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1 IntroductionThe Graph Isomorphism Problem (ISO) is to recognize whether two given graphs areisomorphic, i.e., whether there is a bijection between their vertex sets preserving theadjacences of edges. The computation complexity status of the ISO is unknown atpresent and the best general isomorphism test for n-vertex graphs runs in time nO(pn)(see [BKL]). It is well-known that the ISO is polynomial-time equivalent to the problemof �nding the automorphism group Aut(�) of a graph � consisting of all isomorphismsfrom � to itself.The failure in the attempts to �nd a polynomial-time algorithm for the ISO in theclass of all graphs led to the investigation of the problem in some special classes ofthem. There is a great variety of such results, we mention only some of them. Thereexist polynomial-time algorithms for graphs with bounded degree [L] and for graphswith bounded eigenvalue multiplicity [BGM]. We also mention a nO(logn)-algorithm fortournaments (directed graphs with exactly one arc between any two distinct vertices)[BL].Below under a coloured graph we mean an ordered triple � = (V;E; c) where V is a�nite vertex set, E � V � V is an edge set and c is a colouring function on E. For eachcolor i denote by Ai = Ai(�) the adjacency matrix of the relation Ei = c�1(i). As usualthe automorphism group Aut(�) of � is by de�nition the group of all permutations of Vpreserving each color.One of the oldest approaches to the ISO is due to Weisfeiler and Lehman (see [W]).With each coloured graph � it associates an algebra W (�) (called the cellular algebraof �) which is the smallest matrix algebra over C containing the adjacency matricesAi(�), the identity matrix and the matrix whose all the entries are equal to 1, and closedunder the Hermitian conjugation and the Hadamard (componentwise) multiplication.They showed that W (�) is a semisimple algebra over C and Aut(�) = Aut(W (�))where the latter group consists by de�nition of all permutation matrices commutingwith all matrices of W (�). Given a coloured graph � the cellular algebra W (�) can beconstructed in polynomial time. This observation reduces the ISO to the problem ofconstructing the group Aut(W ) where W is a cellular algebra. Throughout the paperwe deal exceptionally with this problem.In [BGM] a nO(k)-isomorphism test for the class of all undirected n-vertex graphswith eigenvalue multiplicity bounded by k was described. The question arises: whetherthe upper bound can be improved by pulling k out of the exponent. Setm(�) = mini m(Ai)where m(Ai) is the maximum multiplicity of a Jordan block of the matrix Ai = Ai(�).Clearly, m(�) can be found in polynomial time. We prove the following result.2



Theorem 1. In the class of all coloured n-vertex graphs � withm(�) � k a canonicallabeling and the automorphism group of � can be found in timef(k)nO(1); f(k) = kkJ(k)2 log2 k;where J(k) is Jordan's function. (For the strict de�nition of Jordan's function see theend of section 3.)Remark. Since J(k) = kO(k2= log2 k) (see [CR]), the running time of our algorithm isbounded by (ek2n)O(1). In other words the algorithm is polynomial not only for small kbut also for k = O(p log n).As a corollary we give the following answer to the above question.Theorem 2. The isomorphism test for n-vertex graphs with eigenvalue multiplicitybounded by k can be done in time f(k)nO(1) where f(k) is as above.We prove Theorem 1 by reducing it to a theorem for cellular algebras. Let � be agraph satisfying the hypothesis of Theorem 1. The cellular algebraW (�) is a semisimplealgebra over C. So the standard matrix representation of W (�) is a sum of irreduciblerepresentations of it. A straightforward checking shows that the multiplicity of each ofthem is at most k. Thus Theorem 1 follows from the following statement.Theorem 3 (MAIN THEOREM). In the class of all cellular algebras W onn points with irreducible representation