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Abstract

A sublinear time sub-quadratic work parallel algorithm for construction of an optimal binary
search tree, in a special case of practical interest, namely where the frequencies of items to be
stored are not too small, is given. A sublinear time sub-quadratic work parallel algorithm for
construction of an approximately optimal binary search tree in the general case is also given.
Sub-quadratic work and sublinear time are achieved using a fast parallel algorithm for the column
minima problem for Monge matrices developed by Atallah and Kosaraju. The algorithms given
in this paper take O(n%°) time with n processors in the CREW PRAM model.

A new version of the sequential subquadratic time algorithms for the same problems is also
given. New parallel and sequential algorithms for height-limited binary search treees with very

small height limitation are presented.

*Dept. of Computer Science, University of Bonn, 53117 Bonn. This research was partially supported by DFG Grant
KA 673/4-1, and by ESPRIT BR Grant 7097 and ECUS 030. Email:marek@cs.uni-bonn.de

"Department of Computer Science, University of Nevada, Las Vegas, NV 89154-4019, USA. Partially supported by
National Science Foundation grants CCR-9112067 and CCR-9503441. Email:larmore@cs.unlv.edu

Hnstitute of Informatics, Warsaw University, 02-097 Warszawa. Partially supported by DFG Grant Bo 56/142-1.

Email:rytterOmimuw.edu.pl



1 Introduction

The problem of computing optimal binary search trees (the OBST problem) is especially interesting
in a parallel setting, since there is no known A'C algorithm which solves that problem efficiently, and

the problem of finding such a parallel algorithm appears to be very hard [4].

There is an A'C algorithm for the special case of alphabetic trees using n? processors [12]. The
best known AC algorithms require O(n®) work for optimal binary search trees and O(n?) work for

approximately optimal binary search trees [4, 15].

Sublinear time parallel algorithms sometimes have much lower total work than N'C algorithms.
In [7] a sublinear time algorithm for the OBST problem whose work is very close to quadratic is
given. The fastest known sequential algorithm for the OBST problem is the classical algorithm by
Knuth [9], which takes quadratic time. The main theorem of [9] uses, without stating it those terms,
the Monge property of the matrix of subtree costs. A matrix M has the Monge property if, for all
< My, + M;

same as the quadrangle inequality introduced by Yao [16] which allowed speedup of certain dynamic

i < %, and j, < j; which are within range, M, ;o + M;, ;, 1.jo- This is essentially the

programming algorithms.

The problem of developing a sub-quadratic time sequential algorithm for the general OBST
problem appears to be very hard. Algorithm for finding approximately optimal binary search trees
have been found by Allen, Mehlhorn and Unterauer [2, 13, 14]. The results of this paper are largely

based on the algorithm for approximately optimal binary search trees given by Larmore [10].

In this paper we consider the problem in a parallel setting, using the CREW PRAM model of
computation. We present sublinear time subquadratic work parallel algorithms for certain special
instances of the OBST problem, We shall define an instance to be “special” if the item weights
are sufficiently large. We also give sublinear time subquadratic work parallel algorithms which give

approximately optimal binary search trees in the general case.

Define a binary search tree to be e-approzimately optimal if its cost differs by at most ¢ from the

cost of the optimal binary search tree. Qur main result is:

Theorem 1.1 There exists an O(n°%)-time parallel algorithm using n processors which computes
the optimal binary search tree for a special sequence. Furthermore, there exists an O(n°®)-time
parallel algorithm using n processors which computes an e-approximately optimal binary search tree

for a general sequence, where € = o(1).

We use terminology from [8], pages 434-435. Let Ky,...K, be a sequence of n weighted items

(keys), which are to be placed in a binary search tree. We are given a sequence « of 2n 4 1 weights

(probabilities): 90,1915 P2,92,P35 - - - dn—1Pn> n where

e p; is the probability that K; is the search argument;

e ¢; is the probability that the search argument lies between K; and K;41.



Note that >"p; + > ¢; = 1. It will be convenient to refer to the external item F;, for 0 < ¢ < n,
corresponding to the probability ¢;.

Given a constant é > 0, the sequence « is said to be 8-special if p; + ¢; > 6/n, for each 1 < i < n.
th

Let Tree(a) be the set of all full binary weighted trees with n internal nodes, where the """ internal

node (in inorder) has weight p;, and the i external node (the leaf, in the left-to-right order) has
weight ¢;. The tree is “full” in the sense that each internal node has exactly two sons. The keys
{K;} are to be stored in internal nodes of this binary search tree. The external nodes correspond to

intervals between keys. If T is a such a weighted binary search tree then define the cost of T to be:

cost(T) = ZK(T, v) - weight(v) (1)

where the summation is over all nodes of T, and (7', v) is the level of the node v in T, defined to be

the distance (number of nodes on the path) from the root.

