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Abstract0 IntroductionChordal graphs became interesting as a generalization of interval graphs (seefor example [9]). We call a graph chordal if every cycle of length greater thanthree has a chord, i.e. an edge that joins two non consecutive vertices of thecycle. Note that interval graphs are not only chordal but strongly chordal asde�ned in [3]. Strongly chordal graphs are just those chordal graphs havinga so called strongly perfect elimination ordering.In this paper we consider the sequential and parallel complexity of themaximum matching problem in chordal and strongly chordal graphs. Notethat in general a linear time algorithm for perfect matching is not known.Here we shall show that, provided a strongly perfect elimination ordering isknown, a maximum matching in a strongly chordal graph can be found inlinear time by a simple greedy algorithm. This algorithm can be turned intoa (non optimal) parallel algorithm. The random bits in the algorithm of [10]can be eliminated in the special case of strongly chordal graphs. We also willsee that these techniques can be extended to multidimensional matching thatis NP-complete in general (see for example [5]).On the other hand, we shall �nd out that matching restricted to chordalgraphs (also restricted to path graphs) is of the same parallel complexitydegree as bipartite matching.In section 1, we shall introduce the basic notation. In section 2 we considerthe sequential and parallel complexity of maximum matching restricted tostrongly chordal graphs. In section 5 we discuss the parallel complexity ofmatching restricted to path graphs. 2



1 Notation and Basic De�nitionsA graph G = (V;E) consists of a vertex set V and an edge set E. Multipleedges and loops are not allowed. The edge joining x and y is denoted by xy.We say that x is a neighbor of y i� xy 2 E. The full neighborhood of xis the set fxg [ fy : xy 2 Eg consisting of x and all neighbors of x and isdenoted by N(x).A path is a sequence (x1 : : : xk) of distinct vertices such that xixi+1 2 E.A cycle is a closed path, that means a sequence (x0 : : : xk�1x0) such thatxixi+1 (mod k) 2 E.A subgraph of (V;E) is a graph (V 0; E0) such that V 0 � V , E 0 � E.An induced subgraph is an edge-preserving subgraph, that means (V 0; E 0)is an induced subgraph of (V;E) i� V 0 � V and E 0 = fxy 2 E : x; y 2 V 0g.A graph (V;E) is chordal i� each cycle (x0 : : : xk�1x0) of length greaterthan 3 has an edge xixj 2 E; j � i 6= �1 mod k (which joins vertices whichare not neighbors in the cycle). Sometimes they are also called triangulatedor rigid circuit graphs. We remark that this notion is equivalent to the nonex-istence of an induced cycle of length greater than 3.Independently Gavril [6] and Buneman [1] proved the following:Theorem 1 A graph is chordal i� it is the intersection graph of vertices ofsubtrees of a tree, i.e. the vertices of the chordal graph correspond to subtreesof a �xed tree and two vertices of the chordal graph are joined by an edge i�the corresponding subtrees share a vertex of the tree.A path graph is the intersection graph of a collection of paths of a tree.We also can de�ne chordal graphs by characteristic orderings.3



Theorem 2 [4] A graph G = (V;E) is chordal i� there is an ordering < ofV , such that with x < y, x < z, xy 2 E, and xz 2 E, we have yz 2 E. Suchan ordering is called a perfect elimination ordering.A graph G = (V;E) is called strongly chordal [3] i� there is an ordering< on the vertices of V such that1. for xy; xz 2 E, such that x < y and x < z, also yz 2 E,2. for x1y2; x2y1; x1x2 2 E, such that x1 < y1 and x2 < y2, we havey1y2 2 E.Such an ordering is called a strongly perfect elimination ordering.A matching of G = (V;E) is a subset M of E such that no two edgesshare a vertex. A matching of maximal size is called a maximum matching.If all vertices of G belong to an edge of the matching M then M is called aperfect matching.2 Maximum Matching Algorithms forStrongly Chordal GraphsWe assume that a strongly perfect elimination ordering < of the vertex set ofthe graph G = (V;E) i.e. the corresponding enumeration (v1; : : : vn) is given.We claim that the following algorithm computes a maximum matchingin a strongly chordal graph.1. V 0 := V ; M := ;;2. Repeatuv is an edge in E with u; v 2 V 0, u is minimal with respect to <, vis the <-smallest vertex in V 0 than is adjacent to u;4



