
The Fully Compressed String Matchingfor Lempel-Ziv EncodingMarek Karpinski �Wojciech Plandowski yWojciech Rytter zAbstractThe growing importance of massively stored information requires new approaches to e�cientalgorithms on texts represented in a compressed form. We consider here the string-matchingproblem in the compressed setting. This problem has been already investigated in [2], [3], [1]. Arather theoretical type of compression was considered in [8]. In this paper we consider a practicallyimportant compression algorithm of Lempel and Ziv (LZ algorithm, in short). Denote by LZ(w)the compressed version of a given string w using the LZ algorithm. The Fully CompressedMatching Problem is that of deciding if the pattern P occurs in a text T , given only LZ(P)and LZ(T), without decompressing the pattern and the text. The �rst occurrence is reported,if there is any. Let m and n denote the sizes of LZ(P) and LZ(T), and M , N be the sizes ofuncompressed strings P and T , respectively.In this paper we design the �rst polynomial time (with respect to n and m) algorithm for theFully Compressed Matching Problem. Note that in generallN ,M are exponential with respect to nand m, and any algorithm which explicitely decompresses the pattern P or the text T would workin exponential time! In particular the algorithm given in [5] works in this situation in exponentialtime with respect to m (in this algorithm the uncompressed pattern is a part of the input). Thesituations when both objects participating in the string-matching are compressed (we deal withcompressed patterns) are also practically important, for example in genetics and molecular biology(where uncompressed patterns are extremely long) or when we search for one compressed �le inanother compressed �le. We introduce a new technique of succinct representations for long stringperiods and overlaps.�Dept. of Computer Science, University of Bonn, 53117 Bonn. This research was partially supported by DFG GrantKA 673/4-1, and by the ESPRIT BR Grant 7097 and ECUS 030. Email:marek@cs.uni-bonn.deyInstitute of Informatics, Warsaw University, 02{097 Warszawa. Partially supported by the KBN Grant.Email:wojtekp@mimuw.edu.plzInstitute of Informatics, Warsaw University, 02{097 Warszawa. Supported partially by the DFG Grant Bo 56/142-1.Email:rytter@mimuw.edu.pl 1

1 IntroductionGathering and storage of masses of data is closely related to data compression. It is of practicalinterest to be able to answer some type of queries without data decompression and with the e�ciencyproportional to the size of compressed objects. Compression is a kind of succinct representation. Thecomplexity of succinctly represented graphs was already investigated in many papers. However inthe algorithmics of textual problems only recently the problems related to compressed objects wereinvestigated ([2], [3], [1] and [8]). The compressed matching problem was investigated in [5], where theLempel-Ziv (LZ) compression was considered. The LZ compression (see [14]) gives a very natural wayof representing a string. In this paper we consider the Fully Compressed Matching Problem:Instance: a compressed pattern LZ(P) and a compressed text LZ(T)Question: does P occurs in T ? If \yes" then report the �rst occurrence.Denotem = jLZ(P)j and n = jLZ(T)j. LetM = jP j and N = jT j. It can happen thatM =
(2c�m),N =
(2c�n). Hence the pattern and the text are too long to be written explicitly. Fortunately, eachposition can be written with only linear number of bits. Our main result is the following theorem.Theorem 1.1The Fully Compressed Matching Problem can be solved in polynomial time with respect to m+ n.The algorithm from the theorem above is deterministic, it is polynomial time but the degree of thepolynomial is still high (O((n+m)6)). (Of course it is much more e�cient than the algorithm withexplicit decompressing which works in exponential time.) The key idea is the succinct representationof sets of exponentially many periods and overlaps. Our auxiliary problem is that of checking ifa part of the pattern P occurs at a given position i in T . The Compressed Equality Testingproblem is described here as follows.Instance: a compressed pattern LZ(P), a compressed text LZ(T) and integers i; j; i0; j 0, wherej � i = j 0 � i0 � 0.Question: does P [i::j] = T [i0::j0] ? If \no" then �nd the �rst mismatch.1.1 The Lempel-Ziv compression.There is a large number of possible variations of the LZ algorithm. We consider the same versionas in [5] (this is called LZ1 in [5]). Intuitively, LZ algorithm compresses the text because it isable to discover some repeated subwords. We consider the version of LZ algorithm without self-referencing. Our algorithms can be extended to the general self-referential case. Assume that �is an underlying alphabet and let w be a string over �. The factorization of w is given by adecomposition: w = c1f1c2 : : :fkck+1, where c1 = w[1] and for each 1 � i � k ci 2 � and fi is thelongest pre�x of fici+1 : : : fkck+1 which appears in c1f1c2 : : : fi�1ci. We can identify each fi with aninterval [p; q], such that fi = w[p::q] and q � jc1f1c2 : : :fi�1ci�1j. If we drop the assumption related2

