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derived by naively slowing down the known polylogarithmic time algorithms, since the work wouldnot be decreased. The best known sequential times for the recognition problem for unambiguous,deterministic and linear CFL's are, respectively, TU = O(n2), TD = O(n) and TL = O(n2). Themain result of this paper is the following theorem.Theorem 1.1 (Main theorem) For each of the three subclasses (unambiguous, deterministic, lin-ear) of CFL's, and for any 0 < � < 1, there is an �-optimal parallel algorithm working in timeO(n1�� log2 n).We remark that the polylog factor is irrelevant, in some sense, since it is asymptotically over-whelmed by even the slightest change in the value of �. Theorem 1.1 is still valid if we remove thelog2(n) factor, however the formulation above will be more convenient to deal with later.The algorithms presented in this paper mimic the sequential algorithms, but they advance in largersteps. The size of one \large step" is O(n�). Each large step is performed in parallel in O(logn)time, and there are O(n1��) such steps which are executed consecutively. The larger � is, the fasterthe algorithm.Throughout this paper, we use the CREW PRAM model of parallel computation (see for example[5]).2 Parallel recognition of unambiguous CFL'sWe use a version of the algorithm presented in [8] for parallel computation of some dynamic pro-gramming recurrences. Assume G = (VN ; VT ; P; Z) is an unambiguous context-free grammar, whereVN ; VT are the sets of nonterminal and terminal symbols, respectively, P is the set of productions,and Z is a start symbol of the grammar. Without loss of generality, G is in Chomsky normal form,and there are no useless symbols (see [6]).Assume we are given an input string w = a1a2 : : : an. Denote by w[i; j] the substring ai+1 : : : aj .The recognition problem is to determine whether w is generated by G.We explain the main ideas using the algebraic framework of composition systems [3]. The compo-sition system corresponding to a given grammarG and the input string w is a triple S = (N;
; init),where N = f (A; i; j) : A 2 VN and 0 � i < j � n gThe elements of N are called items . Each item (A; i; j) corresponds to the possibility that w[i; j]is derived from the nonterminal A. Let \)" be the relation \derives in one step" according to agiven grammar and let \ +)" be the transitive closure of this relation. We say that an item (A; i; j)is valid if A +)w[i; j]. The set init is a set of \atomic" valid items and the operation \
," which wecall composition generates larger items from smaller ones, and x
 y � N for all x; y 2 N . init � Nis the set of initial elements (generators) of the form (A; i; i+ 1), where A ) ai+1 and compositionis de�ned as follows: 2



(B; i; k)
 (C; k; j) = f(A; i; j) : A 2 VN and A) BCg(B; i; k)
 (C; k0; j) = ; if k 6= k0For two sets X; Y of items de�ne: X 
 Y = [x2X;y2Y x
 yFor x = (A; i; j) de�ne the size of x (written jxj) to be j� i. If X is a set then we use a notation#X for the cardinality of X .Let h = n�, where 0 < � < 1. We partition the set N into the disjoint subsets, for 0 � k < n=hNk = fx 2 N : kh < jxj � (k+ 1)hgFor 0 � k < n=h de�ne the kth strip to be Sk = fx 2 Nk : x is validg.Fact 2.1 #Sk = O(n1+�) for each 0 < k < n=h.For a set X � N denote by Closure(X) the closure of X with respect to the operation 
.Fact 2.2 The item x is valid if and only if x 2 Closure(init).
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Lemma 2.3 (Correctness lemma)Assume k > 0. Then Sk = FastClosurek(lessk�1 
 lessk�1).Proof. Let T be a tree generating x 2 Sk from the generators. Let y be a lowest element in T whichis in Sk and y1, y2 be the sons of y (see Figure 1) Then y1; y2 2 less(k) and there is a path from xto y in G. Since y1; y2 2 lessk , we have y 2 lessk 
 lessk. All elements \hanging" from the mainbranch are small items, i.e., elements of S0. Hence x 2 FastClosurek(lessk 
 lessk).The correctness of the algorithm below follows from Lemma 2.3.Algorithm Compute Closure ;1: fpreprocessingg compute the strip S0; Square0 := emptyset;2: for k = 1 to n1�� dobegin fmain iterationgcomment: Squarek�1 = lessk�1 
 lessk�1.2.1: Sk := FastClosurek(Squarek�1);2.2: Newk := lessk�1 
 Sk [ Sk 
 lessk�1 [ Sk 
 Sk;2.3: Squarek := Squarek�1 [Newk;end fmain iteration g3: return Sk Sk.Lemma 2.4The total work of all iterations needed to perform Step 2.2 of the algorithm (computing all Newk) isO(n2 logn).Proof. The unambiguity of the grammar implies easily the following fact.Claim 1.The sets Newk computed in the algorithm are pairwise disjoint.We need a data structure to perform the operation X
Y with the work proportional to the sizeof the result. We assume the following list representation of the set X � N . For each position k andnonterminal A, we keep (as a list) the setsleftX(k; A) = fi : (A; i; k) 2 XgrightX(A; i) = fj : (A; k; j) 2 XgThe computation of X 
 Y involves processing all productions A! BC and all positions k.X 
 Y = [k;A!BC f(A; i; j) : i 2 leftX(k; A) and j 2 rightY (C; k)g4



