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Abstract

We show that the isomorphism test for n-vertex edge coloured graphs with
the multiplicity of Jordan blocks bounded by k can be done in time (ek2 n)o(l).
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1 Introduction

The Graph Isomorphism Problem (ISO) is to recognize whether two given graphs are
isomorphic, i.e., whether there is a bijection between their vertex sets preserving the
adjacences of edges. The computation complexity status of the ISO is unknown at
present and the best general isomorphism test for n-vertex graphs runs in time n@t™
(see [BKL]). It is well-known that the ISO is polynomial-time equivalent to the problem
of finding the automorphism group Aut(I') of a graph I' consisting of all isomorphisms
from I to itself.

The failure in the attempts to find a polynomial-time algorithm for the ISO in the
class of all graphs led to the investigation of the problem in some special classes of
them. There is a great variety of such results, we mention only some of them. There
exist polynomial-time algorithms for graphs with bounded degree [L] and for graphs
with bounded eigenvalue multiplicity [BGM]. We also mention a n®°8™)-algorithm for
tournaments (directed graphs with exactly one arc between any two distinct vertices)

[BL).

Below under a coloured graph we mean an ordered triple I' = (V. F, ¢) where V is a
finite vertex set, ¥ C V x V is an edge set and ¢ is a colouring function on F. For each
color i denote by A; = A;(T) the adjacency matrix of the relation E; = ¢7*(i). As usual
the automorphism group Aut(I') of I' is by definition the group of all permutations of V
preserving each color.

One of the oldest approaches to the ISO is due to Weisfeiler and Lehman (see [W]).
With each coloured graph I' it associates an algebra W(I') (called the cellular algebra
of I') which is the smallest matrix algebra over C containing the adjacency matrices
A;(T), the identity matrix and the matrix whose all the entries are equal to 1, and closed
under the Hermitian conjugation and the Hadamard (componentwise) multiplication.
They showed that W(I') is a semisimple algebra over C and Aut(I') = Aut(W(I))
where the latter group consists by definition of all permutation matrices commuting
with all matrices of W(I'). Given a coloured graph I' the cellular algebra W(I') can be
constructed in polynomial time. This observation reduces the ISO to the problem of
constructing the group Aut(W) where W is a cellular algebra. Throughout the paper
we deal exceptionally with this problem.

In [BGM] a n®®-isomorphism test for the class of all undirected n-vertex graphs
with eigenvalue multiplicity bounded by k was described. The question arises: whether
the upper bound can be improved by pulling k£ out of the exponent. Set

m(l') = mljn m(A;)

where m(A;) is the maximum multiplicity of a Jordan block of the matrix A; = A;(I).
Clearly, m(I') can be found in polynomial time. We prove the following result.
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Theorem 1. In the class of all coloured n-vertex graphs I' with m(I') < k a canonical
labeling and the automorphism group of I' can be found in time

FR)n®W, f(k) = KR (k)Heek,

where J(k) is Jordan’s function. (For the strict definition of Jordan’s function see the
end of section 3.)

Remark. Since J(k) = kO /10" %) (see [CR]), the running time of our algorithm is
bounded by (ek2n)0(1). In other words the algorithm is polynomial not only for small k

but also for k = O(y/logn).

As a corollary we give the following answer to the above question.

Theorem 2. The isomorphism test for n-vertex graphs with eigenvalue multiplicity
bounded by k can be done in time f(k)n®") where f(k) is as above.

We prove Theorem 1 by reducing it to a theorem for cellular algebras. Let I' be a
graph satisfying the hypothesis of Theorem 1. The cellular algebra W(I') is a semisimple
algebra over C. So the standard matrix representation of W(I') is a sum of irreducible
representations of it. A straightforward checking shows that the multiplicity of each of
them is at most k. Thus Theorem 1 follows from the following statement.

Theorem 3 (MAIN THEOREM). In the class of all cellular algebras W on
n points with irreducible representation multiplicity bounded by k a canonical labeling
and the automorphism group of W can be found in time f(k)n®") where f(k) is defined
in Theorem 1.

Remark. It follows from [E] that the class of cellular algebras described above is
o(1)

recognizable in time n“'").

