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1 IntroductionThe problem of three dimensional matching (3D-matching, in short) is to �nd all occurrences of athree dimensional pattern array P in a text array T . By an occurrence we mean the position of thespeci�ed corner of P in T in a full exact-match of P against T . For simplicity of exposition we assumethat all sides are equal, sides of P are of length m and sides of T are of length n. Assume m < n.The total size of T is N = n3 and the total size of P is M = m3. The 3D-matching is a naturalgeneralization of the classical string matching and two-dimensional pattern-matching problems, andaside of applications, of independent algorithmic interest.The pattern-matching usually consists of two quite independent parts: preprocessing and search-ing phase. The main role of the preprocessing is the computation of the so called witness table,which will be de�ned later. Let � be the underlying alphabet. In two dimensions there are twoapproaches to compute this table e�ciently: use the su�x trees (see [2]), which is a factor log j�jslower than linear time, and the linear time alphabet independent algorithms of [11] and [7]. Thealphabet independent algorithms are extremely complicated. They would be even more complicatedin three dimensions. On the other hand if � is large then we can replace log j�j by logm. We showa simple approach through the dictionary of basic factors (DBF, in short). This is a useful datastructure introduced in [14]. It has received the name DBF and its usefulness in the design of stringalgorithms was shown in [9]. The advantage of the DBF is that it can be very easily extended to thethree dimensional situation. For large alphabets the complexity of the DBF approach is not inferiorto that of the su�x trees. In the three dimensional case the DBF works in much simpler way as thesu�x trees approach.Our model of parallel computations is the Concurrent Read Exclusive Write Parallel AccessMachine (PRAM, in short), see [12]. In the paper we concentrate on the �rst phase of the pattern-matching: the searching phase. Amir, Benson and Farah were the �rst to give alphabet-independentlinear time searching phase, see [2]. They have also given in [3] an alphabet-independent searchingin logM time with O(N= log(M)) processors of a CREW PRAM. We refer to this algorithm as thealgorithm ABF . The algorithm ABF needs only the witness table from the preprocessing phase. AnO(1) time optimal algorithm was given recently in [7], however it needs additional data structurefrom the preprocessing phase: so called deterministic sample.2 Periodicities, Witnesses and DuelsOur algorithm for the 3-dimensional matching is based on properties of the structure of 2-dimensionalperiodicities. This structure is quite complicated, its precise and detailed description would requiretoo much space. We shall use some known algorithms and methods as a kind of a black box. Thereforein many places we refer to bibliography for facts and details about the structure of 2-dimensionalperiods. 2



The basic precomputed data structure needed in our algorithm is (similarly as in the algo-rithm ABF) the witness table WIT . The entries of WIT correspond to vectors (potential pe-riods). The components of each vector are integers, the size of the vector � = (�1; �2; �3) isj�j = max(j�1j; j�2j; j�3j).As potential periods the vectors of size at most c �m are considered, assume here that c = 1=8.We call such vectors short. A vector � is a period of P i� P (x) = P (x� �) for each position x in P ,whenever both sides of the equation are de�ned (correspond to positions in the pattern).If � is not a period then WIT (�) = x is a witness (to this fact) if P (x) 6= P (x� �).If � is a period then by convention we set WIT (�) = 0.The nonperiodicity is explored using the operation of a duel. If two positions u; v 2 T are relatedthrough a short vector � = u � v and � is not a period then the operation duel(u; v) "kills" one ofthese positions in constant time, as a candidate for a match of the whole pattern P inside T .The witness table is used. The occurrence of the pattern cannot start both at u and v. LetWit[�] = x. Then the copies of the pattern placed at the positions u and v (as starting points) bothcontain the position v + x of the text. However the corresponding positions in these copies of P ,which are tested against this position are x and x��, which are distinct due to the de�nition of thewitness. Obviously two distinct symbols cannot both match the same symbol, hence one of themdisagree and the corresponding candidate point is removed. We refer the reader to [2] and [8] for thedetails about the dueling.We introduce also the relation �c of consistency between pairs of positions. We write x �c y ifx� y is a period of P . In other words two positions x; y 2 W are consistent , i� overlaps of copies ofP placed in positions x, y agree each with other (though they could disagree with the actual partsof T ). The relation �c de�ned above is usually not transitive (and not an equivalence relation).Let us partition the whole text cube T into cubic windows, each of the same shape c�m�c�m�c�m.It is enough to show how to �nd all occurrences in a �xed window in O(M) time. We have O(N=M)windows. Then the total work would be O(N). Let us �x one window W to the end of the section.The occurrence in W does not mean that the whole P is in W , it just means that the speci�ed cornerof an instance of P is in W . Assume this speci�ed corner is �xed, let it be for example the lower leftcorner of the top face. We can say that the occurrence is a starting position of a match.Denote by Occ(W ) the set of all positions in W which start a match (an occurrences) of P in T .Assume that the witness table WIT has been already precomputed, and consider a set C � Wof candidates for a match (positions which are candidates to be in Occ(W )). Consider only patternswhich start in W .We say that a set C � W is valid i� Occ(W ) � C. Obviously the set C = W is valid.We say that a set C � W is consistent i� x �c y for each x; y 2 C.The duels are used to: 3



(1) remove one of the candidates for an occurrence of the pattern,(2) or get information that two candidates are consistent.Hence after each application of a duel to a valid set C of positions C remains valid. If no elementcan be removed by a duel and C is valid, then C becomes valid and consistent. Such value of C isthe outcome of the �rst substage of the pattern searching.In the searching phase there are two main goals to achieve.Goal 1: construct any valid and consistent set C � W .Goal 2: given a valid and consistent set C of positions of W compute Occ(W )The searching phase has two basic subphases:Subphase (I): realize Goal 1. Subphase (II): Realize Goal 2.Subphase (II) is rather simple compared with (I), and can be done for three dimensions essentiallyin the same way as for two dimensions, see [2] and [7].Lemma 2.1 Assume we have a valid consistent set C of positions in a given window W . Then wecan �nd all occurrences starting in W in O(logM) time with O(M= log(M)) processors of a CREWPRAM.Proof: The basic point is the reduction to the search of a unary pattern P 0 in a binary text T 0.Unary means that P 0 is a cube consisting of the same symbol "1" repeated. The computation ofsuch patterns essentially reduces to the calculation of runs of consecutive 1's, or to the computationof the �rst "0" (which is easy in parallel). The reduction to the unary case works in three dimensionsessentially in the same way as in two dimensions, see [2].For each position x 2 T we �nd any element y of C which "covers" this position. This meansthat the pattern placed at y contains the position x. We place '1' if the symbol on a given positionx agrees with the pattern placed at the covering element y. Then the computation is reduced to thepattern-matching problem for unary patterns. This is reduced to several applications of an algorithmcomputing the longest runs of ones. We refer to [2]. �By a (planar) face of a given cube we mean a set of its points with one of the coordinates �xed. Thefaces can be external faces or internal faces of the cube.Let H be a face of the window W , hence it is an cn � cn square parallel to two of the threeaxes of the coordinates. We consider all (global) periods of P parallel to H , i.e. the vectors of thetype x � y, where x; y 2 H . We can classify these periods (with respect to H) in the same way asperiodicities in two dimensions. We refer to [2] for de�nitions of periodicity types.So the face H can be:nonperiodic, lattice periodic, radiant periodic or line periodic.We say also that P has a given (one of four possible) periodicity type with respect to the face H .We emphasize that the periods � = x� y considered above are parallel to H and have a planar4