(3
K7

the abstract 4-tree

Figure 1: A binary search tree 7. Some nodes (boldface) are inside the indicated (dotted rectangle)
abstract regular tree 75. The nodes of 7; are numbered in in-order. Observe that 7" does not include
all nodes of 7;. The edges of T leading to its internal nodes inside 74 are in bold. We shall later

traverse (in some sense) the subtree consisting of such edges.

Example

Consider the tree T shown in Figure 1. It consists of 10 internal nodes labeled K;y... K19 and 11
external nodes. The contribution of the key Kg to the cost is 3 - pg, for example, since the level of
node containing Kg is 3. Similarly, for example, the contribution of the “unsuccessful search” node

Fg between keys Kg and Kg is 6 - gg.

Let OPT(«) be the set of trees Tree(a) whose cost is minimal. The OBST problem consists of
finding any tree I’ € OPT(«). Denote by obst(¢,j) the set OPT(¢;, pit1, ¢it1,-- -5 91,05, ¢;). The



trees which are elements of this set are said to have width |j — i|. Let cost(7,j) be the cost of a tree

in obst(1,j), and let weight(t,7) = ¢;+pit1+...+p; +¢;, for i < j. Let cost(i, i) = weight(i,t) = g;.

The values of cost(, j) are tabulated in an array. The time to compute all values of cost is O(n?),
using Knuth’s Theorem [9], essentially making use of the Monge property of cost, considered as a
matrix. Knuth’s algorithm can be easily parallelized by computing all entries on a given diagonal
of the array in parallel. The following lemma was essentially shown in [7]. It says that costs of all

optimal subtrees of width at most £ can be efficiently computed in parallel.

Lemma 1.2 (Parallelization of Knuth’s algorithm) All values cost(i,j) for |j —i| < { can be
computed in O(L -log({)) time with O(n/log(()) processors.

A matrix M has the Monge property if, for all i, < ¢, and j, < j; which are within range,
Miq o + M;, 5, < Mg 5 + M;

i S Mg 5 Monge matrices arise in a large number of applications.

1,J0°

We state several known results concerning Monge matrices.

Lemma 1.3 (Monotonicity of Column Minima) If j, < j,, then there exist i, < i, such that

the minimum of column j, of M 1is at iy, and the minimum of column j, of M 1is at 1,.

The following result is by Aggarwal, Klawe, Morey, Shor, and Wilber [1]. The algorithm developed
in that paper is whimsically known as the “SMAWK” algorithm, using a permutation of the authors’

initials.

Lemma 1.4 If M is an n x m Monge matriz, all column minima of M can be found in O(n + m)

sequential time.
In the parallel case, we have the following result by [3].

Lemma 1.5 If M is an nxm Monge matriz, all column minima of M can be found in O(lognlogm)

time by n/logn processors, using the CREW PRAM model of computation.

2 A general structure of the exact algorithm

The main phase of our algorithm uses a form of dynamic programming quite different from the
usual ones for optimal binary search trees (bottom-up computation of the costs of optimal subtrees).
The new concept of a “partial tree” is introduced. The costs of all partial trees are computed by
processing the potential nodes of the trees in in-order. These potential nodes are contained in a
tree which we call an “abstract tree.” It is possible that not all of the nodes of the abstract tree

correspond to nodes in the optimal binary search tree.

Let d > 0 be a given integer. The abstract d-tree 7 is a full regular binary tree which consists
of all possible nodes at level at most d, and no nodes at higher levels. See Figure 1. Note that 7;
has m = 2% — 1 nodes, which we label vy, ..., in in-order. For example, the nodes of 7; as shown

in Figure 1, are labeled vy ...v15. We shall identify the nodes at levels at most d of any binary tree



with nodes of 7. For example, in Figure 1, all internal nodes of T except K5 and Kg are identified
with nodes of 7, as are 3 of its 11 external nodes. Some of the nodes of 7;, namely vg, v11, 13, and

v1s are not identified with nodes in T'.

Figure 2: Two partial trees: 7' = Partialy(vy, K4) and T" = Partialr(ve, K¢). cost(T') = 4qo +
3p1 4+ 4¢1 + 2p2 + 3¢2 + p3 + 4¢3 + 3ps. The difference of costs between these trees is (level(vs)+ 1) -
cost(4,5) + level(vg) - pe.

Partial subtrees. Assume T is a binary search tree and v € 7; is identified with an internal
node of T containing the key K;. Then T" = Partialy(v, K;) is a subtree of T" which consists of all
vertices(internal and external) of 1" preceding the node v in in-order, together with v. We say that

T' is a partial tree terminating in (v, K;). Two partial trees are illustrated in Figure 2.

