the University of Bonn.Email:larmore@cs.unlv.eduyInstitute of Informatics, Warsaw University, 02{097 Warszawa. Partially supported by DFG Grant Bo 56/142-1.Email:rytter@mimuw.edu.pl 1

derived by naively slowing down the known polylogarithmic time algorithms, since the work wouldnot be decreased. The best known sequential times for the recognition problem for unambiguous,deterministic and linear CFL's are, respectively, TU = O(n2), TD = O(n) and TL = O(n2). Themain result of this paper is the following theorem.Theorem 1.1 (Main theorem) For each of the three subclasses (unambiguous, deterministic, lin-ear) of CFL's, and for any 0 < � < 1, there is an �-optimal parallel algorithm working in timeO(n1�� log2 n).We remark that the polylog factor is irrelevant, in some sense, since it is asymptotically over-whelmed by even the slightest change in the value of �. Theorem 1.1 is still valid if we remove thelog2(n) factor, however the formulation above will be more convenient to deal with later.The algorithms presented in this paper mimic the sequential algorithms, but they advance in largersteps. The size of one \large step" is O(n�). Each large step is performed in parallel in O(logn)time, and there are O(n1��) such steps which are executed consecutively. The larger � is, the fasterthe algorithm.Throughout this paper, we use the CREW PRAM model of parallel computation (see for example[5]).2 Parallel recognition of unambiguous CFL'sWe use a version of the algorithm presented in [8] for parallel computation of some dynamic pro-gramming recurrences. Assume G = (VN ; VT ; P; Z) is an unambiguous context-free grammar, whereVN ; VT are the sets of nonterminal and terminal symbols, respectively, P is the set of productions,and Z is a start symbol of the grammar. Without loss of generality, G is in Chomsky normal form,and there are no useless symbols (see [6]).Assume we are given an input string w = a1a2 : : : an. Denote by w[i; j] the substring ai+1 : : : aj .The recognition problem is to determine whether w is generated by G.We explain the main ideas using the algebraic framework of composition systems [3]. The compo-sition system corresponding to a given grammarG and the input string w is a triple S = (N;
; init),where N = f (A; i; j) : A 2 VN and 0 � i < j � n gThe elements of N are called items . Each item (A; i; j) corresponds to the possibility that w[i; j]is derived from the nonterminal A. Let \)" be the relation \derives in one step" according to agiven grammar and let \ +)" be the transitive closure of this relation. We say that an item (A; i; j)is valid if A +)w[i; j]. The set init is a set of \atomic" valid items and the operation \
," which wecall composition generates larger items from smaller ones, and x
 y � N for all x; y 2 N . init � Nis the set of initial elements (generators) of the form (A; i; i+ 1), where A) ai+1 and compositionis de�ned as follows: 2

(B; i; k)
 (C; k; j) = f(A; i; j) : A 2 VN and A) BCg(B; i; k)
 (C; k0; j) = ; if k 6= k0For two sets X; Y of items de�ne: X
 Y = [x2X;y2Y x
 yFor x = (A; i; j) de�ne the size of x (written jxj) to be j� i. If X is a set then we use a notation#X for the cardinality of X .Let h = n�, where 0 < � < 1. We partition the set N into the disjoint subsets, for 0 � k < n=hNk = fx 2 N : kh < jxj � (k+ 1)hgFor 0 � k < n=h de�ne the kth strip to be Sk = fx 2 Nk : x is validg.Fact 2.1 #Sk = O(n1+�) for each 0 < k < n=h.For a set X � N denote by Closure(X) the closure of X with respect to the operation
.Fact 2.2 The item x is valid if and only if x 2 Closure(init).
x

y1

y

 small items

k-1items in LESS

x

y

the corresponding path

y2

in the dependency graphFigure 1: The structure of a generation: x 2 FastClosure(fyg). The small items are elements of S0.Denote, for X � Sk, by FastClosurek(X), the set of all elements in Nk which can be gener-ated from elements in X by multiplying (on the left or right) by elements of S0. More formallyFastClosurek(X) is the smallest subset Y � Nk such that X � Y and (Y
 S0 [S0
 Y) \Nk � Y .Denote by lessk the union of all strips with indices smaller than k, for k > 0. Our algorithm isbased on the following easy lemma. 3