nature but they are global periods with respect to the whole pattern P which a 3-dimensional object.Global means that, if both sides of the equation are de�ned, P (z) = P (z � �), for each z 2 P , notonly for z 2 H .Our three dimensional matching uses in essential way the classi�cation of (two-dimensional)periodicities of the pattern cube P with respect to its faces.The set C is called here consistent with respect to a face H i� all positions in C \ H are pairwiseconsistent.If we consider only positions on a �xed faceH ofW then we can treat the pattern as 2-dimensional.Each maximal line of P orthogonal toH at some position x can be treated as a long composed symbol.We can use duels between positions of H in the 2-dimensional sense. On a given face the duels canbe treated as two-dimensional duels, though the outcome of each duel is determined (in a constanttime) somewhere deep in a 3-dimensional object. Then a valid consistent set of positions on a givenface can be computed by applying the algorithm ABF , or the algorithm from [7]. This shows thefollowing result.Lemma 2.2 Assume that the witness table WIT has been already precomputed. For a given faceH of W we can compute in O(logM) time with O(m2= log(M)) processors a valid set C which isconsistent with respect to H.We say that P is 1D-nonperiodic i� it has no short period parallel to one of its edges.Lemma 2.3 The 3D-matching can be reduced in logM time using O(N= log(M)) processors to thecase of 1D-nonperiodic patterns.Proof: We can decompose the cube P into smaller subcubes if P is 1D-periodic. These smallersubcubes will be 1D-nonperiodic. The same argument as reducing periodic to nonperiodic case inone dimensional matching can be applied, see [10]. �Due to lemma 2.3 we can assume that P is 1D-nonperiodic. Let us make duels between positionson each line in W parallel to some edge of the cube W . There are O(m) positions on one line. Theycan be eliminated except at most one position per line by processing each line independently. A givenline needs O(m= log(m)) processors to process it in log(m) time. There are O(m2) lines, altogetherthe computation is optimal.Remark. There are sets C � W which have quadratic number of points and none two of theirpoints lie one the same line parallel to an edge of W .Let us also apply the algorithm from Lemma 2.2 to each of O(m) faces H of W . Hence we canassume that we start with some known initial valid set C of positions which satis�es the conditions:(A) For any line L parallel to an edge of W there is at most one position in C \W ,(B) C is consistent with respect to each (external or internal) face of W .5



3 Searching for 3-Dimensional PatternsAssume in this section that the witness tableWIT has been already precomputed. The only operationto eliminate elements of W is of the type duel(u; v): if u 6�c v then one of positions u; v is removedfrom C. Our aim is to apply, in parallel, some number of such operations and receive a valid consistentset C � W .The rough idea how to construct a valid consistent set is: start with C = W , then use more andmore duels to reduce the size of C, if no duel \kills" any element of C then C is the required setwhich is valid and consistent. However we cannot make too many duels. We are allowed to make intotal O(M) = O(m3) duels in a �xed window.Observe that if we know a valid set C � W such that C is small (jCj � m3=2) then we canperform duels between each pair in C simultaneously and we are done. We perform at most M duelsin total.Such situation occurs if P is nonperiodic with respect to (at least) one of its faces H : there isno short period parallel to this face. In this case on each face parallel to H there is at most oneelement of the candidate set C, if C satis�es property (B). Then jCj = O(m) and we can make duelsbetween each pair of positions in C. Hence in this case we realize easily Goal 1 in logM time withO(M= log(M) processors in a given window W .Therefore we can assume now that P is periodic with respect to each of its faces, also we have acandidate set C which is valid and satis�es (A) and (B).3.1 Lattice-periodic caseLet H be a �xed external 2-dimensional face of W . Assume w.l.o.g. thatH = fx = (x1; x2; x3) : 1 � x1; x2 � cm and x3 = 1g.We can assume also w.l.o.g. that the window starts at a corner of the cube T . Assume, till the endof this section, that we have a set C satisfying (A), (B) and P is periodic with respect to each of itsfaces. The lattice-periodicity means here that there is a short period parallel to H in quadrant (I)and a short period in quadrant (II), and these vectors are di�erent, see [2] and [8] for details. Denoteby Hk = f(x1; x2; x3) 2 W : x3 = kg. Let Ck = Hk \ C. So Hk is the k-th face of W parallel to Hand Ck is the subset of all positions in C lying on Hk.Lemma 3.1Assume that P is lattice-periodic with respect to the face H, x 2 Ck and y 2 Cl. Then:(1) If x 6�c y and x is removed in the duel between x; y, then all other positions u 2 Ck can beremoved as candidates for a match.(2) If x �c y then u �c v for each u 2 Ck, v 2 Cl.(3) The relation �c restricted to the set Ck [ Cl is an equivalence relation.6