to the last inequality then it occurs a self-referencing (fi is the longest pre�x which appears beforebut not necessarily terminates at a current position). We assume that there is no such situation.Example.The factorization of w = aababbabbaababbabba# is given by: c1 f1 c2 f2 c3 f3 c4 f4 c5 =a a b ab b abb a ababbabba #. After identifying each subword fi with its corresponding interval weobtain the LZ encoding of the string. Hence LZ(aababbabbababbabb#)= a[1; 1]b[1; 2]b[4; 6]a[2; 10]#.1.2 Composition systemsWe introduce some useful abstraction of the LZ encoding. The composition systems (introducedhere) are variations of straight line programs and context-free grammars. Introduce the set VAR(S)of variables of a composition system S. The variables correspond to the subwords fi (to intervals[i; j] in the LZ encoding of a given word w). The value of each variable is a string over �. Denoteby Y[i] and Z [i] the pre�x of length i of Y and the su�x of length i of Z. Let � denote the operationof concatenation. The composition system S is a sequence of composition rules of the form:X = Y [i] � Z[j], X = Y � Z or X = a, where a 2 �. Each variable appears exactly once on theleft side of a composition rule. The variables whose compositions are of the form X = a are calledatomic. The values of atomic variables are the constants which appear on the right sides. The valueof the last variable of the composition system S (denoted val(S)) is the value of S.Example Consider the following composition system S:A = a; B = b; C = A �B; D = B �C; E = C �D; F = D[2] �E[4]; G = E � F .We have here val(S) = val(G) = abbabababba.We say that the systems S1, S2 are equivalent i� val(S1) = val(S2). Assume we are giventhe code LZ(w) of the word w. Then we can reconstruct in polynomial time the factorizationc1 f1 c2 f2 : : : cp fp cp+1 of w corresponding to this encoding. For each fk we can compute inpolynomial time the integers i; j such that fk = w[i::j]. Using this information we can easily constructthe composition system corresponding to any subinterval of w. If a subinterval corresponds tocomposition of more than two factors fi then we use a method similar to the transformation of agrammar to a normal form. We can prove the following fact.Fact 1.2(1) The compressed equality test can be reduced in polynomial time to the equivalence problem fortwo composition systems.(2) The Fully Compressed Matching Problem can be reduced to the following problem:for two composition systems P, T decide whether there is a variable X in the system T such thatval(P) is a subword of val(X). 3