Lemma 2.3 (Correctness lemma)Assume k > 0. Then Sk = FastClosurek(lessk�1
 lessk�1).Proof. Let T be a tree generating x 2 Sk from the generators. Let y be a lowest element in T whichis in Sk and y1, y2 be the sons of y (see Figure 1) Then y1; y2 2 less(k) and there is a path from xto y in G. Since y1; y2 2 lessk , we have y 2 lessk
 lessk. All elements \hanging" from the mainbranch are small items, i.e., elements of S0. Hence x 2 FastClosurek(lessk
 lessk).The correctness of the algorithm below follows from Lemma 2.3.Algorithm Compute Closure ;1: fpreprocessingg compute the strip S0; Square0 := emptyset;2: for k = 1 to n1�� dobegin fmain iterationgcomment: Squarek�1 = lessk�1
 lessk�1.2.1: Sk := FastClosurek(Squarek�1);2.2: Newk := lessk�1
 Sk [Sk
 lessk�1 [Sk
 Sk;2.3: Squarek := Squarek�1 [Newk;end fmain iteration g3: return Sk Sk.Lemma 2.4The total work of all iterations needed to perform Step 2.2 of the algorithm (computing all Newk) isO(n2 logn).Proof. The unambiguity of the grammar implies easily the following fact.Claim 1.The sets Newk computed in the algorithm are pairwise disjoint.We need a data structure to perform the operation X
Y with the work proportional to the sizeof the result. We assume the following list representation of the set X � N . For each position k andnonterminal A, we keep (as a list) the setsleftX(k; A) = fi : (A; i; k) 2 XgrightX(A; i) = fj : (A; k; j) 2 XgThe computation of X
 Y involves processing all productions A! BC and all positions k.X
 Y = [k;A!BC f(A; i; j) : i 2 leftX(k; A) and j 2 rightY (C; k)g4

The operations on the lists can be done in logarithmic time. This shows:Claim 2. Assume that X; Y are sets of valid items. Then X
 Y can be computed in logarithmictime, with work proportional to the size of the result.The work done during each iteration is proportional to the number of newly generated elements.The newly generated sets are pairwise disjoint (due to Claim 1) and their total size is quadratic.Hence the total work of the algorithm is also quadratic.Let Gk = (Nk; Ek), called the dependency graph, where the set of edges isEk = f(x; y) : x = y
 z or x = z
 y for some z 2 S0gAn example of a dependency path in the graph Gk is illustrated in Figure 1.Fact 2.5 #Ek = O(n1+2�) and x 2 FastFindk(X) if and only if there is a path in Gk from x tosome y 2 X.Lemma 2.61. The computation of Step 1 can be done in O(log2 n) time with n1+2� processors.2. Assume X � Sk and the set S0 is precomputed. Then Step 2.1 can be performed in O(logn)time with n1+2� processors.Proof.Point (1).We refer the reader to [4], where it was shown that the closure of set of initial items (elements ofinit) for an unambiguous grammar can be found in O(log2 n) time, with the number of processorsproportional to the number of edges of the dependency graph, which is O(n1+2�).Point (2).According to [4] the set of vertices from which a node of X is reachable can be computed in O(logn)time, with the number of processors proportional to the number of edges, using a version of paralleltree contraction and a special property of the graph Gk, namely uniqueness of paths from one vertexto another [4].The two preceding lemmas directly imply the main result of this section:Theorem 2.7 Assume an unambiguous CFL is given by a context-free grammar. Then, for aninput string w of length n, we can check if w is generated by the grammar in O(n1�� log n) time withO(n2+�) work, for any 0 < � < 1. 5

