The Fully Compressed String Matching
for Lempel-Ziv Encoding

Marek Karpinski *
Wojciech Plandowski f

Wojciech Rytter *

Abstract

The growing importance of massively stored information requires new approaches to efficient
algorithms on texts represented in a compressed form. We consider here the string-matching
problem in the compressed setting. This problem has been already investigated in [2], [3], [1]. A
rather theoretical type of compression was considered in [8]. In this paper we consider a practically
important compression algorithm of Lempel and Ziv (L7 algorithm, in short). Denote by LZ(w)
the compressed version of a given string w using the LZ algorithm. The Fully Compressed
Matching Problem is that of deciding if the pattern P occurs in a text T, given only LZ(P)
and LZ(T), without decompressing the pattern and the text. The first occurrence is reported,
if there is any. Let m and n denote the sizes of LZ(P) and LZ(T), and M, N be the sizes of
uncompressed strings P and 7T, respectively.

In this paper we design the first polynomial time (with respect to n and m) algorithm for the
Fully Compressed Matching Problem. Note that in generall N, M are exponential with respect to n
and m, and any algorithm which explicitely decompresses the pattern P or the text 7" would work
in exponential time! In particular the algorithm given in [5] works in this situation in exponential
time with respect to m (in this algorithm the uncompressed pattern is a part of the input). The
situations when both objects participating in the string-matching are compressed (we deal with
compressed patterns) are also practically important, for example in genetics and molecular biology
(where uncompressed patterns are extremely long) or when we search for one compressed file in
another compressed file. We introduce a new technique of succinct representations for long string

periods and overlaps.

*Dept. of Computer Science, University of Bonn, 53117 Bonn. This research was partially supported by DFG Grant
KA 673/4-1, and by the ESPRIT BR Grant 7097 and ECUS 030. Email:marek@cs.uni-bonn.de

'nstitute of Informatics, Warsaw University, 02097 Warszawa. Partially supported by the KBN Grant.
Email:wo jtekpOminuw. edu.pl

nstitute of Informatics, Warsaw University, 02-097 Warszawa. Supported partially by the DFG Grant Bo 56/142-1.

Email:rytterOmimuw.edu.pl

1 Introduction

Gathering and storage of masses of data is closely related to data compression. It is of practical
interest to be able to answer some type of queries without data decompression and with the efficiency
proportional to the size of compressed objects. Compression is a kind of succinct representation. The
complexity of succinctly represented graphs was already investigated in many papers. However in
the algorithmics of textual problems only recently the problems related to compressed objects were
investigated ([2], [3], [1] and [8]). The compressed matching problem was investigated in [5], where the
Lempel-Ziv (LZ) compression was considered. The LZ compression (see [14]) gives a very natural way

of representing a string. In this paper we consider the Fully Compressed Matching Problem:
Instance: a compressed pattern LZ(P) and a compressed text LZ(T)

Question: does P occurs in T' 7 If “yes” then report the first occurrence.

Denote m = |LZ(P)|and n = |LZ(T)|. Let M = |P|and N = |T|. It can happen that M = Q(2°™),
N = Q(2°"). Hence the pattern and the text are too long to be written explicitly. Fortunately, each

position can be written with only linear number of bits. Our main result is the following theorem.

Theorem 1.1

The Fully Compressed Matching Problem can be solved in polynomial time with respect to m + n.

The algorithm from the theorem above is deterministic, it is polynomial time but the degree of the
polynomial is still high (O((n + m)®)). (Of course it is much more efficient than the algorithm with
explicit decompressing which works in exponential time.) The key idea is the succinct representation
of sets of exponentially many periods and overlaps. OQur auxiliary problem is that of checking if
a part of the pattern P occurs at a given position ¢ in 7. The Compressed Equality Testing

problem is described here as follows.

Instance: a compressed pattern LZ(P), a compressed text LZ(T) and integers i, 7,4, j’, where

j—i=j—d>0.

Question: does P[i..j] = T[..;] 7 If “no” then find the first mismatch.