The cost of the partial tree T' (written partial_cost(T')) is the sum of the path weights for all

nodes in 7”. Define:
partial_cost(v, 1) = min{partial_cost(T’) : T’ is a partial tree terminating in (v, K;)}. (2)

Our main algorithm depends on two parameters, { and d, and consists of three phases.



ALGORITHM MAIN:

Preprocessing-Phase: parallel implementation of Knuth’s algorithm.

Compute costs of optimal subtrees of width at most £.

Comment: can be done in parallel time O({) due to Lemma 1.2

Basic-Phase: computation of optimal costs of partial subtrees.

Assume the nodes of the tree 7; are listed in in-order vy,..., v,,.
for k=1 to m do
for each ¢ =1...n do in parallel
compute partial_cost(vy, i) using the parallel algorithm

of [3] for the corresponding column minima problem.

Construction-Phase: construction of an optimal binary search tree.

global_cost := min{partial_cost(vg,n) + (level(v) + 1) -q, : v € Ty };
Comment: global_cost is the cost of an optimal tree;

w := a node v € 7 for which minimum is achieved;

construct an optimal tree knowing w and the table partial_cost.

3 Analysis of the algorithm MAIN

The essential part of the algorithm is Basic-Phase. We derive reccurence equations, as in dynamic
programming, to compute the table partial_cost. First we introduce the relation “="” between the
nodes of the abstract tree 7;. The relation u = » means that there is some binary tree T for which
a node identified with v is the immediate in-order successor, in 7', of a node identified with u. More
formally: let uq, wy be, respectively, the left and right sons of w in 75. Let uq, us, ... be the rightmost
branch starting at w; and let wsy, ws, ... be the leftmost branch starting at w;. Then w; = v and

v = w; for each 7 (see Figure 3).

/O v v O\
u © \ ,’O wa
u2 O,‘ O w3
u@ vO w2
W O O wi

Figure 3: The arrows show the relation =-.

If w = v, we say u is a predecessor of v, and v is a successor of u. The cost of an optimal partial

tree terminating in a given node v depends on the cost of a partial tree terminating in a predecessor



of v. Let {(u,v) = max{level(u), level(v)} + 1. We introduce two auxiliary tables partial_cost_1 and

M, defined by recurrence equations as follows:
partial_cost _1(v,1) = min{partial_cost(u,i — 1) + level(v) - p; + {(u,v) - qi—1 : w= v}  (3)
Assume u = v and u or v is at the bottom level, i.e., {(u,v) = d+ 1. Then for each 1 < i < j define:
M,(t,7) = partial_cost(u, 1) + level(v) - p; + cost(i — 1,7) + weight(i — 1,7) - d (4)

If ¢ > j then define M(¢,7) = co. Let ColMin(M,, i) be the smallest value in the i column of M,

The basic dynamic programming recurrence for computing partial_cost is as follows:

partial_cost(v, i) = min{partial_cost_1(v,1), ColMin(M,,¢)} (5)

Example Consider the partial trees 7" and 7" in Figure 2. Assume these partial trees are optimal.
In this case u = v5 and v = vg. The difference between costs of these trees is {(vs, vg) - cost(4,5) +
level(vg) - pe. In other words, this difference is M,,(4,6). The column minimum is realized in the
4t 10w of the 61 column. We also have partial_cost(ve, 6) = partial_cost(vs,4) + ColMin(M,,,6).

Lemma 3.1 (key lemma)
1. The matriz M, satisfies the Monge condition.
2. For a given v, the values ColMin(M,,7), for all 1 < i < n, can be computed in O(log*n) time

with n/logn processors.

Proof. (1) By Lemma 2.1 of [10], the matrix {cost(i — 1,7)} has the Monge property. It is simple
to verify that {weight(i — 1,7)} is also Monge. The other two terms are trivially Monge since they

depend on only one component. Finally, the sum of Monge matrices is Monge.

(2) All column minima of an n x n Monge matrix can be computed in O(log® 1) time with n/ logn

processors by a simple divide-and-conquer algorithm. I

Lemma 3.2 (Complexity of MAIN) Assume that the total weight of each segment of ( con-
secutive items is at least A. Then an optimal binary search tree can be computed in O(max{( -

log n, 210&15(%)}) parallel time with n processors.

Proof.

The partial costs can be computed by traversing the tree 7y, for d = [log(b(%ﬂ + 1, in in-order and
applying the basic dynamic programming recurrence. The main point is that the values ColMin can
be computed for a given node in O(logn) time with n processors, by Lemma 3.1. This proves the

following claim:

Claim 1. Assume the costs of all optimal subtrees rooted below level d are computed. Then an

optimal binary search tree can be constructed in O(2%logn) time with n processors.