3 Parallel Recognition of Deterministic Context-Free LanguagesIn this section we show how to simulate deterministic pushdown automata in parallel with e�ciency(total work) close to linear. Let h = n�. Our simulation will take O(n1��) \large" steps sequentially.Each large step, working in logarithmic parallel time, advances the computation by at least h, exceptperhaps the last step. Thus, the simulation is a combination of a sequential and parallel computation.We refer the reader to [1] or [7] for the de�nition of a one-way deterministic pushdown automaton(DPDA for short). Let A be a DPDA. Assume that we are given an input text w of length n. We canassume that in each step the height of the stack changes by 1 or �1. A one-step computation whichincreases the height of the stack we call an up move, while a one-step computation which decreasesthe height of the stack we call a down move. A surface con�guration (simply con�guration forshort) is the description of the information accessible to the control of the DPDA plus the positionof the input head at a given moment. Formally, the surface con�guration is a triplex = hstate; position; top symbol of stackiWe distinguish two types of con�gurations. A con�guration x is a pop con�guration if A makes apop move while it is con�guration x. Otherwise, x is a push con�guration.We de�ne a partial con�guration to be a pair hstate; positioni, and we de�ne a total con�gurationto be a pair hx; �i where x is a con�guration and � is the contents of the stack. Of course, the topsymbol of � must be compatible with x.We de�ne a subcomputation to be a pair hx; yi of con�gurations such that A will eventually reachy with a one element stack after it starts at x with a one element stack (see Figure 2). We de�nethe size of the subcomputation, denoted jhx; yij, to be the absolute di�erence of the positions ofx and y, i.e., the number of input symbols read between x and y. In the worst case, there arequadratically many subcomputations. However, it su�ces to consider a subset of linear size, due tothe introduction of successors.De�ne a con�guration y to be a successor of x if hx; yi is the shortest (smallest length, possiblyzero length) subcomputation starting at x. In this case we write y = Succ(x), (see Figure 6). Observethat there is only a linear number of the pairs (x; Succ(x)).Fix a parameter 0 < � < 1. If y is the successor of x and jhx; yij � n�, we say that the subcom-putation hx; yi is small . A subcomputation hx; yi is said to be a shortcut if it can be decomposedinto a sequence of small subcomputations and is maximal with respect to this property. Formally,de�ne hx; xi to be a shortcut if x is not the beginning of any small computation.Lemma 3.1(1) The set of all small subcomputations can be computed in O(n�) time with n processors or inO(log2 n) time with n1+� processors. (2) If the set of all small subcomputations is computed thenthe set of all shortcuts can be computed in O(logn) time with n processors.6

x0

x y1 y3y2

y

the same level

configurations at

height of

the stack

position in the input stringFigure 2: The history of a computation of a DPDA as a \mountain range." We have that(x; y1); (x; y2); (x; y3) are subcomputations. y1 = Succ(x), y2 = Succ(y1) and y3 = Succ(y2).Proof. (1) We assign one processor to each con�guration x. The assigned processors sequentiallysimulate n� steps of the DPDA. If there are n processors, this requires O(n�) time. An algorithmwhich works in O(log2 n) time using n1+� processors can be constructed as a version of an algorithmin [4].(2) The shortcuts can be computed by iterating the operator Succ logarithmically many times.For each con�guration x, one processor su�ces.
x x1 x2 x3 x4

x x1 x2 x3 x4

y = UP(x)

y = DOWN(x)

small subcomputations

x

x

UP(x)

DOWN(x)

a shortcut upwards

a shortcut downwards

large subcomputation

top1

top2

....Figure 3: The functions down and up correspond to maximal chains of small computations on thesame level, followed by a pop or a push move, respectively. In the case of a downward shortcut y isthe partial con�guration, the top of the stack is not speci�ed in y, the actual top symbol top1 is thesame as the one which was immediately below x.Assume that hx; zi is a shortcut. If y is a push con�guration then the con�guration immediatelyfollowing z is denoted by up(x) (see Figure 3, where z = x4). If z is a pop con�guration, then7

the partial con�guration following z is denoted by down(x) (see Figure 3). Observe that down(x)does not determine completely the next con�guration, since this depends on the top symbol whichis below x So if we have a partial con�guration x1 = down(x), the actual top stack symbol is top1,and we apply next (for example) a down move, then the next con�guration is x2 = down(x1; top1)(see Figure 4).
small subcomputations

x
x4

a computation of A

the stack

x

x1 = DOWN(x)

