The Parallel and Sequential Complexity of
Matching on Chordal and Strongly Chordal
Graphs

Elias Dahlhaus
Basser Department of Computer Science, University of Sydney, Australia
Marek Karpinski *
Department of Computer Science

University of Bonn, Bonn, Germany

Abstract

0 Introduction

Chordal graphs became interesting as a generalization of interval graphs (see
for example [9]). We call a graph chordal if every cycle of length greater than
three has a chord, i.e. an edge that joins two non consecutive vertices of the
cycle. Note that interval graphs are not only chordal but strongly chordal as
defined in [3]. Strongly chordal graphs are just those chordal graphs having
a so called strongly perfect elimination ordering.

In this paper we consider the sequential and parallel complexity of the
maximum matching problem in chordal and strongly chordal graphs. Note
that in general a linear time algorithm for perfect matching is not known.
Here we shall show that, provided a strongly perfect elimination ordering is
known, a maximum matching in a strongly chordal graph can be found in
linear time by a simple greedy algorithm. This algorithm can be turned into
a (non optimal) parallel algorithm. The random bits in the algorithm of [10]
can be eliminated in the special case of strongly chordal graphs. We also will
see that these techniques can be extended to multidimensional matching that
is NP-complete in general (see for example [5]).

On the other hand, we shall find out that matching restricted to chordal
graphs (also restricted to path graphs) is of the same parallel complexity
degree as bipartite matching.

In section 1, we shall introduce the basic notation. In section 2 we consider
the sequential and parallel complexity of maximum matching restricted to
strongly chordal graphs. In section 5 we discuss the parallel complexity of
matching restricted to path graphs.

1 Notation and Basic Definitions

A graph G = (V, E) consists of a vertex set V and an edge set £. Multiple
edges and loops are not allowed. The edge joining = and y is denoted by xy.

We say that = is a neighbor of y ift xy € E. The full neighborhood of x
is the set {a} U{y : 2y € E} consisting of x and all neighbors of x and is
denoted by N(x).

A path is a sequence (xy ... xy) of distinct vertices such that x;x;41 € E.

A cyele is a closed path, that means a sequence (xg...xg_120) such that
TiTiy1 (mod k) € F.

A subgraph of (V, F) is a graph (V', E’) such that V! C V|, £/ C F.

An induced subgraph is an edge-preserving subgraph, that means (V', £')
is an induced subgraph of (V, E) iff V' CV and ' ={ay € F: 2,y € V'}.

A graph (V, E) is chordal iff each cycle (xqg...x5_12¢) of length greater
than 3 has an edge x,2; € E,j — 1 # +1 mod k (which joins vertices which
are not neighbors in the cycle). Sometimes they are also called triangulated
or rigid circuit graphs. We remark that this notion is equivalent to the nonex-
istence of an induced cycle of length greater than 3.

Independently Gavril [6] and Buneman [1] proved the following:
Theorem 1 A graph is chordal iff it is the intersection graph of vertices of
subtrees of a tree, i.e. the vertices of the chordal graph correspond to subtrees
of a fixed tree and two vertices of the chordal graph are joined by an edge iff
the corresponding subtrees share a vertex of the tree.

A path graph is the intersection graph of a collection of paths of a tree.

We also can define chordal graphs by characteristic orderings.

Theorem 2 [}/ A graph G = (V, E) is chordal iff there is an ordering < of
V', such that with v <y, x < z, zy € K, and vz € K, we have yz € E. Such
an ordering is called a perfect elimination ordering.

A graph G = (V, E) is called strongly chordal [3] iff there is an ordering
< on the vertices of V' such that

1. for xy,zz € E, such that * < y and = < z, also yz € F,

2. for w1y, xoyy, w119 € E, such that x1 < y; and z3 < yo, we have
vy € L.

Such an ordering is called a strongly perfect elimination ordering.

A matching of G = (V,F) is a subset M of F such that no two edges
share a vertex. A matching of maximal size is called a mazimum matching.
If all vertices of G belong to an edge of the matching M then M is called a
perfect matching.