1.1 The Lempel-Ziv compression.

There is a large number of possible variations of the LZ algorithm. We consider the same version
as in [5] (this is called LZ1 in [5]). Intuitively, LZ algorithm compresses the text because it is
able to discover some repeated subwords. We consider the version of L7 algorithm without self-
referencing. Our algorithms can be extended to the general self-referential case. Assume that X
is an underlying alphabet and let w be a string over Y. The factorization of w is given by a
decomposition: w = ¢y fica. .. frcgr1, where ¢; = w[l] and for each 1 <i < k ¢; € ¥ and f; is the
longest prefix of ficiy1 ... frcg41 which appears in ¢y fieg ... fi—1c;. We can identify each f; with an
interval [p, ¢], such that f; = wlp..q] and ¢ < |ey fieo ... fi—1¢;—1|. If we drop the assumption related

to the last inequality then it occurs a self-referencing (f; is the longest prefix which appears before

but not necessarily terminates at a current position). We assume that there is no such situation.

Example.

The factorization of w = aababbabbaababbabba# is given by: c1 f1 co fo ez f3eq fa 5 =
a ababb abb a ababbabba #. After identifying each subword f; with its corresponding interval we
obtain the LZ encoding of the string. Hence LZ(aababbabbababbabb#) = a[l,1]b[1,2]b[4,6]a[2,10]#.

1.2 Composition systems

We introduce some useful abstraction of the LZ encoding. The composition systems (introduced
here) are variations of straight line programs and context-free grammars. Introduce the set VAR(S)
of variables of a composition system §. The variables correspond to the subwords f; (to intervals
[7,j] in the LZ encoding of a given word w). The value of each variable is a string over ¥. Denote
by ¥}; and 7l the prefix of length ¢ of Y and the suffix of length ¢ of Z. Let - denote the operation

of concatenation. The composition system S is a sequence of composition rules of the form:

X =vyll. Z, X =Y - Zor X =a, where a € X. Fach variable appears exactly once on the
left side of a composition rule. The variables whose compositions are of the form X = a are called
atomic. The values of atomic variables are the constants which appear on the right sides. The value

of the last variable of the composition system & (denoted val(S)) is the value of S.

Example Consider the following composition system S:

A=a;B=0;C=A-B;D=B-C; E=C-D; F=DVW . E; G=FE-F.
We have here val(S) = val(G) = abbabababba.

We say that the systems Sy, Sy are equivalent iff val(S1) = val(Sz). Assume we are given
the code LZ(w) of the word w. Then we can reconstruct in polynomial time the factorization
cr fr 2 faoo. ¢y [p cpt1 of w corresponding to this encoding. For each fr we can compute in
polynomial time the integers 7, j such that f; = w[i..j]. Using this information we can easily construct
the composition system corresponding to any subinterval of w. If a subinterval corresponds to
composition of more than two factors f; then we use a method similar to the transformation of a

grammar to a normal form. We can prove the following fact.

Fact 1.2

(1) The compressed equality test can be reduced in polynomial time to the equivalence problem for
two composition systems.

(2) The Fully Compressed Matching Problem can be reduced to the following problem:

for two composition systems P, T decide whether there is a variable X in the system T such that

val(P) is a subword of val(X).

1.3 The structure of periods in long strings

The concept of periodicity appears in many advanced string algorithms, it is intuitively related to
L7 compression, since the high compression ratio is achieved when there are many repetitions in the
text and repetitions are closely related to the periodicity.

A nonnegative integer p is a period of a nonempty string w iff w[i] = w[i — p], whenever both sides
are defined. Hence p = |w| and p = 0 are considered to be periods. Denote Periods(w) = {p :
p is a period of w}. A set of integers forming an arithmetic progression is called here linear. We say
that a set of positive integers from [1...N]is succinct w.r.t. N iff it can be decomposed in at most

|logy(N)] 4 1 linear sets. The following lemma was shown in [8].

Lemma 1.3 (succinct sets lemma)

The set Periods(w) is succinct w.r.t. |w|.

Denote ArithProg(i,p,k) = {i,i+ p,i + 2p,...,t+ kp}, so it is an arithmetic progression of length
k 4+ 1. Its description is given by numbers ¢, p, k written in binary. Our pattern matching algorithm

deals with a polynomial number of arithmetic progressions representing periods or overlaps.

Denote by Solution(p, U, W) any position ¢ € U such that i + j = p for some j € W. If there is no
such position ¢ then Solution(p, U,W) = 0.

