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Abstract

In the paper we define and study a generalization of the Weisfeiler-Lehman
algorithm which constructs the cellular closure of a set of matrices. The new
technique is compared with all the other techniques of that kind. The underlying
construction gives a new sufficient condition for a cellular algebra to be Schurian.
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1 Introduction

The starting point of the paper is the Graph Isomorphism Problem (ISO), a famous
unsolved problem in computation complexity theory. The problem is to test whether
two finite graphs are isomorphic by means of an efficient algorithm. Despite many efforts,
at present the best isomorphism test for n-vertex graphs makes at least n®V") steps in
the worst case [4].

It is well-known [10] that the ISO is polynomially equivalent to the following problem:
given a graph I' construct all the orbits of its automorphism group Aut(I') consisting by
definition of all permutations of the vertex set V' of I', preserving the adjacency of edges.
[t is easy to see that the orbits of Aut(I') can efficiently be computed by a linear base of
the centralizer algebra Z(Aut(l'), V) of the permutation group (Aut(I'), V'), consisting
of all the matrices over C commuting with each permutation matrix of Aut(I'). Thus
the ISO is polynomially equivalent to the problem of finding the algebra Z(Aut(I'), V).

In [13] an approach to the ISO based on the notion of cellular algebra was developed.
Denote by Maty the full matrix algebra over C on V', i.e. the set of all complex matrices
whose rows and columns are indexed by the elements of V. A subalgebra of Maty is
called cellular if it is closed under the Hadamard (componentwise) multiplication, the
Hermitian conjugation and contains the matrix whose all the entries are equal to 1. One
can see that the centralizer algebra Z(G, V) of a permutation group (G, V) is cellular.
On the other hand, given a matrix A € Maty the smallest cellular algebra containing A
denoted by [A] can be constructed in polynomial time [13]. It gives an efficient algorithm
to construct the cellular algebra W (I') = [Ar] of a graph I' with adjacency matrix Ar.

It is proved in [13] that Aut(I") coincides with Aut(W (I')) which is by definition the
group of all permutation matrices of Maty commuting with each matrix of W(I'). This
implies W(I') < Z(Aut(I'), V) (inclusion). Note that the ISO could be solved if the
last inequality was always equality. Unfortunately, there exist cellular algebras W not
coinciding with Z(Aut(W), V) denoted by Sch(W) below (see [1], [14]). These algebras
were called in [9] non-Schurian in contrast to Schurian ones for which W = Sch(W).

The above paragraph explains why the property of a cellular algebra "to be Schurian”
is extremely important in the context of the I[SO. Indeed, it shows that the ISO is
polynomially equivalent to the problem of constructing the Schurian closure Sch(W)
of a cellular algebra W. Here we face a common situation in mathematics: we want
to construct some object but have in hand only an approximation to it. Certainly,
it would be more convenient to deal with a sequence of some natural approximations
giving eventually the object we are interested in. This motivates the following definition
of Schurian Polynomial Approximation Scheme.

Let us have a rule according to which given a cellular algebra W < Maty and a
positive integer m a cellular algebra W™ < Maty can be constructed. We say that
the operators W s W) (m = 1,2,...) define a Schurian Polynomial Approzimation
Scheme if the following statements hold:

(1) Aut(W) = Aut(W) for all m > 1;
2) W=WO < ... <WM = =Sch(W);
(3) (WONO =W for all [ € [1,m];



(4) W™ can be constructed in time n®™
where n = |V|]. In this paper we describe a special Schurian Polynomial Approximation
Scheme and study its main properties.

The key notion of our aproach is that of m-closure. To define it given W and m denote
by W™ a cellular algebra which is the restriction to V' (included in V™ diagonalwise)
of the smallest cellular subalgebra of Matym containing the algebras Z(Sym(V), V™)
and W@ --- @ W (m times). We call W) the m-closure of W.

Theorem 1.1 The m-closure operators W — WU (m = 1,2,...) constructed above
define a Schurian Polynomial Approzimation Scheme.

In [13], [5] and [6] some algorithms which can be interpreted in the above terms
as ones defining Schurian Polynomial Approximation Schemes were described. In this
interpretation we denote by A,, (resp. B, ) the algorithm from [5] (resp. from [6]).
A natural question arises: what does a relationship exist between the cellular algebras
A (W), By, (W) and W72 The next proposition gives a partial answer to the question.