M :=M [ fuvg; V 0 := V 0 n fu; vguntil there are no edges in E with both incident vertices in V 0.It is easily seen that this algorithm has a time bound of O(n +m).We have to show the correctness.For a matching M of G, we call a pair of edges u1u2 and w1w2 in M adefect of M if1. u1w1 2 E,2. u1 < w2, and w1 < u2.Lemma 1 If there is a matching of cardinality k then there is a defect freematching of the same cardinality k.Proof: We label the edge vivj with lvivj := (i � j)2. Suppose there is adefect consisting of the pair u1u2 and w1w2. Then, by de�nition u1w1 2 E.Since u1 < w2 and w1 < u2 and < is a strongly perfect elimination ordering,u2w2 2 E. Therefore we get a matching M 0 where the edges u1u2 and w1w2are replaced by the edges u1w1 and u2w2.Claim: �e2M 0le < �e2M le.Proof of Claim: For simplicity, we identify the vertices with their indicesvi. We consider the following subcases:First case u1 < w2 < w1 < u2:(u2 � w2)2 + (w1 � u1)2 = (u2 � w2)2 + ((w1 �w2) + (w2 � u2))2= (u2 � w2)2 + (w1 �w2)2 + 2(w1 � w2)(w2 � u1) + (w2 � u1)2< (w1 � w2)2 + (u2 �w2)2 + 2(u2 � u1)(w2 � u1) + (w2 � u1)2= (w1 �w2)2 + (u2 � u1)2:5



Second case u1 < w1 < w2 < u2:(w1 � u1)2 + (u2 � w2)2 < (u2 � u1)2 < (u2 � u1)2 + (w2 � w1)2Third case u1 < w1 < u2 < w2: Then the inequality (w1�u1)2�(w2�u2)2 <(u2 � u1)2 + (w2 � w1)2 follows immediately.All other possible cases are permutations of the cases as considered.�(Claim)Clearly after the removal of several defects, we �nd a matching of thesame cardinality with a minimum sum of labels le. This matching is free ofdefects.�(Lemma)Lemma 2 The matching obtained by above algorithm is defect free.Proof: Suppose there is a defect u1w1, u2w2 with u1 < w2, u2 < w1 andu1u2 2 E. Suppose u1 < u2. Then w1 is not the minimal choice of a neighboras required by the algorithm.�(Lemma)Theorem 3 The matching computed by the above algorithm is a maximummatching.Proof: We consider any defect free maximummatching M and the matchingM 0 computed by the above algorithm.Let x be the smallest vertex y such that M restricted to fuju � yg andM 0 restricted to fuju � yg are di�erent. ThenM restricted to fuju < xg andM 0 restricted to fuju < xg coincide. It cannot be that x is covered by an edgeof M but not by an edge of M 0, because necessarily x has a neighbor that is6



not covered by M restricted to fuju < xg and the edge joining x with theminimum neighbor t must be in M 0(if t < x then x is chosen as the smallestneighbor of t not covered by the matching considered before. If x < t thent is chosen as the smallest neighbor of x by above algorithm). Suppose x isin an edge of M 0 but does not appear in an edge of M . Note that x has aneighbor t that is not in an edge of M restricted to fuju < xg. We add xt toM and delete the edge ty 2M if such an edge exists.Therefore we may assume that there are edges xt of M and an edge xt0 ofM 0 that are incident with x. Note that t0 < t < x and t0 does not belong toan edge of M restricted to fuju < xg. Moreover, it cannot belong to an edgeof M . Otherwise there is an edge t0y 2 M with y > x and t0y and xt formsa defect. Therefore in M , we can replace xt by xt0 and the new matching Mcoincides with M 0 in fuju � xg. By induction, we get a maximum matchingthat coincides with M 0.� (theorem)Corollary: For strongly chordal graphs, a maximum matching can becomputed in linear timeTheorem 4 In strongly chordal graphs, one can �nd a perfect matching bya CREW-PRAM in O(log2 n) time with a polynomial processor bound if aperfect matching exists.Proof: We prove that there is at most one defect free perfect matching.Since this is the perfect matching with the minimum sum of labels luv = (u�v)2, we get a perfect matching by the minimum perfect matching algorithmof [10] in O(log2 n) time with a polynomial processor bound.Lemma 3 There exists at most one defect free perfect matching.Proof: Assume there are defect-free perfect matchingsM andM 0. AssumeM and M 0 coincide in fuju < xg but not in fuju � xg. Suppose xt 2 Mand xt0 2 M 0 are the edges in M and M 0 respectively that are incident with7



