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1 IntroductionThe problem of computing optimal binary search trees (the OBST problem) is especially interestingin a parallel setting, since there is no known NC algorithm which solves that problem e�ciently, andthe problem of �nding such a parallel algorithm appears to be very hard [4].There is an NC algorithm for the special case of alphabetic trees using n2 processors [12]. Thebest known NC algorithms require O(n6) work for optimal binary search trees and O(n2) work forapproximately optimal binary search trees [4, 15].Sublinear time parallel algorithms sometimes have much lower total work than NC algorithms.In [7] a sublinear time algorithm for the OBST problem whose work is very close to quadratic isgiven. The fastest known sequential algorithm for the OBST problem is the classical algorithm byKnuth [9], which takes quadratic time. The main theorem of [9] uses, without stating it those terms,the Monge property of the matrix of subtree costs. A matrix M has the Monge property if, for alli0 < i1 and j0 < j1 which are within range, Mi0 ;j0 +Mi1;j1 � Mi0;j1 +Mi1;j0 . This is essentially thesame as the quadrangle inequality introduced by Yao [16] which allowed speedup of certain dynamicprogramming algorithms.The problem of developing a sub-quadratic time sequential algorithm for the general OBSTproblem appears to be very hard. Algorithm for �nding approximately optimal binary search treeshave been found by Allen, Mehlhorn and Unterauer [2, 13, 14]. The results of this paper are largelybased on the algorithm for approximately optimal binary search trees given by Larmore [10].In this paper we consider the problem in a parallel setting, using the CREW PRAM model ofcomputation. We present sublinear time subquadratic work parallel algorithms for certain specialinstances of the OBST problem, We shall de�ne an instance to be \special" if the item weightsare su�ciently large. We also give sublinear time subquadratic work parallel algorithms which giveapproximately optimal binary search trees in the general case.De�ne a binary search tree to be �-approximately optimal if its cost di�ers by at most � from thecost of the optimal binary search tree. Our main result is:Theorem 1.1 There exists an O(n0:6)-time parallel algorithm using n processors which computesthe optimal binary search tree for a special sequence. Furthermore, there exists an O(n0:6)-timeparallel algorithm using n processors which computes an �-approximately optimal binary search treefor a general sequence, where � = o(1).We use terminology from [8], pages 434{435. Let K1; : : :Kn be a sequence of n weighted items(keys), which are to be placed in a binary search tree. We are given a sequence � of 2n+ 1 weights(probabilities): q0; p1; q1; p2; q2; p3; : : : ; qn�1; pn; qn where� pi is the probability that Ki is the search argument;� qi is the probability that the search argument lies between Ki and Ki+1.2



Note that P pi +P qi = 1. It will be convenient to refer to the external item Ei, for 0 � i � n,corresponding to the probability qi.Given a constant � > 0, the sequence � is said to be �-special if pi+ qi � �=n, for each 1 � i � n.Let Tree(�) be the set of all full binary weighted trees with n internal nodes, where the ith internalnode (in inorder) has weight pi, and the ith external node (the leaf, in the left-to-right order) hasweight qi. The tree is \full" in the sense that each internal node has exactly two sons. The keysfKig are to be stored in internal nodes of this binary search tree. The external nodes correspond tointervals between keys. If T is a such a weighted binary search tree then de�ne the cost of T to be:cost(T ) =X `(T; v) � weight(v) (1)where the summation is over all nodes of T , and `(T; v) is the level of the node v in T , de�ned to bethe distance (number of nodes on the path) from the root.
v1

v2

v4

v5

v6

v3 v7

v8

v9

v10

v12

v14

v11 v15

K1

K2

K3

K4

K5
K8

K9

K10

K6

K7

the abstract 4-tree

v13Figure 1: A binary search tree T . Some nodes (boldface) are inside the indicated (dotted rectangle)abstract regular tree T4. The nodes of Td are numbered in in-order. Observe that T does not includeall nodes of Td. The edges of T leading to its internal nodes inside T4 are in bold. We shall latertraverse (in some sense) the subtree consisting of such edges.ExampleConsider the tree T shown in Figure 1. It consists of 10 internal nodes labeled K1 : : :K10 and 11external nodes. The contribution of the key K6 to the cost is 3 � p6, for example, since the level ofnode containing K6 is 3. Similarly, for example, the contribution of the \unsuccessful search" nodeE9 between keys K8 and K9 is 6 � q9.Let OPT(�) be the set of trees Tree(�) whose cost is minimal. The OBST problem consists of�nding any tree T 2 OPT(�). Denote by obst(i; j) the set OPT(qi; pi+1; qi+1; : : : ; qj�1; pj ; qj). The3