(x1, top1)

(x2,top2)

x3

x2 = DOWN(x1,top1)

x3 = UP(x2,top2)

x4 = UP(x3)

top2

top1

top2

top1

corresponding computation of A’Figure 4: The generalized automaton A0 is an accelerated version of A. Observe that x1; x2 arepartial con�gurations. The top stack symbols are provided by the stack at the beginning of thecomputation.For a given DPDA A and input word w, de�ne a generalized DPDA A0 which speeds up A byusing shortcuts. Each move of A0 corresponds to a single up or down operation (see Figure 4). A0can shift its input head by any number of positions in one move, according to its transition table,which consists of the transition table of A and the information about all shortcuts of A on w. A0works as follows. Assume that A0 is in the con�guration x and hx; x0i is a shortcut. If x0 is a pushcon�guration of A then the next con�guration of A0 is up(x) and A0 pushes onto the stack the samesymbol as A when it moves from x0. If x0 is a pop con�guration, then A0 pops the stack and the nextpartial con�guration of A0 is down(x).The con�gurations in which A0 makes a pop move are called down con�gurations and the con�gu-rations in which A0 reduces the stack are called up con�gurations .Observe that a down con�guration in A0 is not necessarily a pop con�guration in A.We say that a sequence of consecutive moves of A0 is one-turn if it consists of a sequence of downmoves followed by a sequence of up moves, followed by a down move if the last con�guration is adown con�guration. So it is the maximal sequence of a type:down��up��(down_�),where � is the empty sequence.Lemma 3.2 Assume A starts with some stack � and a con�guration x. Assume A makes at least h8

h moves of A

stack

next stack

x6

x5

x4

x3

x2

x1

x

zFigure 5: A maximal sequence of type down��up��(down_�). It starts at x and ends at x6. Eachsubcomputation denoted by dotted lines is a shortcut due to the size of the interval. z is thecon�guration following x after exactly h moves (assume the simulated automaton A does not stopbefore). A0 advances at least by h steps of A.steps. Let z be a con�guration which follows from x after the maximal one-turn sequence of movesof A0. Then A0 advances by at least h steps with respect to A.Proof. Assume A starts at a con�guration x and after exactly h steps arrives at the con�gurationz. Then each included subcomputation is a shortcut (or a part of a shortcut) due to the size ofconsidered time-interval (see Figure 5).The accelerated automaton A0 will reach the bottom-most position in the stack and will go upusing the shortcuts. It is possible that A0 will miss z (z would be inside a shortcut) but in any caseA0 advances at least h steps with respect to A.Theorem 3.3 There exists a parallel algorithm for the recognition of deterministic context free lan-guages which takes O(n1�� logn) time with total work O(n1+�).Proof. Recall that h = n�. One stage of the algorithm is a simulation of a \long" one-turn sequenceof moves of A0 in logarithmic time. Lemma 3.2 guarantees that in one stage the time of the simulatedDPDA A advances by at least h, except perhaps in the last stage. By a total con�guration we meanthe (surface) con�guration together with the contents of the stack. For k = 1 : : : nh , in the kth stagewe compute the total con�guration hx; �ki, where x is a con�guration and �k is the next contents ofthe stack. After k such stages we advance by Tk steps with respect to A, where Tk � minfkh; ng.In the kth stage we restrict our computations to the working area, that is, the maximal sequenceof moves of A (starting form a given total con�guration) which together increase the input positionand decrease the stack height by at most h (see Figure 6).In one stage of the algorithm a maximal part of a one-turn sequence is simulated which is in theactual working area (see Figure 6).There are two cases for computations in the (k + 1)st working area. A possible history of a9