The proof of the MAIN THEOREM for a primitive W is given in section 4. To reduce
the general case to the primitive one we use for cellular algebras an interpretation of
the standard permutation group technique. To get the required upper bound we need
to control the groups arising throughout the algorithm. To do this we observe that the
maximum degree of an irreducible representation of the group Aut(W) in its standard
permutation representation is bounded by k. This implies that [G : sol(G)] < J(k)le*
for each transitive constituent GG of Aut(W) where sol((F) is the solvable radical of
and J(k) is Jordan’s function (see [EP]). Thus the problem is reduced to permutation
group computation with solvable groups.

The paper consists of five sections. Section 2 contains the definition of a cellular
algebra and related concepts as well as the basic notations used along the paper. It also
contains statements concerning algebraic properties of cellular algebras. In section 3
we prove a proposition concerning the computation of a canonical labeling and the
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automorphism group of a cellular algebra with respect to the permutation group of a
special kind. The case of a primitive cellular algebra is treated in section 4. In section 5

we completely prove the MAIN THEOREM and deduce Theorem 1 from it.

Notations. As usual by C we denote the field of all complex numbers. If L is a
linear space over C, then the set of all linear operators on L is denoted by End(L).

If GG is a group, then H < (G means that H is a subgroup of G. The index of H in ¢
is denoted by [G : H]. If S; C G, 1 =1,...,[, we use notation < Sy,...,S5; > for the
subgroup of (G generated by all 5;.

Troughout the paper V' denotes a finite set with n = |V| elements. The group of all
permutations of V' is denoted by Sym(V'). By relations on V' me mean subsets of V x V.
If R is a relation on V, then for g € Sym(V)

R? = {(u?,v?)| (u,v) € R}.

If F is an equivalence (i.e. reflexive, symmetric and transitive relation) on V, then V/E
denotes the set of all equivalence classes modulo F.

For a positive integer [ by [1,{] we denote the set {1,...,{}.

2 Cellular algebras and their representations

Denote by Ly a linear space over C with the set V' as a base. For any subset U C V
the linear space Ly can naturally be viewed as a subspace of Ly (spanned by U). If £
is an equivalence on V, then there is a natural linear injection

iEiLv/E—>Lv, UHZU (UEV/E)

vel

Thus Ly,g is isomorphic to a subspace of Ly. Below we identify Ly and Ly, with the
above subspaces of Ly.

Let Maty = Maty (C) be the algebra of all complex n x n matrices whose rows and
columns are indexed by the elements of V. By a cellular algebra W on V we mean
a subalgebra of Maty containing the identity matrix [y, the matrix Jy whose all the
entries are equal to 1, and closed under the Hermitian conjugation and the Hadamard
(componentwise) multiplication denoted by o below. The algebra Maty naturally acts
on the linear space Ly. The restriction of this action to W defines a faithful linear
representation

AW

stan

4° W — EHd(Lv)



called the standard representation of W. It is completely reducible over C due to the
fact that W is a semisimple algebra (see [W]).

Since W is closed under the Hadamard multiplication, it has a uniquely determined
linear space basis R = R(W) consisting of {0,1}-matrices such that

SR=Jy and ReReR'eR

ReR

where RT is the transpose of R. This basis is called the standard basis of W. We write
W = (V,R) to emphasize that W is given by V and R. The {0,1}-matrices belonging
to R and their sums can be viewed as adjacency matrices of some relations on V. For
convenience’s sake we identify the matrices with the corresponding relations.

It follows from [y € W that there exists a uniquely determined decomposition

Iy =357 Iy, with Iy, € R for some V; C V. Thus
V = U Vi (disjoint partition).
=1

Any such V; is called a cell of W. The set of all of them is denoted by Cel(W). For
each R € R there exist uniquely determined integers i, 5 € [1, s] (depending on R) such
that R C V; x V,. It is well-known (see [W]) that the number of 1’s in the uth row
(resp. wth column) of the matrix R does not depend on u € V; (resp. v € V;). This

number is denoted by dout(R) (resp. din(R)).

Let W be a cellular algebra on V' with | Cel(W)| = 1. We say that W is primitive if
the only equivalences belonging to W are Iy and Jy. Otherwise, W is called imprimitive.
Up to the language this definition coincides with that of [W].