trees which are elements of this set are said to have width jj � ij. Let cost(i; j) be the cost of a treein obst(i; j), and let weight(i; j) = qi+pi+1+ : : :+pj +qj , for i < j. Let cost(i; i) = weight(i; i) = qi.The values of cost(i; j) are tabulated in an array. The time to compute all values of cost is O(n2),using Knuth's Theorem [9], essentially making use of the Monge property of cost , considered as amatrix. Knuth's algorithm can be easily parallelized by computing all entries on a given diagonalof the array in parallel. The following lemma was essentially shown in [7]. It says that costs of alloptimal subtrees of width at most ` can be e�ciently computed in parallel.Lemma 1.2 (Parallelization of Knuth's algorithm) All values cost(i; j) for jj � ij � ` can becomputed in O(` � log(`)) time with O(n= log(`)) processors.A matrix M has the Monge property if, for all i0 < i1 and j0 < j1 which are within range,Mi0;j0 +Mi1;j1 �Mi0;j1 +Mi1;j0 . Monge matrices arise in a large number of applications.We state several known results concerning Monge matrices.Lemma 1.3 (Monotonicity of Column Minima) If j0 � j1, then there exist i0 � i1 such thatthe minimum of column j0 of M is at i0, and the minimum of column j1 of M is at i1.The following result is by Aggarwal, Klawe, Morey, Shor, and Wilber [1]. The algorithm developedin that paper is whimsically known as the \SMAWK" algorithm, using a permutation of the authors'initials.Lemma 1.4 If M is an n �m Monge matrix, all column minima of M can be found in O(n +m)sequential time.In the parallel case, we have the following result by [3].Lemma 1.5 IfM is an n�mMonge matrix, all column minima ofM can be found in O(logn logm)time by n= logn processors, using the CREW PRAM model of computation.2 A general structure of the exact algorithmThe main phase of our algorithm uses a form of dynamic programming quite di�erent from theusual ones for optimal binary search trees (bottom-up computation of the costs of optimal subtrees).The new concept of a \partial tree" is introduced. The costs of all partial trees are computed byprocessing the potential nodes of the trees in in-order. These potential nodes are contained in atree which we call an \abstract tree." It is possible that not all of the nodes of the abstract treecorrespond to nodes in the optimal binary search tree.Let d > 0 be a given integer. The abstract d-tree Td is a full regular binary tree which consistsof all possible nodes at level at most d, and no nodes at higher levels. See Figure 1. Note that Tdhas m = 2d � 1 nodes, which we label v1; : : :vm in in-order. For example, the nodes of T4 as shownin Figure 1, are labeled v1 : : :v15. We shall identify the nodes at levels at most d of any binary tree4