multiplicity bounded by k a canonical labelingand the automorphism group of W can be found in time f(k)nO(1) where f(k) is de�nedin Theorem 1.Remark. It follows from [E] that the class of cellular algebras described above isrecognizable in time nO(1).The proof of the MAINTHEOREM for a primitiveW is given in section 4. To reducethe general case to the primitive one we use for cellular algebras an interpretation ofthe standard permutation group technique. To get the required upper bound we needto control the groups arising throughout the algorithm. To do this we observe that themaximum degree of an irreducible representation of the group Aut(W ) in its standardpermutation representation is bounded by k. This implies that [G : sol(G)] � J(k)log2 kfor each transitive constituent G of Aut(W ) where sol(G) is the solvable radical of Gand J(k) is Jordan's function (see [EP]). Thus the problem is reduced to permutationgroup computation with solvable groups.The paper consists of �ve sections. Section 2 contains the de�nition of a cellularalgebra and related concepts as well as the basic notations used along the paper. It alsocontains statements concerning algebraic properties of cellular algebras. In section 3we prove a proposition concerning the computation of a canonical labeling and the3



automorphism group of a cellular algebra with respect to the permutation group of aspecial kind. The case of a primitive cellular algebra is treated in section 4. In section 5we completely prove the MAIN THEOREM and deduce Theorem 1 from it.Notations. As usual by C we denote the �eld of all complex numbers. If L is alinear space over C, then the set of all linear operators on L is denoted by End(L).If G is a group, then H � G means that H is a subgroup of G. The index of H in Gis denoted by [G : H]. If Si � G, i = 1; : : : ; l, we use notation < S1; : : : ; Sl > for thesubgroup of G generated by all Si.Troughout the paper V denotes a �nite set with n = jV j elements. The group of allpermutations of V is denoted by Sym(V ). By relations on V memean subsets of V �V .If R is a relation on V , then for g 2 Sym(V )Rg = f(ug; vg)j (u; v) 2 Rg:If E is an equivalence (i.e. re
exive, symmetric and transitive relation) on V , then V=Edenotes the set of all equivalence classes modulo E.For a positive integer l by [1; l] we denote the set f1; : : : ; lg.2 Cellular algebras and their representationsDenote by LV a linear space over C with the set V as a base. For any subset U � Vthe linear space LU can naturally be viewed as a subspace of LV (spanned by U). If Eis an equivalence on V , then there is a natural linear injectioniE : LV=E ! LV ; U 7! Xv2U v (U 2 V=E):Thus LV=E is isomorphic to a subspace of LV . Below we identify LU and LV=E with theabove subspaces of LV .Let MatV = MatV (C) be the algebra of all complex n� n matrices whose rows andcolumns are indexed by the elements of V . By a cellular algebra W on V we meana subalgebra of MatV containing the identity matrix IV , the matrix JV whose all theentries are equal to 1, and closed under the Hermitian conjugation and the Hadamard(componentwise) multiplication denoted by � below. The algebra MatV naturally actson the linear space LV . The restriction of this action to W de�nes a faithful linearrepresentation �Wstand : W ! End(LV )4



called the standard representation of W . It is completely reducible over C due to thefact that W is a semisimple algebra (see [W]).Since W is closed under the Hadamard multiplication, it has a uniquely determinedlinear space basis R = R(W ) consisting of f0,1g-matrices such thatXR2RR = JV and R 2 R , RT 2 Rwhere RT is the transpose of R. This basis is called the standard basis of W . We writeW = (V;R) to emphasize that W is given by V and R. The f0,1g-matrices belongingto R and their sums can be viewed as adjacency matrices of some relations on V . Forconvenience's sake we identify the matrices with the corresponding