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Figure 1: A schematic illustration of H , W and Tunnel(P ).Proof: Place the pattern P in such a way that it starts at the corner of the face H of the cubicwindow W . The external face P 0 of P is parallel to the face H of the window W , see Figure 1.We can assume that P 0 is the face corresponding to all points with the third coordinate equal to1, and H is the part of P 0 contained in the window W . Let C be a candidate set satisfying (A) and(B) and C be its projection onto H .Let center(P 0) be the central m=2 � m=2 subarray of P 0. The following claim says that if atwo-dimensional m�m pattern P 0 is lattice periodic then witnesses for all nonperiodic short vectorscan be found in Center(P 0).The proof was essentially presented in [3]. Roughly speaking, if a 2-dimensional face is lattice-periodic then all points corresponding to periods form a kind of a net, and we can move throughthis net any point to an equivalent point in the central part of the face. The points x = WIT [�]and x � � can be moved in such a way to points x0; y0. The coordinates of the points x0; y0 can becomputed in constant time by a simple arithmetics. We omit the details and refer to [3].Claim A Assume a 2-dimensional pattern P 0 is lattice-periodic. We can modify the table WITin such a way that if a short vector � is not a period of P 0 then WIT [�] = x0, where x0; x0 � � 2Center(P 0). The modi�cation of the table WIT can be done in logm time with O(m2= log(m))processors.We introduce a 3-dimensional counterpart of the 2-dimensional center. Let P 0 be the face of P7
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Figure 2: Let � = x � y. Assume x; y are not consistent. Then there are corresponding pointsx0; y0 2 Tunnel(P ).containing the face H . Denote by Tunnel(P ) the set of all positions in P whose projection onto P 0lies in Center(P 0). The same argument as for Claim A works for the following claim.Claim B (moving into the tunnel)Assume a 3-dimensional pattern P is lattice-periodic with respect to its face H . We can modify thetable WIT in such a way that if a short vector � is not a period of P then WIT [�] = x0, wherex0; x0�� 2 Tunnel(P ). The modi�cation of the table can be done in logm time with O(m3= log(m))processors.The thesis follows now from the fact that we can move all possible mismatches related to anygiven nonperiodic short vector to Tunnel(P ). Also the part of Tunnel(P ) intersected by a copy ofP placed at any position of a �xed face Hi, depends only on this face, so it is the same for all pointsin Hi. The latter fact is caused by the small size of the window with respect to P . If we move thewindow W at distance at most c �m then it will not touch the tunnel. More formally we can expressit as follows. Let us consider the cube P1 inside T corresponding to the pattern P which starts atx 2 Ck, and the cube P2 corresponding to the situation when P which starts at some other pointy 2 Ck. Then observe thatTunnel(P1) � P2 and Tunnel(P2) � P1.This follows from the fact that the face of the window is very small (of shape m8 � m8 ). Shifting thepatterns in such small window does not a�ect the inclusion of Tunnel(P1) in P2 and vice versa.Due to the common overlap with the tunnel all positions of C lying on the same face are equivalent,with respect to the duels with positions on other faces.We prove now point (1). Assume that x 2 Ck is a looser in a duel between x and y. Then there8



is a vector � such that x � y = � and WIT [�] 6= 0. According to Claim B there are two points:x0 = WIT [�] 2 Tunnel(P ), and y0 = x0 � � 2 Tunnel(P ).At one of these points the pattern disagrees with T and due to that the point x is removed. Takesome position u 2 Ck. Due to the observation above, the positions x0; y0 are also in a copy of Pplaced at u, since this copy contains the tunnel of the copy placed at x.We know that a copy of P placed at x disagrees with at least one of the points x0; y0. A copyplaced at u contains both points and is consistent with x, so it should also disagree. Hence the pointu should be removed as a candidate. This completes the proof of point (1). Point (2) can be provedby a similar argument. It is enough to prove that if x �c y and u 2 Ck then u �c y. However inthis case the points u; x are consistent, so any inconsistence between u and y can be brought to thetunnel and a�ect the consistence between u and x. Hence u is consistent with any position y 2 Cl,assuming x �c y. The point (3) follows directly from points (1) and (2). This completes the proof.