Lemma 1.4

(application of Euclid’s algorithm)

Assume that two linear sets U, W C [1...N] are given by their descriptions. Then for a given number

c € [1...N] we can compute Solution(c,U, W) in polynomial time with respect to log(N).

2 The Compressed Equality-Test Algorithm

According to Fact 1.2 the Compressed Equality-Test problem is reduced to the equivalence problem
for two composition systems. We show that the latter problem can be done in polynomial time.
Assume we have two composition systems &1, §; with nq, no variables. The key point of our algorithm
is to consider relations between some parts of the words which are values of variables in these systems.
We identify the name of the variable with its value.

The main object in our algorithm is an information that two parts of some variables are equal:
Alp..q] = B[p'..¢'], where p = 1 or ¢ = |A| or p’ = 1 or ¢' = | B|. Such information is stored in objects

called here the equality-items (items, in short). There are three types of items:

1. overlap items: OV (A, B,i) means that B[1..i] is a suffix of A (in other words All = Bp);
2. suffiz items: SU(A, B, i, k) means that Afi..k] is a suffix of B;

3. prefiz items: PR(A, B,i,k) means that A[i..k]is a prefix of B.

Observe that each overlap item is a special type of a prefix item, however the introduction of overlap

items plays the crucial role in our algorithm.

There is also another type of items: subword items. These are the prefix (suffix) items in the case

when the whole word B is considered as its prefix (suffix).

The items will be denoted by letters a,v 3, possibly with subscripts. The sets of items will be
denoted by capital greek letters.

Each item corresponds to equality of two subwords. An item is valid iff this equality is satisfied.

The set I' of items is valid iff each item in I is valid.

The size of an item is the length of the text which ”takes part” in the equality. If the item is
OV (A, B, i) then the equality concerns the prefix By and the suffix Af;, both of length 7. Hence
size(OV (A, B,i) = i. The sizes of other types of items are defined similarly. The items of size one

are called atomic items. The validity of atomic items is rather simple.
Fact 2.1 The validity of atomic items can be tested in polynomial time.

Two sets I'y and I'y of items are equivalent (we write I'y = I'p) iff validity of I'y is equivalent to
validity of I's.

The basic operation in our algorithm is Split(«), where « is an item. The value of this operation is

a set of one or two items: « is split into ”smaller” items.
The operation satisfies: {a} = SPLIT(«a).

The operation SPLIT can be defined formally in a similar way as in [12]. We describe only how
overlap items are split, other types of items are split similarly. Assume A, B € VAR(S1)UVAR(S,).
Assume our item a is OV(A, B,), (which means Al = By;) and the composition rule related to A
st A=Cpp- Dldl,

Case 1: ©+ < gq.
In this case Al = By; is equivalent to Dl = By Hence SPLIT(a) = {OV(D, B,i)}.

Case 2: i > ¢. In this case Al = By is equivalent to
C[i_q] = B[] and B[i_q+1"i] = D[

i—q i—q]*

Hence
SPLIT(a) = {OV(C,B,i— q),
PR(B,D,i—q+1,t)}, see Figure 1.

Assume that in each SPLIT exactly one variable (the longer one) is decomposed. The variables

participating in SPLIT are different (one from system Sy, another from Sz).

Assume X, Y are the last variables in composition systems Sy, 82, respectively. The equality-test

checks iff val(X') = val(Y).

old overlap item

(o8]

composition rule

new prefix item
C _ new overlap item D :
i-g :

Figure 1: Splitting an overlap item, Case 2.

Observation 1 Assume we have already checked that | X| = |Y| = k. Then the systems 81, Sy are
equivalent iff the item ag = OV(X,Y, k) is valid (iff val(X) = val(Y)).

The item ag = OV(X,Y, k) is called the starting item. Hence the equality-test problem is reduced
to the validity problem for the starting item. The global structure of the algorithm is:

Initially: T' = {ap}
invariantl: I' = {«ag}.
invariant2: |I'| is polynomial.

Finally: T consists only

of atomic items.

Assume A is a set of overlap items. We use the operation Compact(A). Essentially this operation
works similarly as in [12]. The operation removes from A some number of overlap item and possibly
inserts other overlap items (related to the same variables as removed items).

Assume that for each atomic item o SPLIT(a) = {a}.