2 Maximum Matching Algorithms for
Strongly Chordal Graphs

We assume that a strongly perfect elimination ordering < of the vertex set of
the graph G = (V| F) i.e. the corresponding enumeration (vq,...v,) is given.

We claim that the following algorithm computes a maximum matching
in a strongly chordal graph.

L. V.=V, M :=;

2. Repeat

wv is an edge in F with u,v € V', « is minimal with respect to <, v
is the <-smallest vertex in V’ than is adjacent to u;

4

M := MU {uvk; V' :=V'\ {u,v}

until there are no edges in F with both incident vertices in V.

It is easily seen that this algorithm has a time bound of O(n + m).
We have to show the correctness.

For a matching M of i, we call a pair of edges ujuy and wyw, in M a

defect of M if

1. wywy € B,
2. up < wsy, and wy < us.

Lemma 1 If there is a matching of cardinality k then there is a defect free
matching of the same cardinality k.

Proof: We label the edge viv; with l,,,, := (i — j)*. Suppose there is a
defect consisting of the pair ujus and wyw,. Then, by definition ujw; € K.
Since u; < wq and wy < ug and < is a strongly perfect elimination ordering,
uswy € E. Therefore we get a matching M’ where the edges wjuy and wyw,
are replaced by the edges ujw; and uyw,.

Claim: ZeeM’le < ZeeMle-

Proof of Claim: For simplicity, we identify the vertices with their indices
U;.

We consider the following subcases:

First case u; < wy < wy < uy:

(w1 —wy) + (wy — u2))2

(w2 —ur) + (w2 —u1)2

(ug — wa)? 4 (w1 — u1)? = (uy — wy)® + (
= (uy — w2)2 + (wy — wz) + 2(w; — ws)
< (wy — w2)2 + (ug — wg) + 2(uy — uyg)(w

= (wl—w2)2 + (uz — 1)

wy — up) + (w2 —u1)2

Second case u; < w; < wy < Uy:
(wy — u1)2 + (uy — w2)2 < (ug — u1)2 < (ug — u1)2 + (wqg — w1)2

Third case u; < w; < uy < wy: Then the inequality (wy—uy)?—(wy—uy)? <
(ug —u1)? 4 (wg — wy)? follows immediately.

All other possible cases are permutations of the cases as considered.

O(Claim)

Clearly after the removal of several defects, we find a matching of the
same cardinality with a minimum sum of labels [.. This matching is free of
defects.

O(Lemma)
Lemma 2 The matching obtained by above algorithm is defect free.

Proof: Suppose there is a defect ujwy, uswy with wy < wy, uy < w; and
ujug € K. Suppose u; < uy. Then wy is not the minimal choice of a neighbor
as required by the algorithm.

O(Lemma)

Theorem 3 The matching computed by the above algorithm is a maximum
matching.

Proof: We consider any defect free maximum matching M and the matching
M’ computed by the above algorithm.

Let = be the smallest vertex y such that M restricted to {u|u < y} and
M’ restricted to {u|u < y} are different. Then M restricted to {u|u < x} and
M’ restricted to {u|u < x} coincide. It cannot be that x is covered by an edge
of M but not by an edge of M’ because necessarily « has a neighbor that is

6

not covered by M restricted to {u|u < x} and the edge joining = with the
minimum neighbor ¢ must be in M'(if ¢ < a then x is chosen as the smallest
neighbor of ¢ not covered by the matching considered before. If < ¢ then
t is chosen as the smallest neighbor of « by above algorithm). Suppose x is
in an edge of M’ but does not appear in an edge of M. Note that = has a
neighbor ¢ that is not in an edge of M restricted to {ulu < x}. We add «t to
M and delete the edge ty € M if such an edge exists.

Therefore we may assume that there are edges xt of M and an edge xt’ of
M’ that are incident with x. Note that ¢ < ¢ < = and t' does not belong to
an edge of M restricted to {u|u < x}. Moreover, it cannot belong to an edge
of M. Otherwise there is an edge t'y € M with y > z and 'y and xt forms
a defect. Therefore in M, we can replace xt by at’ and the new matching M
coincides with M" in {u|u < a}. By induction, we get a maximum matching
that coincides with M.