The set of all cellular algebras on V' is ordered by inclusion. The algebra Maty is
obviously the greatest element of the set. We write W < W’ if W is a subalgebra of W'.
If Ay,..., A, € Maty, then the intersection of all cellular algebras on V' containing W
and all the matrices A; is also a cellular algebra on V. It is denoted by WAy, ..., A,].
It is known (see [W]) that the standard basis of this algebra can be constructed in
polynomial time from W and Ay, ..., A,,.

The natural action of Sym(V) on V induces actions of this group on the algebra
Maty and the linear space Ly. Clearly, the actions respect the algebraic operations on
Maty and Ly and

(Ax)? = A%, A € Maty, x € Ly.

Two cellular algebras Wy and W5 on V' are called isomorphic (Wy = Wy), if W{ = W,

as sets for some permutation ¢ € Sym(V) (called an isomorphism from Wi to Ws).



Clearly, g induces a bijection between the sets of the basis relations of Wi and Ws. For
a cellular algebra W on V' we set

Aut(W) ={g € Sym(V)| A = A forall Ae W}.
This group is called the automorphism group of W.

Let U be a union of cells of W. The subalgebra IyyW Iy C W invariantly acts on the
subspace Ly = Iy Ly C Ly. So it can be viewed as a subalgebra of Maty. Clearly, it is
closed under the Hermitian conjugation and the Hadamard multiplication and contains
Iy and Jy. Thus it is a cellular algebra on U called the restriction of W to U and
denoted by Wy

Let £ € W be an equivalence on V. The subalgebra QW@ C W with ) =
Yvev/pJu/|U| invariantly acts on the subspace Ly;p = QLy C Ly. So it can be
viewed as a subalgebra of Maty,g. Denote it by W/E. Clearly, W/E contains ly/g,
Jv/i and is closed under the Hermitian conjugation. For two basis relations R, 5 € R
we write R % § if S enters the decomposition of QRQ in the standard basis of W (we
make use of the fact that Q € W). It easily follows that L is an equivalence relation
on R. If QRQ = Yger ch S, then clearly, the set {S € R| cf # 0} Coincides with
the equivalence class containing R and cf = ¢ does not depend on S with cff # 0.
So if QR1Q o QRyQ) # 0 for Ry, Ry € R, then QR,Q = (¢ 1/0 )QRyQ. Tt follows
that the algebra W/FE is closed under the Hadamard multlphcatlon Thus W/FE is a
cellular algebra on V/E called the cellular factoralgebra of W modulo E. Clearly, given
W and FE the standard basis of W/FE can be constructed in polynomial time.

Remark. When each equivalence class modulo E is contained in a cell of W the
notion of cellular factoralgebra was introduced in [W]. Our definition coincides with
that of [W] in this case and can be viewed as its generalization.

The following statement is straightforward from definitions.

Lemma 2.1 Let W be a cellular algebra on V', U be a union of cells of W and E € W
be an equivalence on V. Then the representation Astand (resp. Azgfd) is equivalent to
the representation

Ag: QWQ = End(QLv), Q=1Iy (resp. Q= > Ju/|U|)
UeV/E

induced by AV _m

Let A: W — End(L) be a representation of a semisimple algebra W over C on a
linear space L. Denote by Spec (W) the set of all primitive central idempotents of the
algebra W. For each P € Spec (W) the restriction of A to the subspace PL C L is a



multiple of an irreducible representation of W. Denote its multiplicity by m(P, A) and
set

m(A) = max m(P,A).

PgSpec(W)

If W is a cellular algebra, set

m(Pv W) = m(Pv AL )7 m(W) = m(AKand)

stand

where AW

stand

is the standard representation of W. We call m(W') the multiplicity of W.

Proposition 2.2 Let W be a cellular algebra on a set V.. Then

(1) if W > W, then m(W') < m(W);
(2) if U is a union of cells of W, then m(Wy) < m(W);
(3) if E € W is an equivalence on V', then m(W/E) < m(W).

Proof. Since A, is equivalent to the restriction of A | to W, statement (1) is clear.
Statements (2) and (3) follow by Lemma 2.1 from the following lemma.