computation in the �rst case is shown in Figure 6. In this (�rst) case we follow a sequence of down'sof A0 and then a sequence of up's and we go outside the working area.In the second case we have the sequence consisting only of down moves of A0. The height of stackis reduced by h or the stack becomes empty afterwards.In both cases the time (number of original steps of A simulated by A0 in a single one-turn stageincreases by at least n�, or terminates in a non-extendible situation.One stage consists of two substages. The �rst substage is the computation of the maximalsequence of down moves inside the actual working area. The second substage is the computation ofthe maximal sequence of push moves of A in the (k+ 1)st working area.
x

y

T
k

Tk+1

DOWN

 UP

*

*

zh

the k-th stack

at least h

at most one DOWN move

new stack

the (k+1) working area

Figure 6: The computations inside the (k+ 1)st working area { case 1.We show only how to implement the �rst substage and construct the maximal sequence of downcon�gurations in the working area. The construction of the sequence of up con�gurations is quitesimilar.Potentially there are O(n�) con�gurations y in the (k+1)st working area. Let �k be the contentsof the stack after the k-th stage. We consider now only down con�gurations. Let tops be the sthsymbol of the stack �k counting from the top of the stack. If x0 = hs; ii is a partial con�guration andz is a stack element, then we identify the pair hx0; zi with the con�guration x = hs; i; zi.If y is a down con�guration and s � n� then denote by next(y; s) the pair

down(y); tops�1�; s� 1�.The con�guration
down(y); tops�1� is realized from y and the next top symbol (after a pop move).It is easy to see that the maximal sequence of down con�gurations in the working area is of theform: x0; next(x0); next2(x0); next3(x0); : : :However, such a sequence can be easily computed in logarithmic time using a squaring technique.10

The crucial point is that there are O(n2�) objects hx; ki, due to the de�nition of the (k+1)st workingarea and the restriction on the change of the height of the stack. Hence n2� processors are su�cientto compute the maximal sequence of down con�gurations. The sequence of up:1 con�gurations andthe additional part of the stack can be computed similarly. The total work results as a product ofn2� and the number of stages, which is O(n1��). This completes the proof.4 Parallel Recognition of Linear Context-Free LanguagesA context-free grammar is said to be linear if each production has at most one non-terminal on theright side. Any linear context-free language is generated by a grammar where every production isof the form A ! aB, A ! Ba, or A ! a. It was shown in [10] that the problem of recognition oflinear context-free languages can be reduced to the sum-of-path-weights problem over a grid graph,a special kind of directed acyclic graph.The nodes of a grid graph form a square array, and all edges point one position down or to theright. Each edge has a weight, which is a binary relation over the set of nonterminals. The set of suchrelations forms a semiring with the operation being composition of relations. We refer the reader to[10] for more details of how the recognition problem for linear context-free languages reduces to amore general problem related to paths on a grid graph.In the general sum-of-path-weights problem, each edge in the grid graph has a weight, whichis a member of a semiring. The weight of any path is de�ned to be the product of the weights ofthe edges that constitute that path, and the problem is to �nd the sum of the weights of all pathsfrom the source (left upper corner of the grid) to the sink (bottom right corner). We can assumethat every operation in the semiring takes constant time, since the semiring has constant size in thisapplication.The sum-of-path-weights problem can be solved in O(n2) time sequentially, by dynamic program-ming, by visiting nodes in a topological order, and computing, for each node x, f(x), the sum of theweights of all paths from the source to x. The recurrence is:f(source) = identity of the semiringf(x) = Xy!x f(y)
 weight(y; x) if x 6= sourceWe brie
y review the parallel algorithm of [2] and [10]. Consider any small square within thegrid graph, i.e., the subgraph of all nodes in the square of size d whose upper left corner is (a; b),together with all edges between those nodes, for given a, b, and d. We refer to a node along the topor left edge of the square as an \in node" and a node along the bottom or right edge as an \outnode" (see Figure 7).Let X = Xa;b;d be the matrix, which we call the transition matrix of the subsquare, which relates11