Theorem 1.2 The Schurian Polynomial Approximation Scheme defined by the m-
closure operators “is not worse” than ones defined by A,, and B,,. More exactly,

Wi > A (W), W > B, (W)

for all cellular algebras W and m > 1.

One of the most important problem concerning Schurian Polynomial Approximation
Schemes is a good estimation of the smallest m > 1 for which W™ = Sch(W). Note,
that if such m was bounded by a constant then by (4) the ISO could be solved in
polynomial time. We don’t know whether this is true for our or someone’s else Schurian
Polynomial Approximation Scheme. However, we can give an upper bound for m in
terms of the split number of a cellular algebra defined below.

The split number s(W) of a cellular algebra W is by definition the smallest s for which
there exist vq,...,v; € V such that W,, . = Maty where W,, .. = WI[l,,...,[,]
is the smallest cellular subalgebra of Maty containing W and all the matrices 1,,, [,
being a {0,1}-matrix with exactly one nonzero element standing in row and column v;.
Clearly, s(W) < n — 1 for all W. Some non-trivial upper bounds for this number can
be found in [3] and [11]. We also mention paper [7] where a similar invariant (called

freedom degree) was defined for a permutation group.
Theorem 1.3 Let W be a cellular algebra with s(W) < m — 1. Then Sch(W) = W™,

The idea of the proof is to consider a cellular algebra W c Matym generated by the
algebras Z(Sym(V), V") and W®@---@W (m times). We show that this algebra contains
(in a sense) all cellular algebras of the form W, with v; € V. By using this fact we
find a faithful regular orbit of the permutation group (Aut(W), V™) = (Aut(W(m)), V.
A final step is to transfer the corresponding action of Aut(W) to V.

As an easy corollary (s(W) < 1) we get the following statement.

Corollary 1.4 If a cellular algebra W < Maty has no proper cellular superalgebras,
then W) = Sch(W).



The paper consists of six sections. The second one contains main definitions and
some preliminary results concerning cellular algebras. In section 3 we define the notion
of m-closure and in detail study the properties of m-closed cellular algebras. As a result
we get the proof of Theorem 1.1. Sections 4 and 5 are devoted to Theorems 1.2 and 1.3
respectively. In section 6 we discuss some open problems.

Notations. As usual by C we denote the field of all complex numbers.

Throughout the paper V' denotes a finite set with n = |V| elements. The group
of all permutations of V' is denoted by Sym(V'). By relations on V me mean subsets

of V x V. If Ris a relation on V', then

supp(R)= (] U.

URCUxU

An equivalence F is by definition a symmetric, transitive, but non-necessary reflexive
relation on V. In this case V/FE = supp(F)/E denotes the set of all equivalence classes
modulo K.

The algebra of all complex n x n matrices whose rows and columns are indexed by
the elements of V is denoted by Maty. If A € Maty, then AT denotes the transpose
and A* the Hermitian conjugate matrix.

For a set M

hy =10l e MY, Ju={(. )i, € M},

For integers {,m with [ < m by [[, m] we denote the set {{,{+1,...,m}.

2 Cellular algebras

Denote by Ly a linear space over C with the set V' as a base. For any subset /' C V' the
linear space Ly can naturally be viewed as a subspace of Ly (spanned by U). Below we
identify Ly with this subspace of Ly.

By a cellular algebra W on V' we mean a subalgebra of Maty containing the identity
matrix [y, the matrix Jy whose all the entries are equal to 1, and closed under the
Hermitian conjugation and the Hadamard (componentwise) multiplication (denoted by
o below). The algebra Maty naturally acts on the space Ly. The restriction of this
action to W defines a faithful linear representation called the standard representation
of W.

Below we give a combinatorial characterization of cellular algebras. It is convenient
to view {0,1}-matrices belonging to Maty as the adjacency matrices of relations on V.
Throughout the paper we identify these matrices with the corresponding relations.

Proposition 2.1 ([13]) A linear subspace W C Maty is a cellular algebra if and only
if there exists a linear basis R = R(W) of W consisting of {0,1}-matrices such that

(1) Xrer B = Jv;
(2) ReR + R e R;
(3) there exists a disjoint partition V =:_,; Vi of V into nonempty sets V; such that

(a) Iy, € R for all i;



(b) VReR Fi,j€([l,s]: RCV,xV;

(¢c) if R € R and R C V; x'V,, then the number of 1’s in the uth row (resp.
vth column) of the matriz R does not depend on the choice of u € V; (resp.
v € V), this number is denoted by dowi(R) (resp. din(R));

(4) given R, S, T € R the number

plu,v;9,T) = ‘{w eV (u,w) € S5, (w,v) €T}

b u7U€V

does not depend on the choice of (u,v) € R.m

Remark 2.2 [t is easily seen that the basis R and the partition V = J;_; V; are uniquely
determined by W.