1.3 The structure of periods in long stringsThe concept of periodicity appears in many advanced string algorithms, it is intuitively related toLZ compression, since the high compression ratio is achieved when there are many repetitions in thetext and repetitions are closely related to the periodicity.A nonnegative integer p is a period of a nonempty string w i� w[i] = w[i� p], whenever both sidesare de�ned. Hence p = jwj and p = 0 are considered to be periods. Denote Periods(w) = fp :p is a period of wg. A set of integers forming an arithmetic progression is called here linear. We saythat a set of positive integers from [1 : : :N] is succinct w.r.t. N i� it can be decomposed in at mostblog2(N)c+ 1 linear sets. The following lemma was shown in [8].Lemma 1.3 (succinct sets lemma)The set Periods(w) is succinct w.r.t. jwj.Denote ArithProg(i; p; k) = fi; i+ p; i+ 2p; : : : ; i+ kpg, so it is an arithmetic progression of lengthk + 1. Its description is given by numbers i; p; k written in binary. Our pattern matching algorithmdeals with a polynomial number of arithmetic progressions representing periods or overlaps.Denote by Solution(p; U;W) any position i 2 U such that i + j = p for some j 2 W . If there is nosuch position i then Solution(p; U;W) = 0.Lemma 1.4(application of Euclid's algorithm)Assume that two linear sets U;W � [1 : : :N] are given by their descriptions. Then for a given numberc 2 [1 : : :N] we can compute Solution(c; U;W) in polynomial time with respect to log(N).2 The Compressed Equality-Test AlgorithmAccording to Fact 1.2 the Compressed Equality-Test problem is reduced to the equivalence problemfor two composition systems. We show that the latter problem can be done in polynomial time.Assume we have two composition systems S1, S2 with n1, n2 variables. The key point of our algorithmis to consider relations between some parts of the words which are values of variables in these systems.We identify the name of the variable with its value.The main object in our algorithm is an information that two parts of some variables are equal:A[p::q] = B[p0::q0], where p = 1 or q = jAj or p0 = 1 or q0 = jBj. Such information is stored in objectscalled here the equality-items (items, in short). There are three types of items:1. overlap items: OV (A;B; i) means that B[1::i] is a su�x of A (in other words A[i] = B[i]);2. su�x items: SU(A;B; i; k) means that A[i::k] is a su�x of B;3. pre�x items: PR(A;B; i; k) means that A[i::k] is a pre�x of B.4

Observe that each overlap item is a special type of a pre�x item, however the introduction of overlapitems plays the crucial role in our algorithm.There is also another type of items: subword items. These are the pre�x (su�x) items in the casewhen the whole word B is considered as its pre�x (su�x).The items will be denoted by letters �;
 �, possibly with subscripts. The sets of items will bedenoted by capital greek letters.Each item corresponds to equality of two subwords. An item is valid i� this equality is satis�ed.The set � of items is valid i� each item in � is valid.The size of an item is the length of the text which "takes part" in the equality. If the item isOV (A;B; i) then the equality concerns the pre�x B[i] and the su�x A[i], both of length i. Hencesize(OV (A;B; i) = i. The sizes of other types of items are de�ned similarly. The items of size oneare called atomic items. The validity of atomic items is rather simple.Fact 2.1 The validity of atomic items can be tested in polynomial time.Two sets �1 and �2 of items are equivalent (we write �1 � �2) i� validity of �1 is equivalent tovalidity of �2.The basic operation in our algorithm is Split(�), where � is an item. The value of this operation isa set of one or two items: � is split into "smaller" items.The operation satis�es: f�g � SPLIT (�).The operation SPLIT can be de�ned formally in a similar way as in [12]. We describe only howoverlap items are split, other types of items are split similarly. Assume A;B 2 V AR(S1)[VAR(S2).Assume our item � is OV (A;B; i), (which means A[i] = B[i]) and the composition rule related to Ais: A = C[p] �D[q].Case 1: i � q.In this case A[i] = B[i] is equivalent to D[i] = B[i]. Hence SPLIT (�) = fOV (D;B; i)g.Case 2: i > q. In this case A[i] = B[i] is equivalent toC[i�q] = B[i�q] and B[i�q+1::i] = D[i�q].HenceSPLIT (�) = fOV (C;B; i� q);PR(B;D; i� q + 1; i)g, see Figure 1.Assume that in each SPLIT exactly one variable (the longer one) is decomposed. The variablesparticipating in SPLIT are di�erent (one from system S1, another from S2).Assume X , Y are the last variables in composition systems S1, S2, respectively. The equality-testchecks i� val(X) = val(Y). 5

p q

i-q
q

i

A

B

A

C
D

composition rule

old overlap item

C

B

D

B

new prefix item

new overlap item Figure 1: Splitting an overlap item, Case 2.Observation 1 Assume we have already checked that jX j = jY j = k. Then the systems S1, S2 areequivalent i� the item �0 = OV (X; Y; k) is valid (i� val(X) = val(Y)).The item �0 = OV (X; Y; k) is called the starting item. Hence the equality-test problem is reducedto the validity problem for the starting item. The global structure of the algorithm is:Initially: � = f�0ginvariant1: � � f�0g.invariant2: j�j is polynomial.Finally: � consists onlyof atomic items.Assume � is a set of overlap items. We use the operation Compact(�). Essentially this operationworks similarly as in [12]. The operation removes from � some number of overlap item and possiblyinserts other overlap items (related to the same variables as removed items).Assume that for each atomic item � SPLIT (�) = f�g.ALGORITHM EQUALITY TEST ;� := f �0 g;while � contains a non-atomic item do�0 := ;;for each � 2 � do �0 := �0 [SPLIT (�);� := Compact(�0);if all items in � are valid then return trueelse return false 6