x. Without loss of generality, we assume that t0 < t. Both t and t0 do notappear in any edge of M and M 0 with both incident vertices in fuju < xg.Therefore the edge t0u in M that is incident with t0 must have the propertythat u > x. But then t0u and xt form a defect in M . This is a contradiction.�(lemma)�(theorem)Remark: A strongly perfect elimination ordering of a strongly chordalgraph can be computed in O(log4 n) time with a linear processor number[2]. Therefore it is possible to get an NC-algorithms to compute a perfectmatching in strongly chordal graphs also without the knowledge of a stronglyperfect elimination ordering.3 Multidimensional Matching in StronglyChordal GraphsThe problem of multidimensional matching is to �nd, for given graphG = (V;E) and natural number k, a maximum number of pairwise dis-joint complete sets of cardinality k. In general, even for k = 3, the problem isNP-complete (see for example [5], [Exact Cover by Triangles]). For stronglychordal graphs, the following generalization of the perfect matching algorithmcomputes a multidimensional matching.Input G = (V;E), k, output: a multidimensional matching M .1. V 0 := V ; M := ;; l := 0; d := ;;2. Repeatif l 6= k and u is the <-minimum element in V 0 that is adjacent to allvertices in d then� d := d [ fug� V 0 := V 0 n fug 8



if such a u does not exit the set k := 0; If such a u does not existthen output:If l = k then� M :=M [ fdg� k = 0until V 0 = ;It is easily seen that this algorithm can be implemented in linear time. Itremains to show that this algorithm computes a maximummultidimensionalmatching.We only have to show that if there is a k-matching with l complete setsof cardinality k then there is a k-matching of the same cardinality such thatone of the complete sets consists of the smallest element x of V and its k� 1smallest neighbors.Note that for all (greater) neighbors u and v of x with u < v,N(u)[fug �N(v) [ fvg.(*)Let M be a k-matching and c1; : : : cq be the complete sets in M thatintersect N(x) but do not contain x. Let c1; : : : ; cq be sorted with respect oftheir smallest elements in N(x). By (*), we can replace each ci by a completeset c0i such that1. c0i nN(x) = ci nN(x)2. if u; v; w 2 N(x), u;w 2 c0i then v 2 c0i, and3. if i < j then all vertices in c0i are smaller than all vertices in c0j.Moreover, we can �nd c0i with this property such that Sqi=1 = fv 2N(x)jv > ug, for some u 2 N(x). If u is the k � 1th smallest neighbor ofx, we only have to add the complete set consisting of x and its k�1 smallestneighbors to M and we have a k-matching of cardinality l+1. Otherwise thek � 1 smallest neighbors of x intersect only c01 and we can replace c01 by thecomplete set c001 consisting of x and its k � 1 smallest neighbors.9