The linear basis R(W) of a cellular algebra W defined in Proposition 2.1 is called
the standard basis of W. Any subset V; C V defined in Proposition 2.1 (resp. a union
possibly empty of V;) is called a cell (resp. a cellular set) of W. The set of all of them
is denoted by Cel(W) (resp. Cel*(W)).

Below we will use the following generalization of statement (4) of Proposition 2.1.
Let u,v € Vand § = (Ry,..., R) € R'. We say that (vg,...,v;) € Vs a (u,v)-path
of the type § if vg = u, vy = v and (v;_1,v;) € R; for all ¢ € [1,1]. The number of all such
paths will be denoted by p(u,v;d).

Lemma 2.3 (Path Proposition [13], Th. C10) Let W be a cellular algebra. Then
given R € R(W) the integer p(u,v;d) does not depend on the choice of (u,v) € R.m

Let U € Cel*(W) be a cellular set. The subalgebra IyW Iy C W invariantly acts
on the subspace Ly = [yLy C Ly. So it can be viewed as a subalgebra of Maty.
Clearly, it is closed under the Hermitian conjugation and the Hadamard multiplication
and contains [;7 and Jy. Thus it is a cellular algebra on U called the restriction of W
to U and denoted by Wy.

The set of all cellular algebras on V' is ordered by inclusion. The algebra Maty is
obviously the greatest element of the set. We write W < W’ if W is a subalgebra of W'.
If Ay,..., A, € Maty, then the intersection of all cellular algebras on V' containing W
and all the matrices A; is also a cellular algebra on V. It is denoted by W{[Ay, ..., A,].
We use notation [Aq,..., A,] if Wis asimplexi.e. R(IW) = {ly, Jy— Iy}, and W,
if A; =1, = I,y for all 2.