Let �A;B be the set of overlap items of the type OV (A;B; �). This set is represented by the largestoverlap and set of periods in a pre�x of B, since other overlaps correspond to shifts of B on itself.However such set of periods can be represented by a set of linear size due to Lemma 1.3. The overlapscorrespond to periods and due to Lemma 1.3 we can choose only a linear number of items of a giventype OV (A;B; �). We have quadratic number of pairs of variables, hence the upper bound is cubic.The operation satis�es: � � Compact(�) and(*) jCompact(�)j � c � (n1 + n2)3,for a constant c.If � = �1 [�2, where �1 is the set of overlap items in � and �2 is the set other items then de�neCompact(�) = Compact(�1) [�2.Lemma 2.2 The worst-case performance of the algorithm Equality Test is polynomial with respectto the size of input.Proof. Let n1 = jS1j, n2 = jS2j.Claim 1. There are at most n1 + n2 iterations of the algorithm.If an item is split then one of its variables is replaced by "earlier" variables in the correspondingsystem. The variables in a given system are linearly ordered and we can "go back" at most n1 + n2times. One can also imagine that we traverse a large tree which starts at �0 and in which eachbranching corresponds to an application of SPLIT . We process this tree top-down level by level.The number of levels is linear. At each level there are possibly exponentially many items but (dueto Compact) we process only polynomially many items.Claim 2. j�j � c � (n1 + n2)4.Let �i = �1(i)[�2(i) be the set of items after the ith iteration, where �1(i) is the set of overlapitems in �i. Denote ki = j�1(i)j and ri = j�2(i)j. Each item generates at most one non-overlapitem. Hence: ri+1 � ki + ri and j�ij = ki + ri.Now the claim follows from the inequality (*) since ki is the number of overlap items after anapplication of Compact and initially r0 = 0.Eventually, after some number of iterations all items in � are atomic. Then we apply the validitytest for atomic items. This can be done in polynomial time, due to Fact 2.1.It follows directly from Lemma 2.2 that we can test equality in polynomial time. We �nd the�rst mismatch (in case of inequality) by a kind of a binary search in an exponentially long interval.Theorem 2.3 The Compressed Equality Testing can be done in polynomial time.7

3 The Pattern-Matching AlgorithmAccording to Fact 1.2 the fully compressed pattern matching is reduced to the problem: for twocomposition systems P , T decide whether there is a variable X in the system T such that val(P) isa subword of val(X).Let us �x the pattern P = val(P). Let x be a string of length K and j be any position in this string.De�ne Prefs(j; x) to be the lengths of subwords of x that end at position j in x and that are pre�xesof P . Similarly, denote by Su�s(j; x) the lengths of subwords of x that begin at position j in x andthat are su�xes of P . Formally: Prefs(j; x) = f1 � i � j : x[j � i+ 1::j] is a a pre�x of P g.Su�s(j; x) = fj � i � K : x[j::j + i� 1] is a su�x of P g.Observation 2 Let p; s; t be strings, then p occurs in s � t i� p occurs in s or p occurs in t, orSolution(jpj;Prefs(jsj; s); Su�s(1; t)) 6= 0.De�ne the operations of the pre�x-extension and su�x-extension. For a word x de�nePrefExt(S; x) = fi+ jxj : i 2 S and P [1::i]�x is a pre�x of P g.Su�Ext(S; x) = fi+ jxj : i 2 S and x�P [M � i+ 1::M] is a su�x of P g.Assume that X1; X2; : : : ; Xn is a sequence of variables that appear in consecutive rules of thecomposition system T de�ning the text T . DenoteSUFF [j; i] = Su�s(j; val(Xi));PREF [j; i] = Prefs(j; val(Xi)):Observe that these tables depend on the pattern P , however it is convenient to assume further thatP is �xed. Let k be the �rst position in PREF [j; i], then all the other positions in PREF [j; i] are ofthe form k+ p0, where p0 is a period of P [1::k]. Hence Lemma 1.3 implies directly the following fact.Lemma 3.1The sets SUFF [j; i] and PREF [j; i] are succinct, for any 1 � i � n, 1 � j � jval(Xi)j.Let the composition rule for a variable Xk be of the form Xk = Xi[s] �Xj[t]. Then for each position bin the word val(Xk) denote by Pred[b;Xk] the position jval(Xi)j� s+ b in the word Xi if 1 � b � sand the position b � s in the word Xj if b > s. If the composition rule for a variable Xk is of theform Xk = a then Pred[b;Xk] is unde�ned. The function Pred (predecessor) de�nes a partial order"to be a predecessor" between pairs (position in val(Xk), variable Xk).We are now able to give a sketch of the whole structure of the algorithm. In the �rst phase ofthe algorithm in each word val(Xk) at most 2n positions are being distinguished. They are called�ngers and are denoted by FINGERS(Xk). They correspond to informers in [5]. The positions inFINGERS(Xk) are those predecessors of end-positions of variables that are in the word val(Xk).Clearly for a �xed k in the set FINGERS(Xk) there are at most two predecessors of end-positionsof one variable, so that there are at most 2n positions in the set FINGERS(Xk).Lemma 3.2 The sets FINGERS(Xk) can be computed by a polynomial time algorithm.8