Lemma 2.3 Let A: W — End(L) be a linear representation of a semisimple algebra W
over C, () be an idempotent of W and Ag : QW Q) — End(QL) be the representation
of the algebra QW Q) induced by A. Then m(Ag) < m(A). Moreover, if P € Spec (W),
then the following statement holds: either PQ =0, or PQ € Spec (QWQ) and

m(PQ. Ag) = m(P, A).
Fach element of Spec (QW Q) is uniquely written in the form PQ with P € Spec (W).

Proof. Let P € Spec(W) and PQ # 0. Since the idempotent P is primitive, the
algebra PW is simple, isomorphic to End(C") for some positive integer r. Then it
follows from P@) # 0 that the image of P with respect to the above isomorphism is
a non-trivial idempotent T of End(C"). So PQWQ is isomorphic to End(7T'C"). Thus
PQ € Spec(QWQ) and m(PQ,Aq) = m(P,A). It follows that if 1 = Y pegpecw) P 18
the decomposition of unity of W, then Q = 3"p pg.o PQ is the decomposition of unity
of QW@ and

m(Ag) = max m(PQ,Aq) < max m(P,A) =m(A)m=

P.PQ#0



3 Canonical labeling of a cellular algebra

Below by a cellular algebra on V' we mean one with a linear order on the set of its basis
relations. By isomorphisms of such algebras we mean those preserving orders of their
basis relations. We say that cellular algebras Wi and W3 on V are equal (W, = W),
if the identity map of V' is an isomorphism from one to the other. It should be noted
that the order on the set R(W) of the basis relations of a cellular algebra W induces a
natural linear order on the set of all relations of W. If £ € W is an equivalence on V'
(resp. U is a union of cells of W), then it also induces a linear order on the set R(W/FE)
(resp. R(Wr)). For W = (V,R) and g € Sym(V') we define W9 = (V,R?) as a cellular
algebra on V with the standard basis

RI={R' | R€ R}

and the linear order induced by that of W. Clearly, g : W — WY is a cellular algebra
isomorphism.

Given a cellular algebra W on V and A € Maty, we put in order the set of the basis
relations of the algebra W[A] according to Weisfeiler-Lehman’s canonical algorithm, so

that the following holds (see [W], Ch.M):

(W-L) if ¢ € Sym(V) is an isomorphism from W to W’ and A? = A’, then ¢ is also an
isomorphism from W[A] to W'[A'].

The standard basis of W[A] (with the order) can be constructed in polynomial time
from W and A.

Let G < Sym(V). We say that cellular algebras W; and W, are G-isomorphic
(W1 =g Wy), if there exists h € G such that W) = W,. Let ¢ € Sym(V) and W be a
class of cellular algebras on V' closed under < ¢, G >-isomorphisms. Following [BL] we
define for W the notion of canonical labeling with respect to the coset ¢gG.

A map CF : W — W is called canonical with respect to the coset g if the following
conditions hold:

(Cl)y YW eW: CFW) =g W9,
(C2) YW, Wo € W: WP = WY & CF(W,) = CE(W,).

It follows that for any W € W there exists h = h(W) € gG such that CF(W) = W,
Any such h is called a canonical labeling of the algebra W with respect to the coset ¢G.



The algebra CF(W) is called the canonical form of W with respect to gGG. We do not
refer to G if G = Sym(V).

Let GG be a finite group. Denote by sol() the maximal normal solvable subgroup
of G. Clearly, if G = Gy x (g, then [G : sol(G)] =[G : sol(Gh)] - [G2 : sol(G)], and if
H is a subgroup of or a homomorphic image of G, then [H : sol(H)] < [G : sol(G)].

Proposition 3.1 Let W be a class of cellular algebras on a linearly ordered set 'V,
closed under < g, >-isomorphisms where G < Sym(V) and g € Sym(V). Assume
that for some positive integer t the group G satisfies the following condition:

(*) if H is a transitive constituent of G, then [H :sol(H)] <t

Then the group Aut(W9) NG and a canonical labeling of W € W with respect to gG can
be found in time t*n°0).