Let ¢ : V. — V' be a bijection. It induces in a natural way a linear isomorphism
Ly — Ly and an algebra isomorphism Maty — Maty such that

~~~~~ Um

(Ax)? = AY - 2%, A€ Maty, v € Ly.

Two cellular algebras W on V and W’ on V' are called isomorphic if W¢ = W’ (as sets)
for some bijection ¢ : V' — V' called an isomorphism from W to W’. Clearly, ¢ induces
a bijection between the sets R(W) and R(W’). The group of all isomorphisms from W
to itself contains a normal subgroup

Aut(W) ={p e Sym(V)| A¥ = A, Ae W}



called the automorphism group of W.

Following [13] let us define for cellular algebras the notion of tensor product. Let
Wy < Maty, and W, < Maty, be cellular algebras on Vi and V5. It is easy to see that
the subalgebra W, @ W, of Maty, @ Maty, = Maty, «v, 1s closed under the Hadamard
multiplication in Maty, xv,. It also contains Iy,xv, = Iy, @ Iy, and Jy,xv, = Jy, @ Jy,.
So Wy @ Wy is a cellular algebra on V) x V, called the tensor product of Wy and W,.
Clearly, R(W; @ W) = R(W1) @ R(Ws3) and Aut(W; @ W) = Aut(W;) x Aut(Ws).

A large class of cellular algebras comes from permutation groups as follows (see [13]).
Let (G, V) be a permutation group. Then its centralizer algebra Z(G,V) C Maty is a
cellular algebra on V' the standard basis of which consists of all the orbits of the natural
action of G on V x V. For a cellular algebra W on V' set

Sch(W) = Z(Aut(W), V).

Clearly, W < Sch(W) and Aut(W) = Aut(Sch(W)). The algebra W is called Schurian
if W = Sch(W). Certainly, Sch(W) is a Schurian algebra for all W. It follows from
[14, 1] that there exist cellular algebras which are not Schurian. It is well-known that
the ISO is polynomially equivalent to the problem of constructing Sch(W).

The isomorphism of cellular algebras W and W’ defined above induces an equivalence
between the standard representations of them. The converse statement is not true. This
motivates the following definition (see [13]). Cellular algebras W on V and W’ on V'
are called weakly isomorphic if there exists an algebra isomorphism f : W — W’ such
that f(R(W)) = R(W'). Any such f is called a weak isomorphism from W to W’.
The following statement describes the basic properties of weak isomorphisms which are
easily deduced from the definition.

Proposition 2.4 Let f: W — W' be a weak isomorphism. Then
(1) YA BEW: f(AoB)=f(A)o f(B), f(A")=f(A).

(2) VU € Cel(W) U’ € Cel(W'): |U| =|U"|, f(Iy) = Iyr. In particular, |V| = |V'],
| Cel(W)]| = | Cel(W")].

(3) E € W is an equivalence on V iff ' = f(E) € W' is an equivalence on V'.
Moreover, |V/E| = |V/E'| and {|U|; U e V/E}={|U"]; U' e V//LE'} =

Let W be a cellular algebra on V. A nonempty equivalence £ € W on V is called
indecomposable (in W) if E is not a matrix sum of two nonempty equivalences on V
belonging to W. Otherwise, the equivalence is called decomposable. Since E D Iy, for
any equivalence £ € W where Vg = supp(F) € Cel” (W), each equivalence belonging to
W can uniquely be represented as a sum of indecomposable ones called indecomposable
components of F.

Let E € W be an equivalence on V. For each U € V/FE the set Wg = IyWy can

be viewed as a cellular algebra on U with the standard basis
R(Wgp)={IuRIy| RER, RC E, IyRIy # 0}. (1)

Clearly, each basis relation of Wy iy can uniquely be represented in the form Iy BRIy with
ReR.



Lemma 2.5 [If £ is an indecomposable equivalence of W, then

(1) given U, U’ € V/E there caists ¢ uniquely defined weak isomorphism
four :Wgo — Wgau
such that foo(loAly) = Iy Al for all A € W.
(2) VU, U € VIE NV, € Cel(W), V; Csupp(E): [UnVi|=[U'NV)|>0n

Proof. We define f = fyp as follows. Let S € R(Wg ). By (1) there exists a uniquely
determined R € R(W), R C E such that S = [yRIy. Set f(S) = Iy RIy. We will
show that f is a bijection from R(Wg ) to R(Wg ). By (1) it suffices to check that

VR € R(W) : IgRIg; =0 & IRl =0 (2)

Indeed, if IyRI;y = 0 and IynRIy # 0, then Vg C Vg, Vg # 0 and VR N U = () where