ALGORITHM EQUALITY_TEST ;

I':'={a};
while I' contains a non-atomic item do
I :=0;

for eacha € T'do I' :=T"U SPLIT(a);
I' := Compact(I');
if all items in I' are valid then return true

else return false

Let A4 g be the set of overlap items of the type OV (A, B, x). This set is represented by the largest
overlap and set of periods in a prefix of B, since other overlaps correspond to shifts of B on itself.
However such set of periods can be represented by a set of linear size due to Lemma 1.3. The overlaps
correspond to periods and due to Lemma 1.3 we can choose only a linear number of items of a given
type OV (A, B,*). We have quadratic number of pairs of variables, hence the upper bound is cubic.
The operation satisfies:
A = Compact(A) and
(*) |Compact(A)] < ¢ (ng + n2)?,

for a constant c.
IfI' = Ay U Ay, where Ay is the set of overlap items in I' and Ay is the set other items then define

Compact(I') = Compact(Ay) U A,.

Lemma 2.2 The worst-case performance of the algorithm Equality_Test is polynomial with respect

to the size of input.

Proof. Let ny = |81, na = |Sa.
Claim 1. There are at most ny + ny iterations of the algorithm.

If an item is split then one of its variables is replaced by ”earlier” variables in the corresponding
system. The variables in a given system are linearly ordered and we can ”go back” at most ny + nq
times. One can also imagine that we traverse a large tree which starts at ag and in which each
branching corresponds to an application of SPLIT. We process this tree top-down level by level.
The number of levels is linear. At each level there are possibly exponentially many items but (due

to C'ompact) we process only polynomially many items.
Claim 2. |T| < ¢ (ng + ng)t

Let I'; = Aq(2) UAq(2) be the set of items after the ¢th iteration, where Aq(¢) is the set of overlap
items in I';. Denote k; = |A1(i)] and r; = |A3(i)]. Each item generates at most one non-overlap
item. Hence:

ripr < ki g and Iy =k + 7.
Now the claim follows from the inequality (*) since k; is the number of overlap items after an

application of Compact and initially r¢ = 0.

Eventually, after some number of iterations all items in I' are atomic. Then we apply the validity

test for atomic items. This can be done in polynomial time, due to Fact 2.1. I

It follows directly from Lemma 2.2 that we can test equality in polynomial time. We find the

first mismatch (in case of inequality) by a kind of a binary search in an exponentially long interval.

Theorem 2.3 The Compressed Equality Testing can be done in polynomial time.

3 The Pattern-Matching Algorithm

According to Fact 1.2 the fully compressed pattern matching is reduced to the problem: for two
composition systems P, 7 decide whether there is a variable X in the system 7 such that val(P) is
a subword of val(X).

Let us fix the pattern P = val(P). Let x be a string of length K and j be any position in this string.
Define Prefs(j,) to be the lengths of subwords of that end at position 7 in 2 and that are prefixes
of P. Similarly, denote by Suffs(j,z) the lengths of subwords of z that begin at position j in z and
that are suffixes of P. Formally: Prefs(j,z)={1<i¢<j : z[j—¢+1..j]is a a prefix of P }.
Suffs(j,z)=4j <i< K : z[j..j+i— 1] is a suffix of P }.

Observation 2 Let p, s, t be strings, then p occurs in s -t iff p occurs in s or p occurs in t, or

Solution(|p|, Prefs(|s|, s), Suffs(1,t)) # 0.

Define the operations of the prefiz-extension and suffiz-extension. For a word z define
Prefbzt(S,z)={i+ |z| : ¢ € S and P[l..7]-x is a prefix of P }.
Suffbet(S,z)=Hi+|z| : 1€ S and - P[M — ¢+ 1..M] is a suffix of P }.

Assume that Xy, Xo,..., X, is a sequence of variables that appear in consecutive rules of the

composition system 7 defining the text 7. Denote

SUFF[j,1] = Suffs(j,val(X;)),
PREF[j,i] = Prefs(j,val(X;)).

Observe that these tables depend on the pattern P, however it is convenient to assume further that
P is fixed. Let k be the first position in PREF[j,i], then all the other positions in PREF[j,1] are of
the form k + p’, where p’ is a period of P[1..k]. Hence Lemma 1.3 implies directly the following fact.

Lemma 3.1
The sets SUFF[j,i] and PREF[j,i] are succinct, for any 1 <i<n, 1 <j < |val(X;)].