relations.It follows from IV 2 W that there exists a uniquely determined decompositionIV =Psi=1 IVi with IVi 2 R for some Vi � V . ThusV = s[i=1Vi (disjoint partition):Any such Vi is called a cell of W . The set of all of them is denoted by Cel(W ). Foreach R 2 R there exist uniquely determined integers i; j 2 [1; s] (depending on R) suchthat R � Vi � Vj . It is well-known (see [W]) that the number of 1's in the uth row(resp. vth column) of the matrix R does not depend on u 2 Vi (resp. v 2 Vj). Thisnumber is denoted by dout(R) (resp. din(R)).Let W be a cellular algebra on V with jCel(W )j = 1. We say that W is primitive ifthe only equivalences belonging toW are IV and JV . Otherwise,W is called imprimitive.Up to the language this de�nition coincides with that of [W].The set of all cellular algebras on V is ordered by inclusion. The algebra MatV isobviously the greatest element of the set. We write W � W 0 ifW is a subalgebra of W 0.If A1; : : : ; Am 2 MatV , then the intersection of all cellular algebras on V containing Wand all the matrices Ai is also a cellular algebra on V . It is denoted by W [A1; : : : ; Am].It is known (see [W]) that the standard basis of this algebra can be constructed inpolynomial time from W and A1; : : : ; Am.The natural action of Sym(V ) on V induces actions of this group on the algebraMatV and the linear space LV . Clearly, the actions respect the algebraic operations onMatV and LV and (Ax)g = Agxg; A 2 MatV ; x 2 LV :Two cellular algebras W1 and W2 on V are called isomorphic (W1 �= W2), if W g1 = W2as sets for some permutation g 2 Sym(V ) (called an isomorphism from W1 to W2).5



Clearly, g induces a bijection between the sets of the basis relations of W1 and W2. Fora cellular algebra W on V we setAut(W ) = fg 2 Sym(V )j Ag = A for all A 2 Wg:This group is called the automorphism group of W .Let U be a union of cells of W . The subalgebra IUWIU � W invariantly acts on thesubspace LU = IULV � LV . So it can be viewed as a subalgebra of MatU . Clearly, it isclosed under the Hermitian conjugation and the Hadamard multiplication and containsIU and JU . Thus it is a cellular algebra on U called the restriction of W to U anddenoted by WU .Let E 2 W be an equivalence on V . The subalgebra QWQ � W with Q =PU2V=E JU=jU j invariantly acts on the subspace LV=E = QLV � LV . So it can beviewed as a subalgebra of MatV=E. Denote it by W=E. Clearly, W=E contains IV=E,JV=E and is closed under the Hermitian conjugation. For two basis relations R;S 2 Rwe write R E� S if S enters the decomposition of QRQ in the standard basis of W (wemake use of the fact that Q 2 W ). It easily follows that E� is an equivalence relationon R. If QRQ = PS2R cRS S, then clearly, the set fS 2 Rj cRS 6= 0g coincides withthe equivalence class containing R and cRS = cRR does not depend on S with cRS 6= 0.So if QR1Q � QR2Q 6= 0 for R1; R2 2 R, then QR1Q = (cR1R1=cR2R2)QR2Q. It followsthat the algebra W=E is closed under the Hadamard multiplication. Thus W=E is acellular algebra on V=E called the cellular factoralgebra of W modulo E. Clearly, givenW and E the standard basis of W=E can be constructed in polynomial time.Remark. When each equivalence class modulo E is contained in a cell of W thenotion of cellular factoralgebra was introduced in [W]. Our de�nition coincides withthat of [W] in this case and can be viewed as its generalization.The following statement is straightforward from de�nitions.Lemma 2.1 Let W be a cellular algebra on V , U be a union of cells of W and E 2 Wbe an equivalence on V . Then the representation �WUstand (resp. �W=Estand) is equivalent tothe representation�Q : QWQ! End(QLV ); Q = IU (resp: Q = XU2V=EJU=jU j)induced by �Wstand.Let � : W ! End(L) be a representation of a semisimple algebra W over C on alinear space L. Denote by Spec (W ) the set of all primitive central idempotents of thealgebra W . For each P 2 Spec (W ) the restriction of � to the subspace PL � L is a6