�Lemma 3.2 Assume that P is lattice-periodic with respect to some face. Then we can computeOcc(W ) in time logM with O(M= log(M)) processors.Proof: Due to Point (3) of Lemma 3.1 the computation of a valid consistent set can be implementedby choosing a representative from each set Ck and then by making duels between all possible pairsof representatives. Each killed representative in some group Ck consequently kills all members ofCk. There are O(m) representatives, one per each Ck. We can make duels between all of them inone parallel step with O(m2) processors. This completes the proof. �3.2 The row minima problem for special monotone arraysWe use a simple version of a row minima problem, see [4], for special monotone arrays. The processingof the radiant-periodic (the most di�cult) case in the next subsection is reduced to this problem.Assume we have an m�m zero-one matrix A. We say that A is strongly monotone i� the entriesof A are in the nonincreasing order along each row (left-to-right) and along each column (top-down).It means, more formally, that:A[i; k] = 1 implies A[i; p] = A[q; k] = 1 for any p � k, q � k.The row minima are given by a vector �A such that �A(i) is the smallest index of an entry containing0 in the i-th row . If there is no such entry then it equals n+ 1.The row minima problem consists in computing the row minima vector �A for a strongly mono-tone zero-one array.ExampleFor the array A presented below we have:�A = [1; 3; 3; 4; 5; 6] 9



A = 266666666664 0 0 0 0 0 01 1 0 0 0 01 1 0 0 0 01 1 1 0 0 01 1 1 1 1 01 1 1 1 1 0 377777777775ObservationIf A is strongly monotone then the row minima vector is monotone in the following sense:(*) i � j implies �(i) � �(j).Observe that the total size of the input problem is m2, but according to the next lemma, �A canbe computed only with O(n) work, so the complexity of the computation is only output-sensitive.We assume that the matrix A is already in the memory.Lemma 3.3Assume A is a strongly monotone array, then the row minima problem can be computed in logmtime with O(m= log(m)) processors.Proof: Observe that one processors can compute �A(i), for a given i, in logarithmic time using akind of binary search. So n processors can do the whole job in logarithmic time. We can reduce thenumber of processors to m= log(m) using standard techniques. Using m= log(m) processors we cancompute �(i) for all i of the form k � log(m), for 1 � k �, where r = m= log(m). We can use themonotonicity property (*) of the vector �A.Let �A(k � log(m)) = jk for k 2 [1 : : :r]. Then we have a sequence of smaller subrectangles:A[0:: log(m); 0::i1]; A[log(m)::2 � log(m); i1::i2]; : : : ; A[(r� 1)log(m)::r � log(m); ir�1::ir],where A[p::q; l::s] denotes the subarray consisting of all entries A[i; j]; p < i � q; l < j � s.The number of resulting subrectangles is m= log(m), but they can be still too large. We cut eachof them (if its width is larger than log(m) ) into log(m)� log(m) subsquares. There are altogetherO(m= log(m)) such subsquares. Each of them can be easily processed by one processor in logarithmictime. It is similar to the algorithm from [4], however the situation here is simpler due to theapplicability of binary search. This completes the proof. �3.3 Projections and weighted 2-dimensional pointsIt will be more convenient to deal with 2-dimensional objects, instead on 3-dimensional. It can bedone by treating the third component of the points as a weight. Let us project the set C onto theface H . The point (x1; x2; x3) is projected onto the point project(x1; x2; x3) = x = (x1; x2) of H .The third component is associated with x as its weight. We have weight(x) = x3. We write also(x; k), for a point with weight k.Denote � = projectH(C), hence � is the collection of projected points on H together with their10



weights.Due to properties (A) and (B), the points in � satisfy the following conditions:1. each point in C is projected onto a di�erent point in H ;2. if (x1 = y1) or (x2 = y2) then weight(x1; x2) 6= weight(y1; y2);3. if weight(x) = weight(y) then x �c y.The points (1), (2) follow from the property (A) and the point (3) follows from the property (B) ofthe candidate set C.It seems that we reduced the problem to a simpler two-dimensional one. However we haveonly changed terminology to a more convenient one. We have a collection � of points of the two-dimensional square array H. Also we have a witness table for them. It refers to three dimensionsbut all we need is the operation DUEL which works in constant time for any two points. Hence thedueling can be treated as two-dimensional since it involves points on a two-dimensional array. Wehave to eliminate some points from � and be left with the subset of pairwise consistent element, whichmeans that for any two points of H a duel will eliminate none of them. One could try to apply in thissituation the two-dimensional algorithm ABF. Unfortunately it doesn't work in a straightforwardway. The algorithm ABF is based on some partial transitivity properties of the consistency relation,see also [8]. These properties are here more complicated due to weights which correspond to thethird dimension ( and which cannot be neglected).3.4 Radiant-periodic and line-periodic casesLet � = projectH(C). We say that � is row-monotonic if the weights of points