O (theorem)

Corollary: For strongly chordal graphs, a maximum matching can be
computed in linear time

Theorem 4 In strongly chordal graphs, one can find a perfect matching by
a CREW-PRAM in O(log*n) time with a polynomial processor bound if a

perfect matching exists.

Proof: We prove that there is at most one defect free perfect matching.
Since this is the perfect matching with the minimum sum of labels [, = (v —
v)?, we get a perfect matching by the minimum perfect matching algorithm
of [10] in O(log®n) time with a polynomial processor bound.

Lemma 3 There exists at most one defect free perfect matching.

Proof: Assume there are defect-free perfect matchings M and M’. Assume
M and M’ coincide in {ulu < x} but not in {ulu < x}. Suppose a2t € M
and xt' € M’ are the edges in M and M’ respectively that are incident with

7

x. Without loss of generality, we assume that ¢ < t. Both ¢ and ¢’ do not
appear in any edge of M and M’ with both incident vertices in {u|u < z}.
Therefore the edge t'u in M that is incident with ¢ must have the property
that u > . But then ¢'u and ¢ form a defect in M. This is a contradiction.

O(lemma)

O(theorem)

Remark: A strongly perfect elimination ordering of a strongly chordal
graph can be computed in O(log*n) time with a linear processor number
[2]. Therefore it is possible to get an NC-algorithms to compute a perfect
matching in strongly chordal graphs also without the knowledge of a strongly
perfect elimination ordering.

3 Multidimensional Matching in Strongly
Chordal Graphs

The problem of multidimensional matching is to find, for given graph
G = (V,FE) and natural number k£, a maximum number of pairwise dis-
joint complete sets of cardinality k. In general, even for k = 3, the problem is
NP-complete (see for example [5], [Exact Cover by Triangles]). For strongly
chordal graphs, the following generalization of the perfect matching algorithm
computes a multidimensional matching.

Input G = (V, E), k, output: a multidimensional matching M.

L.V =V, M:=0;1:=0; d:=0;
2. Repeat

if [# k and u is the <-minimum element in V' that is adjacent to all
vertices in d then

o d:=dU {u}
o V' :=V'"\{u}

if such a u does not exit the set k& := 0; If such a u does not exist
then output:

If | = k then
o M :=MU{d}
e k=0
until V' =0

It is easily seen that this algorithm can be implemented in linear time. It
remains to show that this algorithm computes a maximum multidimensional
matching.

We only have to show that if there is a k-matching with [complete sets
of cardinality k£ then there is a k-matching of the same cardinality such that
one of the complete sets consists of the smallest element « of V' and its £ — 1
smallest neighbors.

Note that for all (greater) neighbors v and v of « with v < v, N(u)U{u} C

N(v) UAv}.(%)

Let M be a k-matching and ¢q,...¢, be the complete sets in M that
intersect N(z) but do not contain x. Let ¢q,..., ¢, be sorted with respect of

their smallest elements in N(x). By (*), we can replace each ¢; by a complete
set ¢} such that

L. &\ N(z)=¢\ N(x)

2. if u,v,w € N(x), u,w € ¢ then v € ¢, and

3. if ¢ < j then all vertices in ¢} are smaller than all vertices in c’.

Moreover, we can find ¢, with this property such that U_, = {v €
N(z)|v > u}, for some u € N(z). If u is the k — 1'" smallest neighbor of
x, we only have to add the complete set consisting of = and its k — 1 smallest
neighbors to M and we have a k-matching of cardinality [+ 1. Otherwise the

k — 1 smallest neighbors of « intersect only ¢] and we can replace ¢} by the
complete set ¢ consisting of x and its k — 1 smallest neighbors.

9

Theorem 5 Multidimensional Matching for strongly chordal graphs can be
done in linear time.

4 Multidimensional Matching in Chordal
Graphs

Here we consider only the problem whether there is an exact cover of a given
chordal graph by mutually disjoint complete sets of a certain cardinality k.
We assume that GG = (V| F') and a perfect elimination ordering < is given.