multiple of an irreducible representation of W . Denote its multiplicity by m(P;�) andset m(�) = maxP2Spec(W )m(P;�):If W is a cellular algebra, setm(P;W ) = m(P;�Wstand); m(W ) = m(�Wstand)where �Wstand is the standard representation of W . We call m(W ) the multiplicity of W .Proposition 2.2 Let W be a cellular algebra on a set V . Then(1) if W 0 � W , then m(W 0) � m(W );(2) if U is a union of cells of W , then m(WU) � m(W );(3) if E 2 W is an equivalence on V , then m(W=E) � m(W ).Proof. Since �Wstand is equivalent to the restriction of �W 0stand toW , statement (1) is clear.Statements (2) and (3) follow by Lemma 2.1 from the following lemma.Lemma 2.3 Let � : W ! End(L) be a linear representation of a semisimple algebra Wover C, Q be an idempotent of W and �Q : QWQ ! End(QL) be the representationof the algebra QWQ induced by �. Then m(�Q) � m(�). Moreover, if P 2 Spec (W ),then the following statement holds: either PQ = 0, or PQ 2 Spec (QWQ) andm(PQ;�Q) = m(P;�):Each element of Spec (QWQ) is uniquely written in the form PQ with P 2 Spec (W ).Proof. Let P 2 Spec (W ) and PQ 6= 0. Since the idempotent P is primitive, thealgebra PW is simple, isomorphic to End(Cr) for some positive integer r. Then itfollows from PQ 6= 0 that the image of PQ with respect to the above isomorphism isa non-trivial idempotent T of End(Cr). So PQWQ is isomorphic to End(TCr). ThusPQ 2 Spec (QWQ) and m(PQ;�Q) = m(P;�). It follows that if 1 = PP2Spec(W ) P isthe decomposition of unity of W , then Q = PP;PQ6=0 PQ is the decomposition of unityof QWQ and m(�Q) = maxP;PQ6=0m(PQ;�Q) � maxP m(P;�) = m(�):7



3 Canonical labeling of a cellular algebraBelow by a cellular algebra on V we mean one with a linear order on the set of its basisrelations. By isomorphisms of such algebras we mean those preserving orders of theirbasis relations. We say that cellular algebras W1 and W2 on V are equal (W1 = W2),if the identity map of V is an isomorphism from one to the other. It should be notedthat the order on the set R(W ) of the basis relations of a cellular algebra W induces anatural linear order on the set of all relations of W . If E 2 W is an equivalence on V(resp. U is a union of cells of W ), then it also induces a linear order on the set R(W=E)(resp. R(WU)). For W = (V;R) and g 2 Sym(V ) we de�ne W g = (V;Rg) as a cellularalgebra on V with the standard basisRg = fRg j R 2 Rgand the linear order induced by that of W . Clearly, g : W ! W g is a cellular algebraisomorphism.Given a cellular algebra W on V and A 2 MatV , we put in order the set of the basisrelations of the algebra W [A] according to Weisfeiler-Lehman's canonical algorithm, sothat the following holds (see [W], Ch.M):(W-L) if g 2 Sym(V ) is an isomorphism from W to W 0 and Ag = A0, then g is also anisomorphism from W [A] to W 0[A0].The standard basis of W [A] (with the order) can be constructed in polynomial timefrom W and A.Let G � Sym(V ). We say that cellular algebras W1 and W2 are G-isomorphic(W1 �=G W2), if there exists h 2 G such that W h1 = W2. Let g 2 Sym(V ) and W be aclass of cellular algebras on V closed under < g;G >-isomorphisms. Following [BL] wede�ne for W the notion of canonical labeling with respect to the coset gG.A map CF :W !W is called canonical with respect to the coset gG if the followingconditions hold:(C1) 8W 2 W : CF(W ) �=G W g;(C2) 8W1;W2 2 W : W g1 �=G W g2 , CF(W1) = CF(W2).It follows that for any W 2 W there exists h = h(W ) 2 gG such that CF(W ) = W h.Any such h is called a canonical labeling of the algebra W with respect to the coset gG.8