in � are increasing ineach row or are decreasing in each row of the face H . Analogously de�ne column-monotonicity of �.If the two-dimensional pattern is line- or radiant-periodic then it is known, see [1], that any setof consistent candidates in the 2D-text is monotonic in an unweighted-sense. This means that oneof the coordinates is a monotonic function of the second one. Assume that P is radiant-periodicor line-periodic w.r.t. each of its faces. Then the property above holds for all faces. On each faceorthogonal to H the distances of successive points of C from H form monotonic sequences. Thisimplies the validity of the following fact.Observation.If P is line-periodic or quadrant-periodic w.r.t. each of its faces then � is row-monotonic and column-monotonic.Assume w.l.o.g. that the weights of points in � are increasing in each row left-to-right andincreasing in each columns bottom-up. The rows are numbered top-down.11
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The front faces of the cubes are situated one over the other, and their distance (depth) from the�rst face is growing. Hence each relation between (related to points in) Cube(x) and Cube(u) canbe decomposed into a relation between Cube(x) and Cube(v) and a relation between Cube(v) andCube(u). This shows the transitivity of �c for points x; v; u. The transitivity related to other triplesof points from fx; y; u; vg is proved in an analogous way. This completes the proof of Claim 1. �Claim 2.The vector TopIK;L can be computed in logarithmic time with O(m=log(m)) processors.Proof: (of the claim)Let the the sequences of points of � lying on the line K and line L, in a top-down order, berespectively x1; x2; : : :xp and y1; y2; : : :yq. Construct the p� q zero-one matrix A such that:A[i; j] = 1 i� xi �c yj and yj is not in a row below xi.Due to Claim 1 the matrix A is monotone. Compute the row minima vector �A for A. Then�A(i) = yj i� TopIK;L(xi) = yj .In this way the table TopIK;L for two lines K and L is computed , due to Lemma 3.3, in loga-rithmic time with O(m=log(m)) processors. This completes the proof of the claim. This completesthe proof of the claim. �There is the quadratic number of pairs K, L. Altogether O(m3= log(m)) processors are enoughto perform (implicitly) duels between each point x 2 � and each point in the A-part of x.The computations related to the other parts B, C is carried out in the same way. However, forthe part B we group points x in rows, instead of columns, and use the horizontal monotonicity in B,see Figure 3.Now we do not need to make duels between x and all positions in the A-part of x. It is enoughto make one essential duel between x and the position TopIK;L(x), which represents all positions inthe A-part of x lying in the column L. The same works for other parts. There are only few essentialduels altogether. The number of all such duels is O(m2). This completes the proof. �Observe that the complexity of all algorithms considered above did not depend on the size of thealphabet. The series of lemmas above implies immediately our main result.Theorem 3.5 Assume that the witness table is precomputed. Then the 3D-matching problem can besolved by an optimal parallel algorithm working in log(M) time on a CREW PRAM, the complexitydoes not depend on the size of the alphabet.Remark It is possible to compute �A in log logm time with O(m= log(log(m))) processors. Alsothe algorithm ABF works optimally in log logm, if the model of computations is a CRCWPRAM .Hence our 3-dimensional searching algorithm can be implemented on a CRCWPRAM as an optimalO(log logm)-time algorithm. 14



4 Preprocessing the pattern: the DBF approach.The dictionary of basic factors (DBF , in short) is a useful data structure in text algorithms, see [9]for details about DBF and its applications. The DBF approach gains simplicity at the expense ofa small increase in time. It gives a (nonoptimal) O(log(M)) time algorithm using O(M) processorsof a CRCW PRAM. However the alphabet-independent optimal preprocessing is very complex evenin the case of two dimensions, see [11]. For large alphabets the DBF 's give asymptotically the samecomplexity as the (alphabet-dependent) su�x trees approach (but avoids su�x trees and is simpler).However the basic advantage of the DBF approach is simplicity of dealing with three (or more)dimensions.Let S = fw1; : : : ; wrg be a set of strings. The total size of S, denoted jjSjj, is the total length ofwords w1; : : : ; wr. We want to give consistent names to all subwords of words in S. Each subwordz of a word in S can be speci�ed by three integers: a number k of a word wk which contains z, aposition p, where it starts in wk, and the length l of z. There are quadratic number of such objectswith respect to jjSjj. The