The operations on the lists can be done in logarithmic time. This shows:Claim 2. Assume that X; Y are sets of valid items. Then X 
 Y can be computed in logarithmictime, with work proportional to the size of the result.The work done during each iteration is proportional to the number of newly generated elements.The newly generated sets are pairwise disjoint (due to Claim 1) and their total size is quadratic.Hence the total work of the algorithm is also quadratic.Let Gk = (Nk; Ek), called the dependency graph, where the set of edges isEk = f(x; y) : x = y 
 z or x = z 
 y for some z 2 S0gAn example of a dependency path in the graph Gk is illustrated in Figure 1.Fact 2.5 #Ek = O(n1+2�) and x 2 FastFindk(X) if and only if there is a path in Gk from x tosome y 2 X.Lemma 2.61. The computation of Step 1 can be done in O(log2 n) time with n1+2� processors.2. Assume X � Sk and the set S0 is precomputed. Then Step 2.1 can be performed in O(logn)time with n1+2� processors.Proof.Point (1).We refer the reader to [4], where it was shown that the closure of set of initial items (elements ofinit) for an unambiguous grammar can be found in O(log2 n) time, with the number of processorsproportional to the number of edges of the dependency graph, which is O(n1+2�).Point (2).According to [4] the set of vertices from which a node of X is reachable can be computed in O(logn)time, with the number of processors proportional to the number of edges, using a version of paralleltree contraction and a special property of the graph Gk, namely uniqueness of paths from one vertexto another [4].The two preceding lemmas directly imply the main result of this section:Theorem 2.7 Assume an unambiguous CFL is given by a context-free grammar. Then, for aninput string w of length n, we can check if w is generated by the grammar in O(n1�� log n) time withO(n2+�) work, for any 0 < � < 1. 5



3 Parallel Recognition of Deterministic Context-Free LanguagesIn this section we show how to simulate deterministic pushdown automata in parallel with e�ciency(total work) close to linear. Let h = n�. Our simulation will take O(n1��) \large" steps sequentially.Each large step, working in logarithmic parallel time, advances the computation by at least h, exceptperhaps the last step. Thus, the simulation is a combination of a sequential and parallel computation.We refer the reader to [1] or [7] for the de�nition of a one-way deterministic pushdown automaton(DPDA for short). Let A be a DPDA. Assume that we are given an input text w of length n. We canassume that in each step the height of the stack changes by 1 or �1. A one-step computation whichincreases the height of the stack we call an up move, while a one-step computation which decreasesthe height of the stack we call a down move. A surface con�guration (simply con�guration forshort) is the description of the information accessible to the control of the DPDA plus the positionof the input head at a given moment. Formally, the surface con�guration is a triplex = hstate; position; top symbol of stackiWe distinguish two types of con�gurations. A con�guration x is a pop con�guration if A makes apop move while it is con�guration x. Otherwise, x is a push con�guration.We de�ne a partial con�guration to be a pair hstate; positioni, and we de�ne a total con�gurationto be a pair hx; �i where x is a con�guration and � is the contents of the stack. Of course, the topsymbol of � must be compatible with x.We de�ne a subcomputation to be a pair hx; yi of con�gurations such that A will eventually reachy with a one element stack after it starts at x with a one element stack (see Figure 2). We de�nethe size of the subcomputation, denoted jhx; yij, to be the absolute di�erence of the positions ofx and y, i.e., the number of input symbols read between x and y. In the worst case, there arequadratically many subcomputations. However, it su�ces to consider a subset of linear size, due tothe introduction of successors.De�ne a con�guration y to be a successor of x if hx; yi is the shortest (smallest length, possiblyzero length) subcomputation starting at x. In this case we write y = Succ(x), (see Figure 6). Observethat there is only a linear number of the pairs (x; Succ(x)).Fix a parameter 0 < � < 1. If y is the successor of x and jhx; yij � n�, we say that the subcom-putation hx; yi is small . A subcomputation hx; yi is said to be a shortcut if it can be decomposedinto a sequence of small subcomputations and is maximal with respect to this property. Formally,de�ne hx; xi to be a shortcut if x is not the beginning of any small computation.Lemma 3.1(1) The set of all small subcomputations can be computed in O(n�) time with n processors or inO(log2 n) time with n1+� processors. (2) If the set of all small subcomputations is computed thenthe set of all shortcuts can be computed in O(logn) time with n processors.6
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the partial con�guration following z is denoted by down(x) (see Figure 3). Observe that down(x)does not determine completely the next con�guration, since this depends on the top symbol whichis below x So if we have a partial con�guration x1 = down(x), the actual top stack symbol is top1,and we apply next (for example) a down move, then the next con�guration is x2 = down(x1; top1)(see Figure 4).
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computation in the �rst case is shown in Figure 6. In this (�rst) case we follow a sequence of down'sof A0 and then a sequence of up's and we go outside the working area.In the second case we have the sequence consisting only of down moves of A0. The height of stackis reduced by h or the stack becomes empty afterwards.In both cases the time (number of original steps of A simulated by A0 in a single one-turn stageincreases by at least n�, or terminates in a non-extendible situation.One stage consists of two substages. The �rst substage is the computation of the maximalsequence of down moves inside the actual working area. The second substage is the computation ofthe maximal sequence of push moves of A in the (k+ 1)st working area.
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Figure 6: The computations inside the (k+ 1)st working area { case 1.We show only how to implement the �rst substage and construct the maximal sequence of downcon�gurations in the working area. The construction of the sequence of up con�gurations is quitesimilar.Potentially there are O(n�) con�gurations y in the (k+1)st working area. Let �k be the contentsof the stack after the k-th stage. We consider now only down con�gurations. Let tops be the sthsymbol of the stack �k counting from the top of the stack. If x0 = hs; ii is a partial con�guration andz is a stack element, then we identify the pair hx0; zi with the con�guration x = hs; i; zi.If y is a down con�guration and s � n� then denote by next(y; s) the pair 