The algebra CF(W ) is called the canonical form of W with respect to gG. We do notrefer to gG if G = Sym(V ).Let G be a �nite group. Denote by sol(G) the maximal normal solvable subgroupof G. Clearly, if G = G1 � G2, then [G : sol(G)] = [G1 : sol(G1)] � [G2 : sol(G2)], and ifH is a subgroup of or a homomorphic image of G, then [H : sol(H)] � [G : sol(G)].Proposition 3.1 Let W be a class of cellular algebras on a linearly ordered set V ,closed under < g;G >-isomorphisms where G � Sym(V ) and g 2 Sym(V ). Assumethat for some positive integer t the group G satis�es the following condition:(*) if H is a transitive constituent of G, then [H : sol(H)] � tThen the group Aut(W g)\G and a canonical labeling of W 2 W with respect to gG canbe found in time t2nO(1).Proof. Let the basis relations of W be labeled by the elements of [1; l]. We associatewithW the map s = s(W ) : V �V ! [1; l] where s(u; v) is the label of the basis relationof W g containing (u; v) (such maps will be called strings on V � V ). Following [BL]we reduce the canonization problem for W with respect to gG to that one for the classSW = fs(W )j W 2 Wg of strings on V �V with respect to the group G0 � Sym(V �V )coinciding with the natural action of G on V � V . The problem includes �nding acanonical labeling of a string s as well as constructing the subgroup A(s;G0) of G0preserving equal labels. It should be noted that if U1 and U2 are orbits of G thenU1 � U2 is a G0-invariant set. Thus if H 0 is a transitive constituent of G0, then H 0 is ahomomorphic image of a subgroup of the group H1 � H2 where H1 and H2 are sometransitive constituents of G. Now by (*) we conclude that [H 0 : sol(H 0)] � t2.Following [BL] the canonization problem for strings of SW can in polynomial timebe reduced to the case of a transitive group G0. In this case the above argument showsthat [G0 : sol(G0)] � t2.Let G0 be transitive. Construct the group H = sol(G0) and a decompositionG0 = r[j=1 gjHof G0 into a disjoint union of cosets. By [KL] it can be done in time nO(1). Apply thealgorithm of [BL] to �nd for a string s 2 SW the group A(s;H), a canonical labeling hwith respect to H and a canonical labeling hj with respect to the coset gjH for all j.Set T = fj = 1; : : : ; r j shj = shg: Clearly, hjh�1 2 A(s;G0) for all j 2 T . Conversely,9



g0 2 A(s;G0) implies g0 2 A(s;G0)\ gjH for some j. Then sgj is H-isomorphic to s andso j 2 T . Moreover, hh�1j g0 2 A(s;H). ThusA(s;G0) =< A(s;H); fhjh�1gj2T > :Let W hj0 = minj2[1;r]W hj according to the lexicographic order on the set of all strings.Take hj0 as a canonical labeling of s with respect to G0.The canonicity of the algorithm follows from that of [BL]. Since H is a solvablegroup, �nding h, hj and A(s;H) can be done in time nO(1). Besides, by condition (*)r � t2. Thus A(s;G0) can be constructed in time (t2n)O(1).We will use Proposition 3.1 for G = Aut(W ) where W is a cellular algebra withm(W ) � k. In this case the multiplicities of irreducible representations of W in itsstandard representation coincide with the degrees of irreducible representations of thesubalgebra of MatV centralizingW (see [We]). This implies that the degree of each irre-ducible representation of the group G entering its standard permutation representationis bounded by k. So the hypothesis of Proposition 3.1 is satis�ed for t = J(k)log2 k bythe following result.Theorem 3.2.([EP]) Let G be a transitive permutation group. If the degree of eachirreducible representation of G in its permutation representation is at most k, then[G : sol(G)] � J(k)log2 kwhere J(k) is Jordan's function.Remark. Jordan's function is de�ned as follows: for a positive integer kJ(k) = supG minA�G [G : A]where G runs over all �nite groups G having a faithful linear representation over C ofdegree k and A runs over all normal Abelian subgroups of G. By Jordan's theoremJ(k) < +1 for all k (see [CR]).4 The case of a primitive cellular algebraHere we prove Theorem 3 for primitive cellular algebras. Throughout the section thealgebra W [Ifv1g; : : : ; Ifvlg] with v1; : : : ; vl 2 V is denoted by Wv1;:::;vl. We also assumethat V is a linearly ordered set.Denote byWprim the class of all primitive cellular algebras on V . For W 2 Wprim set� = �(W ) = minR2R(W )nIV dout(R); � = �(W ) = minP2Spec(W )n 1nJV m(P ):where m(P ) = m(P;W ) (see section 2). If jV j = 1, we set �(W ) = �(W ) = 1.10