basic idea of the dictionary of basic factors is to have identi�ers only fora small subset of all subwords (so called basic factors), in a way which enables to identify easily anyother subword.The basic factors are subwords whose length is a power of two. The �rst advantage of basicfactors is that there are only O(jjSjj log jjSjj) basic factors, while there are O(jjSjj2) subwords intotal.The dictionary of basic factors for S, denoted by DBF (S), is a data structure which assigns toeach basic factor corresponding to a pair (k; p; l) a unique name ID(k; p; l). The names are integersin the range 1 : : : jjSjj and two words of the same length are equal (as strings) if and only if theirnames are the same. The following fact was shown in [9].Lemma 4.1 DBF (S) can be computed in log jjSjj time with O(jjSjj) processors of a CRCWPRAM .The power of the DBF relies on three facts:1: DBF is small, it stores explicitly information only about O(jjSjj log(jjSjj)) objects.2: Implicitly the DBF gives information about O(jjSjj2) objects.3: The construction of the DBF is very simple.Observation. Assume the DBF has been computed. Then equality of any two subwords of stringsin S can be checked with O(1) work. Each subword can be split into at most two (maybe overlapped)basic factors and get a constant sized name (composed of at most two smaller ones).We formulate also the problem of witnesses of a pattern P 0 against P . If x is a position in P 0,then WIT [x] is a position y in P 0, such that if we place a copy of P over P 0 at x, then P , P 0 disagreeat y. If P = P 0 then it is a reformulation of the witness table de�nition for a single pattern.First we demonstrate usefullnes of the DBF on the 1D-pattern and 2D-pattern matching.15



1D-matching: assume we want to compute the value of WIT [i] for each position i in a given stringP for which the DBF is computed. We can do it with one processor per each position i in logarithmictime by a kind of a binary search, see [9] for details. Each position has one processor (assigned tothis position) which �nds a witness (if there is any) in logm time.2D-matching: assume we are to compute the witness table for a 2D-pattern P . Consider a �xedk-th column of P . We linearize the problem. Compute DBF (S) for the set S of all rows of P . Placeat each position in the k-th row the name of the horizontal word of length k0 = m � k + 1 startingat this position. Observe that k0 can be a nonpower of two (but then it can be decomposed into twopowers of two and have a composed name of size O(1)). Do the same with the �rst column. In thisway we have two strings. We compute witnesses of the �rst string against the second string usingthe 1-dimensional method. Consider a �xed position x in the k-th column of P . After linearizationit becomes a position x0 in the corresponding 1-dimensional string. If the witness for x0 is in someposition j, then we know that the horizontal strings of length k0 starting in the �rst column and thek-th column in row j are unequal. The mismatch to such inequality is found by the binary searchmethod mentioned-above.This approach extends to three dimensions automatically.Theorem 4.2 The three dimensional witness table can be computed in logM time with O(M) pro-cessors of a CRCW PRAM.Proof: Consider the (whole) facesPk = fx = (x1; x2; x3) : 0 � x1; x2 < m and x3 = kgfor 0 � k < m. (Previously we considered only faces of a small window W , the windows are notrelevant here.) We show how the computation of witnesses for points in Pk can be reduced to atwo-dimensional case for a given k. It works in the same way as the reduction of 2D-case to 1D-case.Let us �x k. Assume that the third coordinate corresponds to the horizontal direction. Computethe DBF for all horizontal strings in the cube P . Place at each position in P0 and Pk the name ofthe string of size k0 = m�k+1 which starts at this position and goes along the horizontal direction.We receive the two-dimensional arrays fP0 and fPk. Compute the witnesses of all positions in fPkagainst the pattern fP0 using the two-dimensional method described above.If the witness for position (x1; x2) in fPk is found at (y1; y2) then we know that the witness for(x1; x2; k) is at a horizontal string starting at (y1; y2; k). We apply the one-dimensional method totwo strings of size k0 going along the horizontal direction.The binary search method can be applied to �nd a witness of one horizontal string againstthe other. In this way we reduce the computation of the three dimensional witness table to theindependent computation of m two-dimensional witness tables. This completes the proof. �Remark.The theorem can be extended to the k-dimensional case, for any natural �xed k. The proof goes16
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