Let the composition rule for a variable X be of the form X} = X; - X, Then for each position b
in the word val(X}) denote by Pred[b, Xi] the position |val(X;)| — s+ bin the word X;if 1 <b<'s
and the position b — s in the word X; if b > s. If the composition rule for a variable X, is of the
form Xy = a then Pred[b, Xi] is undefined. The function Pred (predecessor) defines a partial order

"to be a predecessor” between pairs (position in val(Xy), variable Xy).

We are now able to give a sketch of the whole structure of the algorithm. In the first phase of
the algorithm in each word val(Xy) at most 2n positions are being distinguished. They are called
fingers and are denoted by FINGFERS(X}). They correspond to informersin [5]. The positions in
FINGERS(X}) are those predecessors of end-positions of variables that are in the word val(Xy).
Clearly for a fixed k in the set FINGERS(X}) there are at most two predecessors of end-positions
of one variable, so that there are at most 2n positions in the set FINGERS(Xy).

Lemma 3.2 The sets FINGERS(X}y) can be computed by a polynomial time algorithm.

Proof. The algorithm finds the sets FINGFERS for consecutive variables starting from the variable
X, and ending with X;. We have FINGERS(X,,) = {1, |[val(X,,)|}. While considering the variable
X}, the algorithm takes each finger b in FINGFERS(X}) and puts Pred[b, Xi] to appriopriate set
FINGERS. .

In the second phase the pattern-matching algorithm inspects consecutive variables from X to
X, in the composition system and for each finger b in the word val(X}y) the sets PREF[b, k] and
SUFF[b, k] are computed. We use this information to check whether there is an occurrence of the

pattern inside val(Xy).

Let S be a set of integers and d be an integer. Denote by Cut(.5,d) the subset of S consisting of

numbers not greater than d.

Observation 3 Assume S is given by its succinct representation. Then the succinct representation
of the set Cut(S,d) can be computed in polynomial time with respect to the number of bits in d and

the size of the representation of 5.

Let S be a set of arithmetic progressions. Let Compress(.9) be the operation that glues pairs of pro-
gressions that can be represented by one arithmetic progression. Clearly the operation Compress(.S)

can be implemented in polynomial time with respect to the number of progressions in 5.

Below we describe the second phase of the algorithm. Note that whenever the algorithm needs
values of the sets SUFF or PREF then they have been computed since they refer to fingers in

previously considered variables.

Our next lemma says that the operations PrefExzt and SuffFxt can be implemented in polynomial
time. Consider only the first of them, the second one is symmetric. We consider a set .5 which consists
of one linear set. If there are polynomially many linear set-components of 5, we deal with each of

them separately.

Lemma 3.3 Assume W is a composition system and S = {tg,t1,...,ts} C[1...k] is a linear set
given by its succinct representation, where ty = k and strings x; = P[1..1;], 0 <1 < s, are suffizes of

P[1..k]. Then the representation of PrefExt(S,val(W) can be computed in polynomial time.
Proof.

The proof is similar to the proof of Lemma 7 in [8]. Assume the sequence tg,1y,...,1; is decreasing.
Denote p =19 — 1. Since S is linear p = ¢; — t;41 for 1 < ¢ < s. Thus the number p is a period of all
words z;. We need to compute all possible continuations of ;s in P which match val(W). Denote
y; = P[l.t; + |val(W)|] and Z = P[1..k]-val(W). Our aim is to find all ¢’s such that y; is a suffix of
Z,(0 <1< s). We call such ¢’s good indices. The first mismatch to the period p in a string z is the
first position (if there is any) such that z[mismatch] # x[mismatch — p]. The first mismatch can be

computed using an equality-test algorithm from Theorem 2.3.