Theorem 4.1 For the class Wprim the following two statements hold:(1) if W 2 Wprim, then jAut(W )j � ���1n;(2) forW 2 Wprim a canonical labeling ofW and all the elements of the group Aut(W )can be found in time ���1nO(1).Proof. Theorem's statements are trivial for n = 1. So we assume n > 1. We start bythe description of the algorithm.Input: W 2 Wprim, jV j > 1.Output: a canonical labeling of W and the list of all the elements of Aut(W ) .Step 1. Find the minimal basis relation R 2 R(W ) n IV such that dout(R) = �(W ).Step 2. Construct a set S consisting of all tuples (v1; : : : ; vl) 2 V l; l = 1; 2; : : : suchthat:(i) (vi; vi+1) 2 R for i 2 [1; l� 1];(ii) fvi+1g =2 Cel(Wv1;:::;vi) for i 2 [1; l� 1];(iii) Wv1;:::;vl = MatV .Step 3. For each s = (v1; : : : ; vl) 2 S �nd the ordering of R(Wv1 ;:::;vl) applying (W-L)canonical algorithm. Denote by 's : V ! [1; n] the bijection respecting the correspond-ing linear order on the basis relations Ifvg of the algebra Ws =Wv1 ;:::;vl.Step 4. Let W 's0 be lexicographically minimal among all W 's with s 2 S. SetS0 = fs 2 Sj W 's =W 's0g; G = f's'�1s0 j s 2 S0g:Let h 2 Sym(V ) be such that the h-image of the ith element of V with respect to theoriginal order on V equals '�1s0 (i).Step 5. Output G as Aut(W ) and h as a canonical labeling of W .Let us prove the correctness of the above algorithm. It follows from the primitivityof W that the graph (V;R) is strongly connected (see [W]). Thus S 6= ;. Besides, it isclear from Step 4 that G � Aut(W ). Let g 2 Aut(W ). Then from the de�nition of Sat Step 2 and (W-L) we conclude that s = sg0 2 S. Moreover, it follows from (W-L)that g : Ws0 ! Ws is an isomorphism. So g's0 = 's by the de�nition of 's at Step 3.Therefore, s 2 S0 and g 2 G. Thus G = Aut(W ).11



Let us prove that h is a canonical labeling. If g : W ! W 0 is an isomorphism, thenSg = S 0 and 's = g'sg . Thus, fW 'sgs2S = fW 0's0gs02S0 and CF(W ) = CF(W 0).To prove the required upper bound and the inequality it su�ces to prove that(v1; : : : ; vl) 2 S implies l � �. Then jSj � n���1 (see (i) at Step 2) and we aredone. We start by two lemmas.Lemma 4.2 Let W be a cellular algebra on V . For A 2 MatV setEq(A) = f(u; v) 2 V � V j Au = Av 6= 0g:Then A 2 W implies Eq(A) 2 W .Proof. SinceEq� XR2R(W )�(R)R� = XU2Cel(W )Eq� XR�V�U �(R)R� = XU2Cel(W ) \�6=0Eq� XR�V�U;�(R)=�R�;it su�ces to prove Lemma for a nonzero A = PRR where R runs over a subset of theset RU (W ) = fR 2 R(W )j R � V � Ug for some U 2 Cel(W ). Then for such an AATA = din(A) Eq(A) +B;where din(A) = PR din(R) and B = (Bu;v) 2 MatV with 0 � Bu;v < din(A) for allu; v 2 V and B � Eq(A) = 0. It follows that Eq(A) 2 W .Lemma 4.3 Let W be a cellular algebra on V and A 2 W with Eq(A) = IV . ThenAv 2 Phi=1Wvi implies fvg 2 Cel(Wv1;:::;vh) where v; v1; : : : ; vh 2 V . Besides, Av 6= 0for all v 2 V .Proof. The second statement follows from the de�nition of Eq(A). Let B 2 MatVbe de�ned by Bu = �Av; if u 2 fv1; : : : ; vhg;Au; otherwise.It is easy to see that B 2 Wv1;:::;vh. By Lemma 4.2 Eq(B) 2 Wv1;:::;vh . From Eq(A) = IVit follows that the equivalence class modulo Eq(B) containing v1 coincides with theset fv1; : : : ; vh; vg. Denote by U the cell of Wv1;:::;vh containing v. Then fv1g � U 2R(Wv1;:::;vh). Thus U � fv1; : : : ; vh; vg, whence U = fvg.Now we are ready to complete the proof of Theorem 4.1. Let (v1; : : : ; vl) 2 S. Denoteby P a primitive central idempotent of W with m(P ) = � di�erent from 1nJV . It followsfrom the primitivity of W and Lemma 4.2 that Eq(P ) = IV . SetLh = hXi=1WPvi; h 2 [0; l]:12