Proof. Let the basis relations of W be labeled by the elements of [1,/]. We associate
with W the map s = s(W) : V xV — [1,]] where s(u,v) is the label of the basis relation
of W9 containing (u,v) (such maps will be called strings on V' x V). Following [BL]
we reduce the canonization problem for W with respect to gGG to that one for the class
Sw = {s(W)| W € W} of strings on V x V with respect to the group G' < Sym(V x V)
coinciding with the natural action of G on V' x V. The problem includes finding a
canonical labeling of a string s as well as constructing the subgroup A(s,G’) of G’
preserving equal labels. It should be noted that if U/; and U, are orbits of G then
U; x Uy is a G'-invariant set. Thus if H' is a transitive constituent of G', then H' is a
homomorphic image of a subgroup of the group H; x Hy where H; and H; are some
transitive constituents of G. Now by (*) we conclude that [H' : sol(H')] < ¢2.

Following [BL] the canonization problem for strings of Sy can in polynomial time
be reduced to the case of a transitive group G’. In this case the above argument shows

that [G” : sol(G")] < 2.

Let &’ be transitive. Construct the group H = sol(G’) and a decomposition
G/ = U g]‘H
j=1

of G’ into a disjoint union of cosets. By [KL] it can be done in time n°M". Apply the
algorithm of [BL] to find for a string s € Syy the group A(s, H), a canonical labeling h

with respect to H and a canonical labeling h; with respect to the coset g;H for all j.
Set T={j=1,...,r| s" = s"}. Clearly, h;h~t € A(s,G) for all 5 € T. Conversely,



g € A(s,G") implies ¢’ € A(s,G')N g;H for some j. Then s% is H-isomorphic to s and
so 7 € T. Moreover, hh;lg' € A(s, H). Thus

A(S7G/) =< A(SvH)v {hjh_l}jET >

Let W0 = minjepy g W’ according to the lexicographic order on the set of all strings.
Take hj, as a canonical labeling of s with respect to G.

The canonicity of the algorithm follows from that of [BL]. Since H is a solvable
group, finding h, h; and A(s, H) can be done in time n®("). Besides, by condition (*)
r <12, Thus A(s, G') can be constructed in time (#21)°™)

We will use Proposition 3.1 for ¢ = Aut(W) where W is a cellular algebra with
m(W) < k. In this case the multiplicities of irreducible representations of W in its
standard representation coincide with the degrees of irreducible representations of the
subalgebra of Maty centralizing W (see [We]). This implies that the degree of each irre-
ducible representation of the group G entering its standard permutation representation
is bounded by k. So the hypothesis of Proposition 3.1 is satisfied for t = J(k)°&2* by
the following result.

Theorem 3.2.([EP]) Let GG be a transitive permutation group. If the degree of each
irreducible representation of G in its permutation representation is at most k, then

(G s0l(G)] < J(k)les*

where J(k) is Jordan’s function.m

Remark. Jordan’s function is defined as follows: for a positive integer k

J(k) = sgpmi (G A

n
ACG
where GG runs over all finite groups GG having a faithful linear representation over C of
degree k and A runs over all normal Abelian subgroups of . By Jordan’s theorem

J(k) < 400 for all k (see [CR]).

4 The case of a primitive cellular algebra

Here we prove Theorem 3 for primitive cellular algebras. Throughout the section the
algebra W(lg,y,. .., Iy with vg,..., 0 € V is denoted by Wy, ... We also assume
that V' is a linearly ordered set.

.....

Denote by Wiim the class of all primitive cellular algebras on V. For W € Wi, set
d=0W)=min  dow(R), p=puW)= min m(P).

ReER(WN\Iv PeSpec(WN\L1Jy

where m(P) = m(P, W) (see section 2). If |V| =1, we set (W) = u(W) = 1.
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Theorem 4.1 For the class Wyyim the following two statements hold:

(1) if W € Worim, then | Aut(W)| < §#~tn;
(2) for W € Wiim a canonical labeling of W and all the elements of the group Aut(W)

can be found in time §*~'n°W,

Proof. Theorem’s statements are trivial for n = 1. So we assume n > 1. We start by
the description of the algorithm.

Input: W € Wyiim, |V| > 1.
Output: a canonical labeling of W and the list of all the elements of Aut(W) .

Step 1. Find the minimal basis relation R € R(W) \ Iy such that dou(R) = §(W).

Step 2. Construct a set S consisting of all tuples (vy,...,v) € VLI = 1,2,... such
that:

(i) (vi,vig1) € Rfori e [1,0—1];
(i) {vigr} ¢ Cel(W,, . ) for i € [1,1 —1];

.....