down(y); tops�1�; s� 1�.The con�guration 
down(y); tops�1� is realized from y and the next top symbol (after a pop move).It is easy to see that the maximal sequence of down con�gurations in the working area is of theform: x0; next(x0); next2(x0); next3(x0); : : :However, such a sequence can be easily computed in logarithmic time using a squaring technique.10



The crucial point is that there are O(n2�) objects hx; ki, due to the de�nition of the (k+1)st workingarea and the restriction on the change of the height of the stack. Hence n2� processors are su�cientto compute the maximal sequence of down con�gurations. The sequence of up:1 con�gurations andthe additional part of the stack can be computed similarly. The total work results as a product ofn2� and the number of stages, which is O(n1��). This completes the proof.4 Parallel Recognition of Linear Context-Free LanguagesA context-free grammar is said to be linear if each production has at most one non-terminal on theright side. Any linear context-free language is generated by a grammar where every production isof the form A ! aB, A ! Ba, or A ! a. It was shown in [10] that the problem of recognition oflinear context-free languages can be reduced to the sum-of-path-weights problem over a grid graph,a special kind of directed acyclic graph.The nodes of a grid graph form a square array, and all edges point one position down or to theright. Each edge has a weight, which is a binary relation over the set of nonterminals. The set of suchrelations forms a semiring with the operation being composition of relations. We refer the reader to[10] for more details of how the recognition problem for linear context-free languages reduces to amore general problem related to paths on a grid graph.In the general sum-of-path-weights problem, each edge in the grid graph has a weight, whichis a member of a semiring. The weight of any path is de�ned to be the product of the weights ofthe edges that constitute that path, and the problem is to �nd the sum of the weights of all pathsfrom the source (left upper corner of the grid) to the sink (bottom right corner). We can assumethat every operation in the semiring takes constant time, since the semiring has constant size in thisapplication.The sum-of-path-weights problem can be solved in O(n2) time sequentially, by dynamic program-ming, by visiting nodes in a topological order, and computing, for each node x, f(x), the sum of theweights of all paths from the source to x. The recurrence is:f(source) = identity of the semiringf(x) = Xy!x f(y)
 weight(y; x) if x 6= sourceWe brie
y review the parallel algorithm of [2] and [10]. Consider any small square within thegrid graph, i.e., the subgraph of all nodes in the square of size d whose upper left corner is (a; b),together with all edges between those nodes, for given a, b, and d. We refer to a node along the topor left edge of the square as an \in node" and a node along the bottom or right edge as an \outnode" (see Figure 7).Let X = Xa;b;d be the matrix, which we call the transition matrix of the subsquare, which relates11
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