Then Lh is a W -module andf0g = L0 � L1 � � � � � Ll � PLV :Now Lemma 4.3 with A = P and condition (ii) of the de�nition of S imply Li�1 6= Lifor all i 2 [1; l]. It follows that l � m(P ), whence l � �.To apply Theorem 4.1 in section 5 we need the following statement.Lemma 4.4 If W is a primitive cellular algebra on V , then�(W ) � m(W ); �(W ) � m(W )where m(W ) = maxP2Spec (W )m(P ) is the multiplicity of W (see section 2).Proof. First of all we recall thatdimC(W ) = XR2R(W )dout(R) = XP2Spec(W )n(P )2where n(P ) is the degree of an irreducible representation of the algebraW correspondingto the idempotent P . For n = 1 Lemma is clear. If n � 2, then�(W )(dimC(W )� 1) � XR2R(W )nIV dout(R) = n � 1 == XP2Spec(W )m(P )n(P )� 1 = 1 + XP2Spec (W )n 1nJV m(P )n(P )� 1 �� m(W ) XP2Spec(W )n 1nJV n(P )2 = m(W )(dimC(W )� 1):(We made use of the fact that m(P ) = n(P ) = 1 for P = 1nJV .) Thus, �(W ) � m(W ).The second inequality is trivial.5 Proofs of TheoremsIn this section we prove Theorem 3 and deduce Theorem 1 from it. The set V is assumedto be linearly ordered.Proof of Theorem 3. We start by describing the corresponding procedure.Input: a cellular algebra W on V . 13



Output: the group Aut(W ) and a canonical labeling of W .Step 1. Let W have at least two cells, Cel(W ) = fV1; : : : ; Vsg; s > 1. Following [BL]reduce the canonization problem with respect to Sym(V ) to that one with respect toQsi=1 Sym(Vi). Apply the algorithm recursively to the cellular algebra WVi to �nd itscanonical labeling gi 2 Sym(Vi) and the group Aut(WVi), i 2 [1; s]. SetG = sYi=1Aut(W giVi ); g = (g1; : : : ; gs) 2 sYi=1 Sym(Vi):Applying the algorithm of Proposition 3.1 �nd the group Aut(W g) = Aut(W g)\G anda canonical labeling h of the algebra W with respect to the coset gG. Output Aut(W )and h as a canonical labeling of W .Step 2. Let jCel(W )j = 1 and W be imprimitive. Perform steps 2.1 { 2.4.Step 2.1. Find the minimal equivalence E 2 W (with respect to the order on therelations of W de�ned above) such that fW = W=E is primitive. The set V=E is orderedaccording to the lexicographic order on 2V induced by the linear order on V . Recursively�nd a canonical labeling of the algebra fW and the group Aut(fW ). Put in order theset V=E according to this labeling, so that V=E = fU1; : : : ; Urg.Step 2.2. For each i 2 [1; r] construct the cellular algebraWi =W [IUi]Ui:Apply the algorithm recursively to the algebra Wi to �nd its canonical labeling gi andthe group Aut(Wi), i 2 [1; r]. By analogy with Step 1 reduce the canonization problemwith respect to Sym(V ) to that one with respect to its maximal subgroup G �xing E.(Below we identify V with U � [1; r] where U is an \etalon" copy of an equivalence classmodulo E so that Ui is identi�ed with U � fig. The group G is identi�ed with thewreath product of Sym(U) and Sym([1; r]) so that the action of g 2 G on V is given by(u; i)g = (ugi; ih); u 2 U; i 2 [1; r]where g = (g1; : : : ; gr;h) with gi 2 Sym(U); h 2 Sym([1; r]). According to above Wi(resp. fW ) can naturally be viewed as a cellular algebra on U (resp. on [1; r])).Step 2.3. Set W (h) =W [IU1h ; : : : ; IUrh ]; h 2 Aut(fW ):(We successively add the relations IU1h ; : : : ; IUrh to W applying at each stage Weisfeiler-Lehman's canonical algorithm). SetG(h) = rYi=1Aut(W gihih ); g(h) = (g1; : : : ; gr;h�1) 2 G:14



Applying the algorithm of Proposition 3.1 �nd Aut(W (h)) = Aut(W (h)) \ g(h)G(h)g(h)�1and a canonical labeling of the algebra W (h) with respect to the coset g(h)G(h) .Step 2.4. Let h0 be a permutation for which the canonical form of W (h0) is minimalamong the canonical forms of W (h), h 2 Aut(fW ). (Though h0 is not uniquely deter-mined, the output of Step 2.4 is.) For each h using the canonical labeling of W (h), �nd(if it exists) an isomorphism W (h0) ! W (h). Denote by S the set of all these permuta-tions of V . Output the group < Aut(W (h0)); S > as Aut(W ) and the canonical labelingof W (h0) with respect to g(h0)G(h0) as a canonical labeling of W .Step 3. Let W be a primitive cellular algebra. Apply the algorithm from section 4 to�nd Aut(W ) and a canonical labeling of W .We prove the correctness of the procedure applying the induction on the number l ofits recursive calls. If l = 0, then the procedure terminates