We next use a combinatorial fact shown in [5] and [6] and expressed by the following claim:



Claim 2. Let ¢ be the golden ratio (¢ = @ ~ 1.62) and let T € OPT(qo, p1,G1s -+ > Py Gn)-

If v is an internal node of T and the weight of all items contained in the subtree rooted at v is A,
then levelr(v) < logy(%) + 2.
Proof. (of Claim 2). Let Iy =1, Fy = 1, I5 = 2, etc., be the Fibonacci numbers. By [6], a subtree

whose root is at level i can have weight at most 2/Fj, 5. Since F, > 2¢""* (see [8] exercise 4, pg

18) we are done. 1

The structure of the computation is shown in Figure 4. First the optimal costs of subtrees of width
(¢ are computed. Then (in Basic-Phase) the partial costs are computed in O(2%logn) time with
n processors (see Claim 1). Efficiency is gained by applying the parallel algorithm for the column

minima problem.

al nodes at
level at most d
are in the abstract d-tree

height d

subtrees of width
at most |

Figure 4: The structure of a binary search tree: d = [log,(5)] + 2, where A is the smallest total

weight of a segment of £ consecutive items. The abstract d-tree 7; is shaded.

The first phase runs in O(£-logn) time with O(n() work, and the second phase runs in O(2%logn)
time with O(29n) work.

Finally, the binary search tree is reconstructed using pointers that are saved during computation

of cost and M. 1

4 The proof of the main results

In this section we prove our main results, as two separate theorems. The proofs consist of ma-
nipulating the parameters d, ¢, and A. Let § = 1/(1 + log, ¢). We have § ~ 0.59023. Hence
nlogn = O(n%). We restate Theorem 1.1 precisely:



Theorem 4.1 Assume ¢;_1 + pi + q; > % for each v, where 6 > 0 is a constant. Then an optimal

binary search tree can be computed in O(n°%) parallel time with O(n) processors.

Proof. We apply Lemma 3.2 with A = 2. Let d = log,(7). The work in the first phase is O(n()
and in the second phase it is O(2%n). The algorithm has the smallest minimal work if these sub-

works are nearly equal. This occurs when log, (%) = log,(£). It can be calculated that in this case

d = logy(n) - 3. Thus 2¢logn = O(n"%). I

Theorem 4.2

1. Let a > 1. There is a parallel O(nl"'“'ﬁ log n)-time n-processor algorithm which constructs an
(n'=%log n)-approzimately optimal binary search tree.

2. There is a parallel O(n%%)-time n-processor algorithm which constructs an o(1)-approzimately

optimal binary search tree.

Proof. Let 6 = n—2.

Claim 1

If each item has weight at least 6 we can compute the optimal binary search tree in parallel
O(n'*t*Flogn) time with n processors.

Proof. (of the claim) Take { = n*# A = (- ¢ and apply Lemma 3.2. I

We remove a pair consisting of K; and F; provided ¢;_1 + p; + ¢; < 6. Iterate this process until
q'_y +pi+ ¢ > ¢ for all ¢ in the remaining sequence. Construct an optimal binary search tree 7’
for the remaining items using the algorithm from Claim 1. The tree T has height O(logn) since the
weight of each item is sufficiently large. The cost of 7’ does not exceed the cost of an optimal tree

for the whole sequence.

We now attach the deleted items to 77, as follows. Suppose K, I; ... K, I/; is a maximal list of
consecutive deleted items. Replace F;_q in T’ by an almost regular binary search tree whose items

are I;_q1, K;,...K;, F;. See Figure 4.

We increase the cost by O(n - n~%-logn), which is O(n!=%logn). This proves point 1.

We can take a very close (from below) to 0.6/3 and achieve time O(n"®) with n processors and

o(1)-approximation. 1

5 Short height limited trees

The fastest known sequential algorithm for optimal height-limited binary search trees requires O(n?L)
time, where L is the height. Below, we give a new algorithm which improves this result for small

values of L.
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Figure 5: Assume that we have two runs of small items K5,..., K4y and K7..Kg. IF T’ is an optimal

tree for the remaining items then regular binary trees T1 and T2 (for the runs of small items) are

attached at the circled nodes of T/ to form the final approximately optimal tree T.

Theorem 5.1 If L < 2logyn — v, where v > 0 is a constant, then there is a sequential algorithm

which computes the optimal binary search tree of height L in subquadratic time.

We sketch the proof. The first step is to compute all optimal trees of height at most L/2 for all
pairs where |j—i| < 2L/2 Tt is important to use the fact that {costh(i,j)} is a Monge matrix for fixed
h, where costh(i,j) is cost of an optimal binary search tree of the sequence ¢;, p;11,...p;, ¢; subject
to the restriction that its height is at most h. The second step is a sequential time implementation

of the construction phase of the main algorithm from Section 2.
There is a corresponding parallel algorithm.

Theorem 5.2 If L < 2log, n—7, where v > 0 is a constant, then there is a parallel algorithm which

computes the optimal binary search tree of height L in sublinear time with subquadratic work.
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