Proof. The algorithm �nds the sets FINGERS for consecutive variables starting from the variableXn and ending with X1. We have FINGERS(Xn) = f1; jval(Xn)jg. While considering the variableXk the algorithm takes each �nger b in FINGERS(Xk) and puts Pred[b;Xk] to appriopriate setFINGERS.In the second phase the pattern-matching algorithm inspects consecutive variables from X1 toXn in the composition system and for each �nger b in the word val(Xk) the sets PREF [b; k] andSUFF [b; k] are computed. We use this information to check whether there is an occurrence of thepattern inside val(Xk).Let S be a set of integers and d be an integer. Denote by Cut(S; d) the subset of S consisting ofnumbers not greater than d.Observation 3 Assume S is given by its succinct representation. Then the succinct representationof the set Cut(S; d) can be computed in polynomial time with respect to the number of bits in d andthe size of the representation of S.Let S be a set of arithmetic progressions. Let Compress(S) be the operation that glues pairs of pro-gressions that can be represented by one arithmetic progression. Clearly the operation Compress(S)can be implemented in polynomial time with respect to the number of progressions in S.Below we describe the second phase of the algorithm. Note that whenever the algorithm needsvalues of the sets SUFF or PREF then they have been computed since they refer to �ngers inpreviously considered variables.Our next lemma says that the operations PrefExt and Su�Ext can be implemented in polynomialtime. Consider only the �rst of them, the second one is symmetric. We consider a set S which consistsof one linear set. If there are polynomially many linear set-components of S, we deal with each ofthem separately.Lemma 3.3 Assume W is a composition system and S = ft0; t1; : : : ; tsg � [1 : : :k] is a linear setgiven by its succinct representation, where t0 = k and strings xi = P [1::ti], 0 � i � s, are su�xes ofP [1::k]. Then the representation of PrefExt(S; val(W) can be computed in polynomial time.Proof.The proof is similar to the proof of Lemma 7 in [8]. Assume the sequence t0; t1; : : : ; ts is decreasing.Denote p = t0 � t1. Since S is linear p = ti � ti+1 for 1 � i � s. Thus the number p is a period of allwords xi. We need to compute all possible continuations of xi's in P which match val(W). Denoteyi = P [1::ti + jval(W)j] and Z = P [1::k]�val(W). Our aim is to �nd all i's such that yi is a su�x ofZ, (0 � i � s). We call such i's good indices. The �rst mismatch to the period p in a string x is the�rst position (if there is any) such that x[mismatch] 6= x[mismatch� p]. The �rst mismatch can becomputed using an equality-test algorithm from Theorem 2.3.9