at Step 3 and the correctnessfollows from Theorem 4.1 and Lemma 4.4. If l > 0 we consider two cases according tothe Step (1 or 2) at which the procedure terminates.Let the procedure terminate at Step 1 and W be isomorphic to W 0 with respectto Qsi=1 Sym(Vi). It follows that WVi is isomorphic to W 0Vi for all i. By the inductionhypothesis W giVi = W 0Vig0i. So W g and W 0g0 are G-isomorphic. Thus the correctnessfollows from that of the algorithm of Proposition 3.1.Let the procedure terminate at Step 2. First we prove the canonicity of the labelingof the algebra W de�ned at Step 2.4. Let g be a G-isomorphism from W to W 0 (thegroup G is de�ned at Step 2.2). Since Eg = E, g induces an isomorphism ~g 2 Sym([1; r])from fW to fW 0. According to Step 2.1 fW and fW 0 coincide with their canonical forms.So fW = fW 0 and ~g 2 Aut(fW ). By (W-L) g is also an isomorphism from W (h) to W 0(h0)for all h 2 Aut(fW ) where h0 = h~g. Setc(h) = g(h)�1g g0(h0):It follows from the de�nitions that c(h) 2 Qri=1 Sym(Ui), i.e. c(h) = (c1; : : : ; cr; 1) whereci 2 Sym(U). By (W-L) ci is an isomorphism from W gihih to W 0ih0 g0ih0 (see Step 2.3). SoW gihih =W 0ih0 g0ih0 and ci 2 Aut(W gihih ) for all i, whence c(h) 2 G(h). Thus by Proposition 3.1the canonical form of W (h) with respect to g(h)G(h) coincides with that of W 0(h0) withrespect to g0(h0)G0(h0). If h runs over Aut(fW ), then h0 also runs over Aut(fW ). Therefore,the corresponding canonical forms of W (h0) and W 0(h00) coincide. So do the canonicalforms of W and W 0 de�ned at Step 2.4.Now we prove that the group obtained at Step 2.4 coincides with Aut(W ). Letg 2 Aut(W ). Denote by ~g the permutation of V=E induced by g. By (W-L) g is anisomorphism from W (h0) to W (h0eg). So g is of the form g = g1g2 where g1 2 Aut(W (h0))and g2 2 S. Thus g 2< Aut(W (h0)); S >. The inverse inclusion is obvious.15



Let us estimate the running time t(W ) of the procedure applied to a cellular alge-bra W on n points with m(W ) � k. Denote by t(k; n) the maximum of t(W ) taken overall such W . We will prove by induction on n that t(k; n) = kkJ(k)2 log2 knO(1). If theprocedure terminates at Step 3, then it follows from Theorem 4.1 and Lemma 4.4 thatfor some constant c1 t(W ) � kknc1 : (1)Let the procedure terminate at Step 1. By Proposition 2.2 m(WVi) � m(W ) � k forall i 2 [1; s]. So Aut(WVi) and the canonical labeling gi of WVi can be found in timet(k; jVij). By Theorem 3.2 [H : sol(H)] � J(k)log2 k for each transitive constituent H ofAut(WVi). So by Proposition 3.1 the group Aut(W ) and the canonical labeling of Wwith respect to gG can be found in time J(k)2 log2 knc2 for some constant c2. Thereforet(W ) � sXi=1 t(k; jVij) + J(k)2 log2 knc2 + nO(1): (2)Let the procedure terminate at Step 2. By Proposition 2.2 m(fW ) � m(W ) � k andm(Wi) � m(W ) � k for all i 2 [1; r]. So the group Aut(Wi) and the canonical labeling giofWi can be found in time t(k; n=r). The group Aut(fW ) and the canonical labeling of fWcan be found in time kkrc1 due to Theorem 4.1 and Lemma 4.4. By Proposition 3.1 andTheorem 3.2 the group Aut(W (h)) and the canonical labeling of W (h) for h 2 Aut(fW )can be found in time J(k)2 log2 knc2 where c2 is as above. Besides, jAut(fW )j � kkr byTheorem 4.1 and Lemma 4.4. Therefore,t(W ) � kkrc1 + r t(k; n=r) + kkr � J(k)2 log2 knc2 + nO(1): (3)It follows from (1), (2), (3) by induction that there exists a constant c for whicht(k; n) � kkJ(k)2 log2 knc:Theorem 3 is completely proved.Proof of Theorem 1. Denote by W (�) the cellular algebra generated by all thematrices Ai. Then m(W (�)) � m(Ai) for all i. Thus by the hypothesis of the theoremm(W (�)) � mini m(Ai) = m(�) � k:Now Theorem 1 follows from Theorem 3, since Aut(�) = Aut(W (�)) (see [W]).References[BGM] Babai, L., Grigoriev, D.Y., Mount, D.M, Isomorphism of graphs with boundedeigenvalue multiplicity, Proc. 14th ACM STOC, (1982), 310-324.16
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