Step 3. For each s = (vy,...,v;) € S find the ordering of R(W,, . .,) applying (W-L)
canonical algorithm. Denote by s : V' — [1, n] the bijection respecting the correspond-
ing linear order on the basis relations 7,y of the algebra W, = W, ..

Step 4. Let W¥= be lexicographically minimal among all W% with s € 5. Set
SO = {S - S| st = sto}, G = {9‘95995_01| S € So}

Let h € Sym(V') be such that the h-image of the ith element of V' with respect to the
original order on V equals ¢ '(i).

Step 5. Output G as Aut(W) and h as a canonical labeling of W.

Let us prove the correctness of the above algorithm. It follows from the primitivity
of W that the graph (V, R) is strongly connected (see [W]). Thus S # (). Besides, it is
clear from Step 4 that ¢ < Aut(W). Let g € Aut(W). Then from the definition of
at Step 2 and (W-L) we conclude that s = sj € S. Moreover, it follows from (W-L)
that g : Wy, — W; is an isomorphism. So gy, = ¢, by the definition of ¢ at Step 3.
Therefore, s € Sy and ¢ € (. Thus G = Aut(W).
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Let us prove that A is a canonical labeling. If ¢ : W — W’ is an isomorphism, then
S9 = 5" and ps = gpse. Thus, {W¥}es = {W''}yes and CF(W) = CF(W').

To prove the required upper bound and the inequality it suffices to prove that
v,...,v) € S implies | < p. en < ndé*7 (see (1) at Ste and we are

e S implies [ < p. Then |S] < né#t i) at Step 2 d
done. We start by two lemmas.

Lemma 4.2 Let W be a cellular algebra on V. For A € Maty set
Eq(A) = {(u,v) € V x V| Au= Av # 0}.

Then A € W implies Eq(A) € W.

Proof. Since

Bq( X a®R)= > Eq( X aBR)= > (B X R)

RER(W) UeCel(W) RCVxU UeCel(W) a0 RCV xU,a(R)=a

it suffices to prove Lemma for a nonzero A = 3", R where R runs over a subset of the

set Ru(W)={R e R(W)| RCV x U} for some U € Cel(W). Then for such an A
ATA = d;(A)Eq(A) + B,

where din(A) = Y rdin(R) and B = (B,,) € Maty with 0 < B,, < din(A) for all
u,v € Vand BoEq(A)=0. It follows that Eq(A) € W .m

Lemma 4.3 Let W be a cellular algebra on V and A € W with Eq(A) = Iv. Then
Av € Y1, Wo; implies {v} € Cel(W,,. ..) where v,vy,...,v, € V. Besides, Av # 0
forallveV.

.....

Proof. The second statement follows from the definition of Eq(A). Let B € Maty

be defined by
[ Av, ifu € {or,.on )
Bu = { Au, otherwise.

It is easy to see that B € W, ,,. By Lemma 4.2 Eq(B) € W,, . .,. From Eq(A) = Iy
it follows that the equivalence class modulo Eq(B) containing v; coincides with the
set {v1,...,vp,v}. Denote by U the cell of W, ,, containing v. Then {v;} x U €
RWay.oow,). Thus U C {vy,...,vp,v}, whence U = {v}.m

.....

.....

Now we are ready to complete the proof of Theorem 4.1. Let (v1,...,v;) € S. Denote
by P a primitive central idempotent of W with m(P) = u different from %JV. It follows
from the primitivity of W and Lemma 4.2 that Eq(P) = Iy. Set

h
Lh:ZWPUi7 hE [O,Z]

=1
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Then Lj 1s a W-module and
{0} =LoCc Ly C---CL CPlLy.

Now Lemma 4.3 with A = P and condition (ii) of the definition of S imply L;—; # L;
for all 7 € [1,{]. It follows that { < m(P), whence | < y.m

To apply Theorem 4.1 in section 5 we need the following statement.

Lemma 4.4 If W is a primitive cellular algebra on V', then

where m(W') = Pegl;liﬁw)m(lj) is the multiplicity of W (see section 2).

Proof. First of all we recall that

dimc(W)= Y dow(R)= > n(P)?