Let M be an exact cover of G by complete sets of cardinality k. We call
the <-smallest vertices of any ¢ € M wvertices of first kind and all other
vertices vertices of second kind.

Lemma 4 If there is an exact cover of G by complete sets of cardinality k
then there is an exact cover M by complete sets of cardinality k with the
following property.

If and y are adjacent vertices of first kind and v < y then for all vertices
x’' of the c € M x belongs to, 2’ < y.

Proof: Suppose x is the smallest vertex of ¢ € M and y is the smallest
vertex of d € M, x <y, and z € ¢ but & < z. Since < is a perfect elimination
ordering, yz € F, and therefore also, since y < z and yw € F, forall w € d, =
is adjacent to all vertices in d. Therefore we can interchange the memberships
of y and z in ¢ and d, and the resulting collection of sets of cardinality & is still
an exact cover of GG by complete sets. After a finite number of applications
of this procedure, we get an exact cover satisfying the requirements of the
lemma. O

Theorem 6 The problem to get an exact cover by complete sets of cardinality
k in a chordal graph can be solved in polynomial time.

10

Proof.: We reduce the problem to the following variation of bipartite per-
fect matching.

Bipartite Multimatching: Given a bipartite graph B = (V U W, F)
and a natural number k, is there a subset M’ of F such that each x € V

belongs to exactly k edges of M and each y € W belongs to at most one edge
of M.

Replacing each © € V' by k copies, we get a reduction to the well known
marriage problem.

A partial bipartite k-matching is a subset M of E such that each z € V
belongs to at most k edges of M and each y € W belongs to at most one
edge of M.

Note that, with V' as the set of vertices of first kind, W’ as the set of
vertices of the second kind, and 2y € E' if v € V', y € W', 2y € F, and
r < y, an exact cover by complete sets of size k translates into a bipartite
k — l-matching in B' = (V' U W’ E’) and vice versa. The only problem is to
determine the vertices of first kind.

The following algorithm determines an exact cover by complete sets of
cardinality k if it exists.

Input: a chordal graph G = (V, E), a perfect elimination ordering < of
G, say V = {vy,...v,} with v; < v; if i < 7 ,and a natural number k.

QOutput: An exact covering M of GG by complete sets of cardinality k.

L. M :=0; V' := E' :={);
2. forv=1,...,ndo

e if v; has no smaller neighbors then add v; to V’ and add all edges
incident to v; to ' else

e Compute a maximum partial bipartite & — l-matching M" of
B'[{vi,...,v}] = (VU ({vr,...,v} \ V', E') by applying aug-

menting path techniques on M’, i.e. all vertices < wv; that are

11

covered by M’ remain covered by M".
endif

endfor

o If v; does not belong to M” then add v; to V' and all edges vy
with v; < y to F';

o M':=M"

3. For each « € V', ¢, :={ylay € M'}; M :={c,|x € V'}.

In principle, the algorithm computes, for each v;, a maximum k& — 1-
matching M’ for the bipartite graph B’ restricted to vq,...,v; and if v; is
not covered by M’ then v; is made a vertex of first kind. That means ver-
tices are made vertices of first kind only if there is no possibility to cover
them by a maximum k — l-matching in such a way that all smaller vertices
remain covered, i.e. the maximum partial & — l-matching of B’ restricted
to {vq,...v,_1} is also a maximum partial £ — 1-matching of B’ restricted
to {v1,...,v;}. Any covering by complete sets of cardinality k satisfying the
requirements of lemma 4 corresponds to a maximum k — l-matching of B’

All single steps can be done in polynomial time. Therefore the whole
algorithm works in polynomial time. O

5 The Parallel Complexity of Maximum
Matching in Path Graphs

Theorem 7 Suppose the we can find a perfect matching of a path graph in
polylogarithmic time with a polynomial processor bound. Then we can find a
perfect matching in a bipartite graph in polylogarithmic time with a polyno-
mial processor bound, i.e. the marriage problem is in NC.