Vi = supp(R) and Vg = supp(F). So E is a sum of two nonempty equivalences of W
Iy, Ely, and Iy,\v,E1y,\v,, which contradicts the indecomposability of F.

Extend f to a linear map from Wg iy to Wy . This map is an algebra isomorphism,
since

J(UuRily - IuRIy) = f(IuRi Roly) = Ty Ry Roly = I Ry Iy - T R I

for all Ry, R, € R(W), R, R, C E.

Let us prove statement (2). Since V; C supp(F), there exists U € V/E for which
U NV;| > 0. By using (2) for R = Iy, we conclude that |[U'NV;| > 0 for all U" € V/E.
Now statement (2) follows, since UNV; and U’ NV, are blocks of the equivalence Iy, E'ly,
of the cellular algebra Wy, with exactly one cell.m

3 Extended algebras and m-closures

Let W be a cellular algebra on V. For each positive integer m we set

e

W=wm=[Wa---oW, Z(Sym(V),V")]
SN—— —

m

with Sym(V') acting on V™ in a natural way:
(Viyee oy v)? = (v],...,0%), g€ Sym(V).

We call the cellular algebra Wm) < Matym the m-dimension extended algebra of W.
Clearly, W) = W and

Aut(W) ={(g,...,9)| g € Aut(W)} (3)

m

for all m.



Now we are going to describe some relations belonging to W. To do this we define

for an arbitrary S C [1,m]? a binary relation Ps on V™ as follows:
(u,v) € Ps < Y(i,j)€S: u=v;
where 4 = (uy,...,uy),0 = (v1,...,v,) € V™. Clearly,
Ps € Z(Sym(V),V™) forall S C[1,m]%

FExamples. Let M C [1,m].
1. Set
Dy = Ps  where S = Jy U I pmr-

Clearly, Dys C Iym for all M, Dy = Iym and Dy ) = Ia where
A={(v,....,v} e V" veV}

2. Set
Ey = Ps where S = Iy,

Clearly, Iy is an equivalence on V™ for all M and Ey = Jym, L ) = Iym.
Below we will mainly use the relations Dy and Ej; as well as matrices

~

A=Iyo-0lyoA, AeW
—_————

m—1

also belonging to Wim,
Fach class U of the equivalence £y ,,,—1] is of the form

U=Uy,.vp ={(v1,...;0m-1,0) | v EV}
for some v; € V. Let us define a map (7 as follows:
(w:V—=U v (v, ,05-1,0).
The following lemma describes the simplest properties of the map.
Lemma 3.1 In the above notation the following statements hold:
(1) (v is a bijection;
(2) R = IyRIy = IyR = Rly;

.....

Proof. Statements (1) and (2) are trivial. By (2) W < WEU. On the other hand,

(L/,‘)CU = [(U Upn—1,05) — [UD{i,m}[U - WEJJ for all 1€ [1,m — 1]

1geeey

Thus -
Weoy > WIS, . 157 1= (W,

? T Um—1

8

(4)



For [ € [1,m] define another map
g Vs V™ (v 0) e (01,0 ). (9)

It is easy to see that £ is an injection and & (V') = supp( Dy, ) is a cellular set of W,
The important feature of the cellular algebra W™ is the possibility to extend the
algebra W without changing its automorphism group. To show it set

—1

W = (W) )8

where £ = &'+ V. — V™ is the injection (9) and A = £(V) is the cellular set (6).
Clearly, W™ > W and Aut(W™) = Aut(W) (see (3)). We say that W is m-closed
if W = W), Each algebra is certainly 1-closed. However it is not the case for m > 2.
In fact we will show later that a non-Schurian cellular algebra cannot be m-closed for
all m > 2.

Below we list some properties of the operators W s ﬁ\/(m), W= Wim),

Lemma 3.2 For all cellular algebras W, Wy, Wy on V' and a positive integer m
(1) Wy < Wy implies W™ < W™ and W™ < wim,
(2) (Wi QW) < W™ a Wi (wy 0 wy)e < wi™ o wim™,
(3) the intersection of m-closed cellular algebras is m-closed;
(4) (WO < (W) for all L € [1,m] where U = &"(V') (see (9));
(5) WU s [-closed for all | € [1,m].
Proof. Statement (1) is clear. (2) follows from (1). If W™ = Wy and W™ = W,

then (W1 N Wz)(m) < Win W, by (2). Since the inverse inclusion is obvious, (3) follows.
To prove (4) it suffices to show that

(Z(Sym(V), V)" € Z(Sym(V), V™), (Wa - aW)F cWa. oW,

{ m

The first is clear. The second one follows from (A; @ - - -®A1)5Zm =A@ QAR --Q A,

Let us prove (5). It follows from statement (4) and £ o & = &7 (see (9)) that
WO < W for all W’. Applying it to W = W™ we see that it suffices to prove
statement (5) for [ = m. We will check that the m-dimension extended algebras of W
and W™ coincide. Clearly, the second contains the first. To prove the inverse inclusion