ReR(W) PgSpec(W)

where n(P) is the degree of an irreducible representation of the algebra W corresponding
to the idempotent P. For n = 1 Lemma is clear. If n > 2, then

W) (dime(W) = 1)< Y do(R)=n—1=

RER(W\Iy
= Z m(Pn(P)—1=1+ Z m(P)n(P)—1<
Pe&Spec(W) PeSpec (W)\LJy

<m(W) Z n(P)? = m(W)(dimg(W) — 1).

PeSpec (W)\ L7y

(We made use of the fact that m(P) =n(P) =1 for P = LJy.) Thus, §(W) < m(W).

The second inequality is trivial.m

5 Proofs of Theorems

In this section we prove Theorem 3 and deduce Theorem 1 from it. The set V' is assumed
to be linearly ordered.

Proof of Theorem 3. We start by describing the corresponding procedure.

Input: a cellular algebra W on V.
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Output: the group Aut(W) and a canonical labeling of W.

Step 1. Let W have at least two cells, Cel(W) = {V4,...,V;}, s > 1. Following [BL]
reduce the canonization problem with respect to Sym(V') to that one with respect to
[T:_; Sym(V;). Apply the algorithm recursively to the cellular algebra Wy, to find its
canonical labeling ¢; € Sym(V;) and the group Aut(Wy,), ¢ € [1, s]. Set

Applying the algorithm of Proposition 3.1 find the group Aut(W?) = Aut(W?)N G and
a canonical labeling h of the algebra W with respect to the coset gGG. Output Aut(W)
and h as a canonical labeling of W.

Step 2. Let | Cel(W)| =1 and W be imprimitive. Perform steps 2.1 — 2.4.

Step 2.1. Find the minimal equivalence £ € W (with respect to the order on the
relations of W defined above) such that W = W/E is primitive. The set V/E is ordered
according to the lexicographic order on 2V induced by the linear order on V. Recursively
find a canonical labeling of the algebra W and the group Aut(W). Put in order the
set V/E according to this labeling, so that V/E = {Uy,...,U,}.

Step 2.2. For each ¢ € [1,r] construct the cellular algebra
W = W[[Ui]Ui‘

Apply the algorithm recursively to the algebra W; to find its canonical labeling ¢g; and
the group Aut(W;), ¢ € [1,r]. By analogy with Step 1 reduce the canonization problem
with respect to Sym(V') to that one with respect to its maximal subgroup G fixing .
(Below we identify V with U x [1,r] where U is an “etalon” copy of an equivalence class
modulo E so that U; is identified with U x {i}. The group G is identified with the
wreath product of Sym(U) and Sym([1,r]) so that the action of g € G on V is given by

(u,1)? = (ug",ih), wel, 1 €]l,r]

where g = (g1,...,9,;h) with g; € Sym(U), h € Sym([1,7]). According to above W;
(resp. W) can naturally be viewed as a cellular algebra on U (resp. on [1,7])).

Step 2.3. Set

W(h) = W[[U1h7""[Urh]’ h € Aut(W)

We successively add the relations Iy ., ..., [y, to W applying at each stage Weisfeiler-
y oo, pplying g
Lehman’s canonical algorithm). Set

G =TT Aw(W5"), g™ =(g1,....9:h7") € G.
=1
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Applying the algorithm of Proposition 3.1 find Aut(W ") = Aut(W ") n g Gh g(*)
and a canonical labeling of the algebra W with respect to the coset gWG")

Step 2.4. Let hy be a permutation for which the canonical form of W) is minimal
among the canonical forms of W, h € Aut(W). (Though hg is not uniquely deter-
mined, the output of Step 2.4 is.) For each h using the canonical labeling of W®_ find
(if it exists) an isomorphism W) — W®*) Denote by S the set of all these permuta-
tions of V. Output the group < Aut(W ")), S > as Aut(W) and the canonical labeling
of W) with respect to ¢g(*)G) as a canonical labeling of W.

Step 3. Let W be a primitive cellular algebra. Apply the algorithm from section 4 to
find Aut(W) and a canonical labeling of W .m

We prove the correctness of the procedure applying the induction on the number [ of
its recursive calls. If [ = 0, then the procedure terminates at Step 3 and the correctness
follows from Theorem 4.1 and Lemma 4.4. If [ > 0 we consider two cases according to
the Step (1 or 2) at which the procedure terminates.