Proof.: We construct a reduction from the the bipartite perfect matching
problem into the perfect matching problem restricted to path graphs that
can be computed in logarithmic time with O(n?) processors.

12

Given a bipartite graph B = (V U W, E') with all edges incident with
exactly one vertex in V' and exactly one vertex in W. Note that B has only
a perfect matching if V and W have the same size.

We construct an interval representation as follows.

The tree T' is consists of a main node ¢, vertices t,, for each v € V', and
vertices sy, 1 < < deg(w), w € W. The parent of each ¢, and each s, is
¢ and the the parent of each s, is sy,i—1, for ¢ # 1.

The collection P of paths is constructed as follows. For each node ¢ # ¢ of
T, we provide a one node path p; containing exactly ¢, and for each vw € F,
we have a path ¢, containing t,, ¢, and all nodes s, ;.

It is easily seen that this path representation and therefore also the re-
sulting path graph G = (P, Eg) can be constructed in O(logn) time with
O(n?) processors by a CREW-PRAM.

It remains to show that each perfect matching in & induces a perfect
matching in B and vice versa.

Suppose a perfect matching M og G is given. Note that there are as
many paths p, as paths ¢,,. Note that each path p;, shares a node only
with a path ¢,,. Therefore a perfect matching of (G consists only of edges of
the form p:q,,. Since there are deg(w) — 1 nodes s,,;, exactly and deg(w)
many paths ¢, ., exactly one path ¢,,, is matched with p;,, say gy, .. Then
M'" =A{v,w|w € W} defines a perfect matching in B.

Vice versa, we assume that a perfect matching M’ of B is given. For
each vw € M’, let p;,quy € M and for each v'w € F with v/ # v, choose
a distinguished number i,y < deg(w) and let sy ,quw € M. M defines a
perfect matching of G.

O (theorem)

13

6 Conclusions

We would like to mention that the parallel perfect matching algorithm for
strongly chordal graphs is not optimal. It remains an intersting problem to
find an optimal parallel perfect elimination algorithm for strongly chordal
graphs.

Finally we would like to remark that strongly chordal graphs are exactly
the chordal graphs that are complements of comparability graphs [7]. It is
known that the perfect matching problem restricted to complements of co-
comparability graphs is equivalent to 2-processor scheduling, and this can
be done in log®n) time with a polynomial processor bound [8]. It might be
interesting to find a reasonable upper class of strongly chordal graphs and
complements of comparability graphs such that the perfect matching problem
can still be parallelized.

7 Acknowledgements

Recently Stephan Olariu mentioned that his student Lin got similar results
related to perfect matching on strongly chordal graphs. We are grateful to Avi
Wigderson, Joseph Naor, and Alejandro Schaeffer for a number of intersting
conversations.

References

[1] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete
Mathematics 9 (1974), pp. 205-212.

[2] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele
Algorithmen, Habilitation Thesis, University of Bonn, 1991.

[3] M. Farber, Characterizations of Strongly Chordal Graphs, Discrete
Mathematics 43 (1983), pp. 173-189.

14

[4]

[10]

D. Fulkerson, O. Gross, Incidence Matrices and Interval Graphs, Pacific
Journal of Mathematics 15 (1965), pp.835-855.

M. Garey, D. S. Johnson, Computers and Intractability, Freeman and
Company, 1979.

F. Gavril, The Intersection Graphs of Subtrees in Trees Are Exactly
the Chordal Graphs, Journal of Combinatorial Theory Series B, vol.
16(1974), pp. 47-56.

P. Gilmore, A. Hoffman, A Characterization of Cocomparability Graphs
and of Interval Graphs, Canadian Journal of Mathematics 16 (1964), pp.
539-548.

D. Helmbold, E. Mayr, Two Processor Scheduling is in NC, in VLSI
Algorithms and Architectures (F. Makedon et al. ed.), LNCS 227 (1986),
pp- 12-15.

C. Lekkerkerker, J. Boland, Representation of a Finite Graph by a Set
of Intervals on the Real Line, Fundamenta Mathematicae 51.

K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix
inversion, Combinatorica 7 (1987), pp. 105-113.

15