set R; = Ps; where S; = {(2,7)|¢ € [1,m]}, j € [1,m] (see (4)). A straithforward
calculation in Matym = Maty @ - -+ ® Maty shows that for all j € [1, m]

RIAR =Jy®...0Jy0A@Jy©...@Jy, A€ Maty

Jj—1 m—j

where ¢ is the map (9). Since the Hadamard multiplication in Maty @ - - - @ Maty can
be done factorwise,

A @ @A, = (RTASR) o0 (REAS R,,) forall Aj,..., A, € Maty .

9



Thus W™ @ ... @ W W(m), which completes the proof.m

It follows from statement (5) of Lemma 3.2 that the cellular algebra W (™) is m-closed.
We call it the m-closure of W.

The following proposition describes a relationship between the notions of m-closure
and Schurian closure Sch(W) of a cellular algebra W. It shows that in a sense W™
can be interpreted as an approximation to Sch(W).

Proposition 3.3 For each cellular algebra W on V' the following statements hold:
(1) Aut(W) = Aut(W) for all m > 1;

(2) W=Wm < .. <Wr = .. = Sch(W);

(3) (WD =W for all 1 € [1,m].

Proof. Statement (1) is clear. Let us prove (2). The inclusion WO <wm for 1 <m
is contained in the proof of statement (5) of Lemma 3.2. The equality W™ = Sch(W)
for m > n follows from Theorem 1.3, since clearly s(W) < n — 1 for all W. (Note
that Theorem 1.3 is proved in section 5 independently of this assertion.) Finally, (3)
coincides with statement (5) of Lemma 3.2. =

Proposition 3.4 Given a cellular algebra W on V' and a posilive integer m the standard
bases of the cellular algebras W™ and W™ can be constructed in time n®(™),

Proof. Since the standard bases of W @ ---@ W (m times) and Z(Sym(V'), V™) can be
found in time n®(™) | the standard basis of Wwim) (and so of W) can be found within
the same time due to the Weisfeiler-Lehman algorithm for constructing the cellular
closure of a set of matrices [13] (for a time analysis see also [12]).m

Remark 3.5 [f instead of the Weusfeiler-Lehman algorithm for constructing the cellular
closure of a set of matrices we use an algorithm of [2], the algebras W™ and W™ can
be found in time O(mn>™ logn).

Propositions 3.3 and 3.4 show that the operators W s W™ (m = 1,2,...) define
a Schurian Polynomial Approximation Scheme (see Section 1). It proves Theorem 1.1.m

We complete the section by a statement being of use later. For each R C V? set
Up = {(u,...,u,v) € V"| (u,v) € R}.
Proposition 3.6 Let W be a cellular algebra on 'V and m > 2. Then
(1) YVRCV?: ReR(W™M) & Upe Cel(Wm);
(2) YU € Cel(W)Yi,j e [1,m] IR € RIW™): ((vr,...,vm) € U = (vi,v;) € R).

Proof. Below we write vy ...v,, instead of (vy,...,v,,). Let us prove (1). Assume that
R € R(WU). Choose (u,v) € R and denote by S;,T, S, the basis relations of W
containing the pairs (u™, u™ '), (™ ', u™ tv) and (v v, v™) respectively. Clearly,
p(u™ v™;8) =1 where § = (51,7, 52). By the Path Proposition (Lemma 2.3) the equal-

o~

ity holds for all (u/)™, (v')™ with (v',v") € R. So T = I, whence Ur € Cel(W (™)),

10



Conversely, let Ugr € Cel(W(m)). Choose u™ 'v € Ur and denote by S}, R, S} the basis
relations of W (™) containing the pairs (v tv,u™), (u™, v™) and (v, u™ 'v) respec-
tively. Clearly, p(u™ v, u™ 'v; ") = 1 where 8’ = (5], R, S5). By the Path Proposition
the equality holds for all points of Ug. It follows that B’ = R® where ¢ is defined in (9).
That is R € R(W™).

To prove (2) we assume without loss of generality that ¢ = m — 1, j = m. Let

o~

U e Cel(W(m)). Choose v = vy - - v, € U and denote by R the basis relation of W™

o~

containing the pair (v;,—1, v ). By (1) we have Ug € Cel(W(m)). Set
S = (UR X U) N E{m—l,m}

where Fy,,_y .} is defined in (7). Clearly, S € R(W™), di(S) = 1 and (v "Lo,,,0) € 5.
So for any v’ € U there exists u’ € Ug such that (¢/,0") € S. If o/ = v} -- v/, then

u' = (v _ )"t/ whence (v! v/ )ER. =

4 High dimensional Weisfeiler-Lehman procedures

In this section we prove Propositions 4.1 and 4.2 from which Theorem 1.2 follows.