in-nodes

out-nodes

flow of

dataFigure 7: A subsquare and its in-nodes and out-nodes.the values of f on the in nodes to the values of f on the out nodes, i.e., if u is an in node and v isan out node, X [u; v] is the sum of the weights of all paths from u to v. Then, for each out node v,f(v) =XX [u; v]
 f(u)where the summation is taken over all in nodes u.We note that if the matrix Xa;b;d is available, the values of f for all out nodes can be computedfrom the values of f for all in nodes in O(log d) time using d2= log d processors. Also, using matrixmultiplication, X can be computed in O(log2 d) time using d3= log2 d processors (see [2]). It followsthat f(sink) can be computed in O(log2 n) time using n3= log2 n processors.
line

k

line
k+1

X4

X3

X2

X1

source

sink

the active line

size hFigure 8: The partition of the matrix into basic subsquares. The values of f on linek+1 are computedfrom the values of f on linek by using the matrices for all basic subsquares at level k.Theorem 4.1 There exists a parallel algorithm for recognition of linear context free languages whichrequires O(n1��) time and O(n2+�) work.Proof. We describe an algorithm which combines the matrix multiplication techniques of [2] and[10] with dynamic programming. The grid graph is partitioned into squares of order n�, as shown12

in Figure 8. The interiors of these squares, which we call basic subsquares, are disjoint. Note thatthere are O(n2�2�) basic subsquares. Each basic subsquare is assigned a level, from 0 to n1��, basedon the number of steps from the source. If (i; j) is the upper left node of a basic subsquare, its levelis (i+ j)=n�. We de�ne linek to be the \staircase" shaped set of nodes consisting of all in nodes ofbasic subsquares of level k (see Figure 8).The structure of the proof can be written informally as follows.Step I: Compute f for all nodes along the top and left edges of the grid graph, i.e., all (i; j) forwhich i = 0 or j = 0.Step II: Compute the transition matrices for all basic subsquares of the partition in parallel.Step III: Sequentially, for each k from 1 to n1��, compute the values of f on linek from the valuesof f on linek�1 using transition matrices.Analysis:Step I takes O(logn) time using n= logn processors. Step II takes O(n log2 n) time using n3�= log2 nprocessors for each basic subsquare using the algorithm of [2], and therefore O(log2 n) time andn2+�= log2 n processors altogether. Using Brent's theorem, we obtain a time of O(n1�� logn) usingn1+2�= logn processors.References[1] A. Aho, J. Hopcroft, J. Ullman, The design and analysis of computer algorithms, Addison-Wesley (1974).[2] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and S-H. Teng. Constructing trees in parallel,Proc. 1st Symp. on Parallel Algorithms and Architectures (1989), pp. 499{533.[3] L. Banachowski, A. Kreczmar, W. Rytter, Analysis of algorithms and data structures, Addison-Wesley(1991).[4] M. Chytil, M. Crochemore, B. Monien, and W. Rytter, On the parallel recognition of unambiguouscontext-free languages, Theoretical Computer Science 81, pp. 311{316.[5] A. Gibbons, W. Rytter, E�cient parallel algorithms, Cambridge University Press (1988).[6] M. A. Harrison, Introduction to formal language theory , Addison Wesley (1978).[7] J. Hopcroft, J. Ullman, The design and analysis of computer algorithms, Addison-Wesley (1974).[8] L. L. Larmore, W. Rytter, An optimal sublinear time parallel algorithm for some dynamic programmingproblems, Information Processing Letters 52 (1994), pp. 31{34.[9] B. Monien, W. Rytter, and H. Schapers, Fast recognition of deterministic CFL's with a smaller numberof processors, Theoretical Computer Science 116 (1993), pp. 421{429.[10] W. Rytter, On the parallel computation of costs of paths on a grid graph, Information Processing Letters29 (1988), pp. 71{74. 13