with nodes of Td. For example, in Figure 1, all internal nodes of T except K5 and K8 are identi�edwith nodes of Td, as are 3 of its 11 external nodes. Some of the nodes of Td, namely v9, v11, v13, andv15 are not identi�ed with nodes in T .
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Figure 2: Two partial trees: T 0 = PartialT (v4; K4) and T 00 = PartialT (v6; K6). cost(T 0) = 4q0 +3p1+ 4q1 + 2p2+ 3q2+ p3 + 4q3 + 3p4. The di�erence of costs between these trees is (level(v5) + 1) �cost(4; 5)+ level(v6) � p6.Partial subtrees. Assume T is a binary search tree and v 2 Td is identi�ed with an internalnode of T containing the key Ki. Then T 0 = PartialT (v;Ki) is a subtree of T which consists of allvertices(internal and external) of T preceding the node v in in-order, together with v. We say thatT 0 is a partial tree terminating in (v;Ki). Two partial trees are illustrated in Figure 2.The cost of the partial tree T 0 (written partial cost(T 0)) is the sum of the path weights for allnodes in T 0. De�ne:partial cost(v; i) = minfpartial cost(T 0) : T 0 is a partial tree terminating in (v;Ki)g: (2)Our main algorithm depends on two parameters, ` and d, and consists of three phases.
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ALGORITHM MAIN:Preprocessing-Phase: parallel implementation of Knuth's algorithm.Compute costs of optimal subtrees of width at most `.Comment: can be done in parallel time O(`) due to Lemma 1.2Basic-Phase: computation of optimal costs of partial subtrees.Assume the nodes of the tree Td are listed in in-order v1; : : : ; vm.for k = 1 to m dofor each i = 1 : : :n do in parallelcompute partial cost(vk; i) using the parallel algorithmof [3] for the corresponding column minima problem.Construction-Phase: construction of an optimal binary search tree.global cost := minfpartial cost(vk; n) + (level(v) + 1) � qn : v 2 Tk g;Comment: global cost is the cost of an optimal tree;w := a node v 2 Tk for which minimum is achieved;construct an optimal tree knowing w and the table partial cost .3 Analysis of the algorithm MAINThe essential part of the algorithm is Basic-Phase. We derive reccurence equations, as in dynamicprogramming, to compute the table partial cost . First we introduce the relation \)" between thenodes of the abstract tree Td. The relation u) v means that there is some binary tree T for whicha node identi�ed with v is the immediate in-order successor, in T , of a node identi�ed with u. Moreformally: let u1, w1 be, respectively, the left and right sons of u in Td. Let u2; u3; : : : be the rightmostbranch starting at u1 and let w2; w3; : : : be the leftmost branch starting at u1. Then ui ) v andv ) wi for each i (see Figure 3).
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of v. Let `(u; v) = maxflevel(u); level(v)g+ 1. We introduce two auxiliary tables partial cost 1 andMv de�ned by recurrence equations as follows:partial cost 1(v; i) = minfpartial cost(u; i� 1) + level(v) � pi + `(u; v) � qi�1 : u) vg (3)Assume u) v and u or v is at the bottom level, i.e., `(u; v) = d+1. Then for each 1 � i < j de�ne:Mv(i; j) = partial cost(u; i) + level(v) � pj + cost(i� 1; j) + weight(i� 1; j) � d (4)If i � j then de�ne Mv(i; j) =1. Let ColMin(Mv ; i) be the smallest value in the ith column of Mv.The basic dynamic programming recurrence for computing partial cost is as follows:partial cost(v; i) = minfpartial cost 1(v; i); ColMin(Mv; i)g (5)Example Consider the partial trees T 0 and T 00 in Figure 2. Assume these partial trees are optimal.In this case u = v5 and v = v6. The di�erence between costs of these trees is `(v5; v6) � cost(4; 5) +level(v6) � p6. In other words, this di�erence is Mv6(4; 6). The column minimum is realized in the4th row of the 6th column. We also have partial cost(v6; 6) = partial cost(v5; 4)+ ColMin(Mv6 ; 6):Lemma 3.1 (key lemma)1. The matrix Mv satis�es the Monge condition.2. For a given v, the values ColMin(Mv; i), for all 1 � i � n, can be computed in O(log2 n) timewith n= logn processors.Proof. (1) By Lemma 2.1 of [10], the matrix fcost(i� 1; j)g has the Monge property. It is simpleto verify that fweight(i� 1; j)g is also Monge. The other two terms are trivially Monge since theydepend on only one component. Finally, the sum of Monge matrices is Monge.(2) All column minima of an n�nMonge matrix can be computed in O(log2 n) time with n= lognprocessors by a simple divide-and-conquer algorithm.Lemma 3.2 (Complexity of MAIN) Assume that the total weight of each segment of ` con-secutive items is at least �. Then an optimal binary search tree can be computed in O(maxf` �logn; 2log�( 1� )g) parallel time with n processors.Proof.The partial costs can be computed by traversing the tree Td, for d = dlog�( 1�)e+ 1, in in-order andapplying the basic dynamic programming recurrence. The main point is that the values ColMin canbe computed for a given node in O(logn) time with n processors, by Lemma 3.1. This proves thefollowing claim:Claim 1. Assume the costs of all optimal subtrees rooted below level d are computed. Then anoptimal binary search tree can be constructed in O(2d log n) time with n processors.We next use a combinatorial fact shown in [5] and [6] and expressed by the following claim:7