ALGORITHM SECOND PHASE ;for k = 1 to n doif the rule for Xk is Xk = a thenif P = a then report occurrence and STOPelse compute PREF [1; k], SUFF [1; k]else fXk = Xi[s] �X [t]j for i; j < kgpref := Cut(PREF [jval(Xi)j; i]; s); suff := Cut(SUFF [1; j]; t);pos := Solution(jP j; pref; suff);if pos 6= 0 then report an occurrence and STOPelse for each �nger b in FINGERS(Xk) doif b > sthenU := PrefExt(pref; val(Xk)[s+ 1::b])[PREF [Pred[b;Xk]; j];V := Cut(SUFF [Pred[b;Xk]; j]; jval(Xk)j � b+ 1);elseU := Cut(PREF [Pred[b;Xk]; i]; b);V := Su�Ext(suff; val(Xk)[b::s])[SUFF [Pred[b;Xk]; i];PREF [b; k] := Compress(U); SUFF [b; k] := Compress(V);If there is no mismatch in Z then Z is periodic with a period p. Then i is good i� yi is periodicwith a period p. Since all yi are pre�xes of y0 it is enough to �nd the mismatch m in y0. Goodindices are the indices of words shorter than m.If there is a mismatch at position z in Z then there is at most one good index. Clearly z � ksince there is no mismatch in P [1::k]. The mismatch in the su�x of Z starting at s in Z is atposition k � s. The only good index i is such that the mismatch in yi is at the same position as incorresponding su�x of Z. For all words yi mismatches are at the same position as the mismatch iny0. This allows to �nd easily the index i. Then it should be tested whether the index is really good.In this way we compute the set of good indices. Observe that it consists of a subset of consecutiveindices from the set S. So the corresponding set (the required output) of integers fjyij : i is a goodindex g is linear. This completes the proof.If the sets SUFF [b; j];PREF[b; j] has been already computed by the algorithm, then each of themconsists of a polynomial number of linear sets, for j < i. Hence we can compute the sets PREF [b; i]and SUFF [b; i] in polynomial time using polynomially many time the algorithm from Lemma 3.3 toeach of these linear sets. In this way we have shown that the algorithm SECOND PHASE works inpolynomial time. This completes the proof of our main result (Theorem 1.1).10

As a side e�ect of our pattern-matching algorithm we can compute the set of all periods forstrings with short description.Theorem 3.4 Assume S is a composition system with n variables. Then we can compute in poly-nomial time a polynomial size representation of set Periods(val(S)). The representation consists ofa linear number of linear sets.Proof. Use our string-matching algorithm with the pattern P = val(S) and the text T = val(S)ignoring the occurrence of the pattern at position 1. As a side e�ect we compute all su�xes of Twhich are pre�xes of P . This determines easily all periods.4 Open ProblemOur method yields the �rst polynomial time algorithm for the LZ Fully Compressed MatchingProblem. An interesting open problem remains on improving running time and storage requirementsof an algorithm.References[1] A.Amir, G. Benson and M. Farach, Let sleeping �les lie: pattern-matching in Z-compressed �les,in SODA'94.[2] A.Amir, G. Benson, E�cient two dimensional compressed matching, Proc. of the 2nd IEEEData Compression Conference 279-288 (1992)[3] A.Amir, G. Benson and M. Farach,Optimal two-dimensional compressed matching, in ICALP'94[4] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York (1994).[5] M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, to appear inSTOC'95.[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979).[7] R.M. Karp and M. Rabin, E�cient randomized pattern matching algorithms, IBM Journal ofResearch and Dev. 31, pp.249{260 (1987).[8] M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with short description,to appear in Combinatorial Pattern Matching, 1995[9] D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edition. Addison-Wesley (1981). 11

[10] A. Lempel and J.Ziv, On the complexity of �nite sequences, IEEE Trans. on Inf. Theory 22,75-81 (1976)[11] M. Lothaire, Combinatorics on Words. Addison-Wesley (1993).[12] W. Plandowski, Testing equivalence of morphisms on context-free languages, ESA'94, LectureNotes in Computer Science 855, Springer-Verlag, 460{470 (1994).[13] J.Storer, Data compression: methods and theory, Computer Science Press, Rockville, Maryland,1988[14] J.Ziv and A.Lempel, A universal algorithm for sequential data compression, IEEE Trans. onInf. Theory 17, 8-19, 1984

12