ALGORITHM SECOND_PHASE ;
for £k = 1 ton do
if the rule for X is X; = a then
if P = @ then report occurrence and STOP
else compute PREF[1,k], SUFF[1, k]
else { X} = XZ»[S]-X][t] for ¢,j < k}
pref = Cut(PREF[|val(X,)],1],s); suff := Cut(SUFF[1,7],1);
pos := Solution(|P|,pref,suff);
if pos # 0 then report an occurrence and STOP
else for each finger b in FINGERS(X}) do
ifb> s
then
U := PrefExt(pref,val(Xg)[s + 1..b]) U PREF[Pred[b, Xi], jl;
V = Cut(SUFF[Pred[b, Xg], j], [val(Xg)| — b+ 1);
else
U = Cut(PREF[Predb, X],],b);
Vo= SuffEzt(suf f,val(Xg)[b..s]) U SUFF[Pred[b, Xi],i];
PREF[b, k] := Compress(U); SUFF[b, k] := Compress(V);

If there is no mismatch in Z then Z is periodic with a period p. Then 2 is good iff y; is periodic
with a period p. Since all y; are prefixes of yp it is enough to find the mismatch m in yg. Good

indices are the indices of words shorter than m.

If there is a mismatch at position z in Z then there is at most one good index. Clearly z > k
since there is no mismatch in P[1..k]. The mismatch in the suffix of Z starting at s in Z is at
position k£ — s. The only good index ¢ is such that the mismatch in y; is at the same position as in
corresponding suffix of Z. For all words y; mismatches are at the same position as the mismatch in

yo. This allows to find easily the index 7. Then it should be tested whether the index is really good.

In this way we compute the set of good indices. Observe that it consists of a subset of consecutive
indices from the set . So the corresponding set (the required output) of integers {|y;| : ¢ is a good

index } is linear. This completes the proof. I

If the sets SUFF[b, j], PREFIb, j] has been already computed by the algorithm, then each of them
consists of a polynomial number of linear sets, for j < i. Hence we can compute the sets PREF[b,]
and SUFF[b,1] in polynomial time using polynomially many time the algorithm from Lemma 3.3 to
each of these linear sets. In this way we have shown that the algorithm SECOND_PHASE works in

polynomial time. This completes the proof of our main result (Theorem 1.1).

10

As a side effect of our pattern-matching algorithm we can compute the set of all periods for

strings with short description.

Theorem 3.4 Assume S is a composition system with n variables. Then we can compute in poly-
nomial time a polynomial size representation of set Periods(val(S)). The representation consists of

a linear number of linear sets.

Proof. Use our string-matching algorithm with the pattern P = val(S) and the text 7 = val(S)
ignoring the occurrence of the pattern at position 1. As a side effect we compute all suffixes of 7

which are prefixes of P. This determines easily all periods. I

4 Open Problem

Our method yields the first polynomial time algorithm for the LZ Fully Compressed Matching
Problem. An interesting open problem remains on improving running time and storage requirements

of an algorithm.

References

[1] A.Amir, G. Benson and M. Farach, Let sleeping files lie: pattern-matching in Z-compressed files,
in SODA94.

[2] A.Amir, G. Benson, Ffficient two dimensional compressed matching, Proc. of the 2nd IFEE
Data Compression Conference 279-288 (1992)

[3] A.Amir, G. Benson and M. Farach, Optimal two-dimensional compressed matching, in ICALP’9/
[4] M. Crochemore and W. Rytter, Text Algorithms, Oxford University Press, New York (1994).

[6] M. Farach and M. Thorup, String matching in Lempel-Ziv compressed strings, to appear in
STOC95.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman (1979).

[7] R.M. Karp and M. Rabin, Efficient randomized pattern matching algorithms, IBM Journal of
Research and Dev. 31, pp.249-260 (1987).

[8] M. Karpinski, W. Rytter and A. Shinohara, Pattern-matching for strings with short description,
to appear in Combinatorial Pattern Matching, 1995

[9] D. Knuth, The Art of Computing, Vol. II: Seminumerical Algorithms. Second edition. Addison-
Wesley (1981).

11

[10] A. Lempel and J.Ziv, On the complexity of finite sequences, IEEFE Trans. on Inf. Theory 22,
75-81 (1976)

[11] M. Lothaire, Combinatorics on Words. Addison-Wesley (1993).

[12] W. Plandowski, Testing equivalence of morphisms on context-free languages, ESA’94, Lecture
Notes in Computer Science 855, Springer-Verlag, 460-470 (1994).

[13] J.Storer, Data compression: methods and theory, Computer Science Press, Rockville, Maryland,
1988

[14] J.Ziv and A.Lempel, A universal algorithm for sequential data compression, IEEE Trans. on
Inf. Theory 17, 8-19, 1984

12