A map f from V™ on [1, d] is called a coloring of V™ in d colors. Anyset f~(i) C V™
is called a color class of f. Given u,v € V define a relation R;(u,v) C V x V as follows:

Ry(u,v) ={(/,v") € V?| f(/,...,u/,0") = f(u,...,u,v)}.

Denote by Ry the set of all distinct Ry(u,v). In this notation the following procedure
was described in [13] (see also [3]).

Procedure A,, (m > 2)
Input: a cellular algebra W on V.
Output: a cellular algebra A,,(W) > W.
Step 1. Construct a coloring fy of V™ such that

fo(v) = fo(¥') < VRe R(W)Vi,je[l,m]: ((v,v;) € R <+ (vi,v)) € R).

Y

Set [ = 0.
Step 2. For each v € V™ find a formal sum S(v) = 3 ,cv fi(v/u) where

O/t = (U1yyeeey Omu) With 05 = (V1,00  Uimg, Uy Vigety v ooy Uy
and
fiw/u) = (flvra), -, fi(Vn))-
Step 3. Find a coloring fi41 of V™ such that
(@) = fin@) & () = i), S@) = S@)).

If f; and fi31 have the different number of colors, then [ := [ + 1 and go to Step 2.
Otherwise set f = f; and A, (W) =[Ry|m=

Proposition 4.1 Let W be a cellular algebra on V and m > 2. Then WU > A, (W).

11



Proof. We will show by induction on [ that each color class of f; is a union of the cells
of the algebra W™, Then given R € R(W{™), by statement (1) of Proposition 3.6
f(v) = f(v') for all v,v" € Up and we are done.

By statement (2) of Proposition 3.6 and the fact that W < W™ it is true for [ = 0.
Suppose it holds for all £ < [. Let v € V™. For each u € V set

Pu(0) = (0,014« + s Uiy ).

It is easy to see that the path P,(v) from v to itself is of the type § = (Ry,..., R,,) for
some basis relations R; C Ps,, (see (4)) where

S = {(]7])7(Z7Z + 1) S [17m]2 | J 7£ i J 7£ i+ 1}7 1€ [O,M]
Moreover, any (v, v)-path of the type § coincides with P,(v) for some u € V.

Let v,v" € V™ belong to the same cell of W™ Then by the induction hypothesis
fi-1(9) = fi—1(v"). Besides by the Path Proposition (Lemma 2.3) p(v, v;6) = p(v',v';§).
If P,(v) and P, (v') are of the type 4, then v;, and v}, belong to the same cell of W)
for all ¢. So by the induction hypothesis fi_1(v/u) = fi—1(v'/u). Thus S;_1(v) = Si_1(v)
and consequently fi(v) = fi(v').m

Another implementation of the m-dimension procedure was described in [6]. We are

going to prove that this procedure constructs a cellular subalgebra of the m-closure.
For ¢ > 1 set

Av, = Epy -1 0 Maty: = > Lo,y @ Maty
(’U1 ..... ’U,‘_l)evi_l

.......

the Hadamard multiplication and the Hermitian conjugation. Let us define a linear map
it Avipr = Avy, 1> 1,
by
7Ti( Z [vl ..... V5 ® Avl ..... v,') — Z [vl ..... vi_1 @ Z Avl ..... vy . (10)

(V1 400001) (V14e03vi=1) v, €V

In these terms the procedure from [6] can be described as follows.

Procedure B,, (m > 1)

Input: a cellular algebra W on V.
Output: a cellular algebra B,,(W) > W.
Step 1. Construct the set

Ry ={R|ReRW)}C Ay,
and the cellular algebra
Wi(m)=[Rum, Dimy--r Dm—1.m]

where R and D, are as in (8) and (5) respectively.
Step 2. For: = m —1,...,1 find sucsessively a linear space

W(Z) = WZ(W(Z + 1)) C .AVJ'.
Set W' = [W(1)].
Step 3. If W/ £ W, then W := W' and go to Step 1. Otherwise, set B, (W)= W'm=

12



Proposition 4.2 Let W be a cellular algebra on'V and m > 1. Then B, (W) < wm),
Proof. For ¢ € [1,m] set

o~

Wi=Epi-io (D[iM]W(m)D[ivm])'

Then W; C hi(Av,;) where h; : Ay, — Ay, is a linear map induced by the injection
£m Vi — V™ defined in (9). We will prove that

mi(Wipr) CW; forall i€ [l,m—1]

where 7l = hmihi—_l_ll and 7, is defined by (10).
A straightforward checking shows that

T(A) = Dy Ep ot Aoy Diimy, A € higa(Aviiga)-
So wi(Wit1) C W, for all i. By the definition of W (m) at Step 1 W(m) C W,,. Therefore,
W) =m - Ty (W(m)) Chyl ot (W) C RTH W) = WO,

which completes the proof.m

5 Proof of Theorem 1.3

In this section we prove Theorem 1.3. Given W with s(W) < m — 1 we will show that
the algebra W™ is Schurian.
By the hypothesis of the theorem W, = Maty for some (vy,...,v,_1) € V™71

Denote by F the indecomposable component (in W= W(m)) of the equivalence Ej; ,,, 1]