Claim 2. Let � be the golden ratio (� = p5+12 � 1:62) and let T 2 OPT (q0; p1; q1; : : : ; pn; qn).If v is an internal node of T and the weight of all items contained in the subtree rooted at v is �,then levelT (v) < log�( 1�) + 2.Proof. (of Claim 2). Let F1 = 1, F2 = 1, F3 = 2, etc., be the Fibonacci numbers. By [6], a subtreewhose root is at level h can have weight at most 2=Fh+2. Since Fn > 2�n�4 (see [8] exercise 4, pg18) we are done.The structure of the computation is shown in Figure 4. First the optimal costs of subtrees of width` are computed. Then (in Basic-Phase) the partial costs are computed in O(2d logn) time withn processors (see Claim 1). E�ciency is gained by applying the parallel algorithm for the columnminima problem.
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Figure 4: The structure of a binary search tree: d = dlog�( 1�)e + 2, where � is the smallest totalweight of a segment of ` consecutive items. The abstract d-tree Td is shaded.The �rst phase runs in O(` � logn) time with O(n`) work, and the second phase runs in O(2d logn)time with O(2dn) work.Finally, the binary search tree is reconstructed using pointers that are saved during computationof cost and M .4 The proof of the main resultsIn this section we prove our main results, as two separate theorems. The proofs consist of ma-nipulating the parameters d, `, and �. Let � = 1=(1 + log2 �). We have � � 0:59023. Hencen� log n = O(n0:6). We restate Theorem 1.1 precisely:8



Theorem 4.1 Assume qi�1 + pi + qi � �n for each i, where � > 0 is a constant. Then an optimalbinary search tree can be computed in O(n0:6) parallel time with O(n) processors.Proof. We apply Lemma 3.2 with � = �ǹ . Let d = log�( ǹ). The work in the �rst phase is O(n`)and in the second phase it is O(2dn). The algorithm has the smallest minimal work if these sub-works are nearly equal. This occurs when log�( ǹ) = log2(`). It can be calculated that in this cased = log2(n) � �. Thus 2d logn = O(n0:6).Theorem 4.21. Let a > 1. There is a parallel O(n1+a�� logn)-time n-processor algorithm which constructs an(n1�a log n)-approximately optimal binary search tree.2. There is a parallel O(n0:6)-time n-processor algorithm which constructs an o(1)-approximatelyoptimal binary search tree.Proof. Let � = n�a.Claim 1If each item has weight at least � we can compute the optimal binary search tree in parallelO(n1+a�� logn) time with n processors.Proof. (of the claim) Take ` = na��, � = ` � � and apply Lemma 3.2.We remove a pair consisting of Ki and Ei provided qi�1 + pi + qi < �. Iterate this process untilq0i�1 + p0i + q0i � � for all i in the remaining sequence. Construct an optimal binary search tree T 0for the remaining items using the algorithm from Claim 1. The tree T 0 has height O(logn) since theweight of each item is su�ciently large. The cost of T 0 does not exceed the cost of an optimal treefor the whole sequence.We now attach the deleted items to T 0, as follows. Suppose Ki; Ei : : :Kj ; Ej is a maximal list ofconsecutive deleted items. Replace Ei�1 in T 0 by an almost regular binary search tree whose itemsare Ei�1; Ki; : : :Kj ; Ej. See Figure 4.We increase the cost by O(n � n�a � logn), which is O(n1�a log n). This proves point 1.We can take a very close (from below) to 0:6=� and achieve time O(n0:6) with n processors ando(1)-approximation.5 Short height limited treesThe fastest known sequential algorithm for optimal height-limited binary search trees requires O(n2L)time, where L is the height. Below, we give a new algorithm which improves this result for smallvalues of L. 9
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