Let the procedure terminate at Step 1 and W be isomorphic to W' with respect
to [T;—, Sym(V;). It follows that Wy, is isomorphic to Wy, for all <. By the induction

hypothesis Wy = Wi % So W9 and W' are G-isomorphic. Thus the correctness
follows from that of the algorithm of Proposition 3.1.

Let the procedure terminate at Step 2. First we prove the canonicity of the labeling
of the algebra W defined at Step 2.4. Let g be a G-isomorphism from W to W’ (the
group (7 is defined at Step 2.2). Since £Y = I, g induces an isomorphism ¢ € Sym([1,r])
from W to W'. According to Step 2.1 W and W' coincide with their canonical forms.
So W = W’ and § l g € Aut(W) By (W-L) g is also an isomorphism from W® to W)
for all h € Aut(W) where b/ = hg. Set

B — (g ),

=9 g9

It follows from the definitions that ¢ € TT7_, Sym(U;), i.e. ¢® = (eq,...,¢51) where
¢; € Sym(U). By (W-L) ¢ is an isomorphism from Wif to Wh, in (see Step 2.3). So
I/Vﬂfh = W/Z.’h/gz/‘h’ and ¢; € Aut(W ") for all 7, whence ¢ € GG®). Thus by Proposition 3.1

the canonical form of W with respect to ¢ G coincides with that of W) with

respect to g’(h/)G’(h/). If A runs over Aut(W) then A’ also runs over Aut(W) Therefore,
(ho)

the corresponding canonical forms of W) and W"\") coincide. So do the canonical

forms of W and W' defined at Step 2.4.

Now we prove that the group obtained at Step 2.4 coincides with Aut(W). Let
g € Aut(W). Denote by g the permutation of V/E induced by g. By (W-L) g is an
isomorphism from W) to W (hod) - So g is of the form g = g1 g, where g; € Aut(W o))
and ¢, € S. Thus g €< Aut(W e ), S >. The inverse inclusion is obvious.
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Let us estimate the running time ¢(W) of the procedure applied to a cellular alge-
bra W on n points with m(W) < k. Denote by t(k,n) the maximum of ¢(W') taken over
all such W. We will prove by induction on n that ¢(k,n) = k*J(k)*182kp00) If the
procedure terminates at Step 3, then it follows from Theorem 4.1 and Lemma 4.4 that
for some constant ¢;

(W) < KFner, (1)
Let the procedure terminate at Step 1. By Proposition 2.2 m(Wy,) < m(W) < k for
all 7 € [1,s]. So Aut(Wy,) and the canonical labeling g; of Wy, can be found in time
t(k,|Vi]). By Theorem 3.2 [H : sol(H)] < J(k)*&2* for each transitive constituent H of

Aut(Wy,). So by Proposition 3.1 the group Aut(W) and the canonical labeling of W
with respect to g can be found in time J(k)?182%n for some constant c,. Therefore

(I < 3tk V) (5 4000, )
=1

Let the procedure terminate at Step 2. By Proposition 2.2 m(W) < m(W) < k and
m(W;) <m(W) < kforalli € [1,r]. So the group Aut(W;) and the canonical labeling g;
of W; can be found in time ¢(k,n/r). The group Aut(W) and the canonical labeling of W
can be found in time £*7¢t due to Theorem 4.1 and Lemma 4.4. By Proposition 3.1 and

Theorem 3.2 the group Aut(W™) and the canonical labeling of W® for h € Aut(W)

can be found in time J(k)?1°82%n where ¢, is as above. Besides, | Aut(W)| < k*r by
Theorem 4.1 and Lemma 4.4. Therefore,

tW) < KRt rt(k,n/r) + Ko - J (k)28 Fpez 4 pOW), (3)
It follows from (1), (2), (3) by induction that there exists a constant ¢ for which
t(kyn) < KFJ(k)loskpe,
Theorem 3 is completely proved.m

Proof of Theorem 1. Denote by W(I') the cellular algebra generated by all the
matrices A;. Then m(W(T')) < m(A;) for all i. Thus by the hypothesis of the theorem

m(W(I)) <minm(A;) =m(l') < k.

K3

Now Theorem 1 follows from Theorem 3, since Aut(I') = Aut(W(T')) (see [W]).m
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