~~~~~ Um—1
..... vy 18 one of its classes. By statement (3) of Lemma 3.1 we have

geesUm—

and statement (2) of Lemma 2.4
Wgo = Matyr forall U’ e V™/E. (11)

Statement (2) of Lemma 2.5 implies that

S

supp(E) = J U, (12)

=1

o~

where U; € Cel(W) with U' N U; # 0 for all U' € V™/E. 1t follows from (11) that
|U' N U;| = 1for all U" and 7. In particular, s = n.

For any U' € V™/E let fuy : Wgu — Wgp be the weak isomorphism from
statement (1) of Lemma 2.5 (with W instead of W). By (11) fuus is induced by a
bijection pppr : U — U’ ie. fuu(A) = A%vv’ for all A € WEU. Set

Our = Cupvw o, U €VT/E (13)

13



Clearly, 0y € Sym(V) for all U’. Moreover, by Lemma 3.1 and the definition of the
isomorphism fy v we have

Al = Avenortor = ([yAly)eoror = (for(luAly)) = (IpAly)o = A
for all A € W where A = Iy @---@ Iy @ A (see (8)). Thus
Oy € Aut(W) forall U' e V™/E. (14)

We are to show that given R € R(W ™) and (u,v), (v/,v") € R there exists U’ € V" /E
such that

(ulvr w0y = (W', 0'). (15)
Then it will imply by (14) that Aut(W) acts transitively on each basis relation of W™,

i.e. the cellular algebra W™ is Schurian.
Let R € R(WU) and (u,v), (u',v") € R. Consider the following path

(ty ooyt 0) = (V1o O, 0) = (V1,0 ey Upe1,0) = (U, .o u, ).

o~

Denote its type by (Ro, R1, R2) where R; € R(W), ¢ =0,1,2. Clearly (see (4),
RO C P{(m—l,m)}v Rl C E7 R? C P{(m,m)} (16)
By statement (1) of Proposition 3.6 the points (u,...,u,v)and («,...,u’,v') belong to

the same cell of W. So by the Path Proposition there exists a path from (u/,..., u',v")
to itself of the type (Ro, Ry, Rs). By (16) it is of the form

! ! ! ! ! ! ! ! ! ! ! !
(v oo w0y = (o], v ) = (o]0 ) = (o)
! ! m—1 ! .
for some (v},...,v! )€ V™! and U = V! IS 2 class modulo £. To complete

the proof it suffices to check that ufv’ = v’ and v%" = v’. We prove only the first
equality, since the second one is similar.

o~

Since Ry € R(W), the points (vy,...,0m-1,u) and (v],..., v, _;,u’) belong to the

» Ym—19
same cell of W. From R, C E 1t follows that the cell coincides with U; for some 7. Since
[UNU;|=|U'NU;| =1 (see above) we have
UnU; ={(v1,...,vm-1,u)}, U NU ={(vy,...,0] u')}.

» Ym—19

By the definition of @p v (see also Lemma 2.5) we see that (U N U;)?vv’ = U' N U;. So

(V1 ey U, w) POV = (01, ... 0L _q,u).

On the other hand, by the definition of 8y (see (13))

(V1 vy Vg, )P0 = (v, 0w

for all w € V. Therefore u’v’ = /. Theorem is proved.m
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6 Concluding remarks and Open problems

There is a lot of problems concerning Schurian Polynomial Approximation Schemes. We
concentrate here only on two of them.

L. Let S : W — S,,(W)and T : W — T,(W) (m = 1,2...) be two Schurian
Polynomial Approximation Schemes. We say that S is reducible to T' if there exists a
function f:IN—N where N= {1,2,...} such that f(m) < e¢m for all m €N with some
constant ¢ = ¢(5,T), and Sy, (W) < Ty (W) for all cellular algebras W and all m.
S and T are called equivalent if each of them is reducible to the other. Theorem 1.2
shows that the schemes A,, and B,, (see section 4) are reducible to the scheme defined
by the m-closure operators.

Problem 6.1 Are all the three schemes are equivalent?

We don’t know the answer to this question.

2. The algorithmic base of the Schurian Polynomial Approximation Scheme defined
by the m-closure operators is the construction of the cellular closure of a set of matrices.
This problem can efficiently (in polynomial time) be solved by the standard Weisfeiler-
Lehman algorithm.

Problem 6.2 Is the above problem in NC? In other words, can the cellular closure of
a n x n-matriz be found by n°W parallel computers in time (logn)°M) 2

(For the exact definition of NC and related concepts see [8].) The main difficulty here
is that the cellular closure is defined by means of two binary operations (the ordinary
matrix multiplication and the Hadamard one) which don’t commute with each other.
Note, that for each of them the problem of constructing the closure with respect to it

is in NC.
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