Theorem 5 Multidimensional Matching for strongly chordal graphs can bedone in linear time.4 Multidimensional Matching in ChordalGraphsHere we consider only the problem whether there is an exact cover of a givenchordal graph by mutually disjoint complete sets of a certain cardinality k.We assume that G = (V;E) and a perfect elimination ordering < is given.Let M be an exact cover of G by complete sets of cardinality k. We callthe <-smallest vertices of any c 2 M vertices of �rst kind and all othervertices vertices of second kind.Lemma 4 If there is an exact cover of G by complete sets of cardinality kthen there is an exact cover M by complete sets of cardinality k with thefollowing property.If x and y are adjacent vertices of �rst kind and x < y then for all verticesx0 of the c 2M x belongs to, x0 < y.Proof: Suppose x is the smallest vertex of c 2 M and y is the smallestvertex of d 2M , x < y, and z 2 c but x < z. Since < is a perfect eliminationordering, yz 2 E, and therefore also, since y < z and yw 2 E, for all w 2 d, zis adjacent to all vertices in d. Therefore we can interchange the membershipsof y and z in c and d, and the resulting collection of sets of cardinality k is stillan exact cover of G by complete sets. After a �nite number of applicationsof this procedure, we get an exact cover satisfying the requirements of thelemma. �Theorem 6 The problem to get an exact cover by complete sets of cardinalityk in a chordal graph can be solved in polynomial time.10



Proof: We reduce the problem to the following variation of bipartite per-fect matching.Bipartite Multimatching: Given a bipartite graph B = (V [ W;E)and a natural number k, is there a subset M 0 of E such that each x 2 Vbelongs to exactly k edges of M and each y 2 W belongs to at most one edgeof M .Replacing each x 2 V by k copies, we get a reduction to the well knownmarriage problem.A partial bipartite k-matching is a subset M of E such that each x 2 Vbelongs to at most k edges of M and each y 2 W belongs to at most oneedge of M .Note that, with V 0 as the set of vertices of �rst kind, W 0 as the set ofvertices of the second kind, and xy 2 E 0 if x 2 V 0, y 2 W 0, xy 2 E, andx < y, an exact cover by complete sets of size k translates into a bipartitek � 1-matching in B 0 = (V 0 [W 0; E0) and vice versa. The only problem is todetermine the vertices of �rst kind.The following algorithm determines an exact cover by complete sets ofcardinality k if it exists.Input: a chordal graph G = (V;E), a perfect elimination ordering < ofG, say V = fv1; : : : vng with vi < vj if i < j ,and a natural number k.Output: An exact covering M of G by complete sets of cardinality k.1. M 0 := ;; V 0 := E 0 := ;;2. for i = 1; : : : ; n do� if vi has no smaller neighbors then add vi to V 0 and add all edgesincident to vi to E0 else� Compute a maximum partial bipartite k � 1-matching M 00 ofB0[fv1; : : : ; vig] = (V 0 [ (fv1; : : : ; vig n V 0; E0) by applying aug-menting path techniques on M 0, i.e. all vertices < vi that are11



covered by M 0 remain covered by M 00.endifendfor� If vi does not belong to M 00 then add vi to V 0 and all edges viywith vi < y to E0;� M 0 := M 003. For each x 2 V 0, cx := fyjxy 2M 0g; M := fcxjx 2 V 0g.In principle, the algorithm computes, for each vi, a maximum k � 1-matching M 0 for the bipartite graph B0 restricted to v1; : : : ; vi and if vi isnot covered by M 0 then vi is made a vertex of �rst kind. That means ver-tices are made vertices of �rst kind only if there is no possibility to coverthem by a maximum k � 1-matching in such a way that all smaller verticesremain covered, i.e. the maximum partial k � 1-matching of B0 restrictedto fv1; : : : vi�1g is also a maximum partial k � 1-matching of B0 restrictedto fv1; : : : ; vig. Any covering by complete sets of cardinality k satisfying therequirements of lemma 4 corresponds to a maximum k � 1-matching of B 0.All single steps can be done in polynomial time. Therefore the wholealgorithm works in polynomial time. �5 The Parallel Complexity of MaximumMatching in Path GraphsTheorem 7 Suppose the we can �nd a perfect matching of a path graph inpolylogarithmic time with a polynomial processor bound. Then we can �nd aperfect matching in a bipartite graph in polylogarithmic time with a polyno-mial processor bound, i.e. the marriage problem is in NC.Proof: We construct a reduction from the the bipartite perfect matchingproblem into the perfect matching problem restricted to path graphs thatcan be computed in logarithmic time with O(n2) processors.12



Given a bipartite graph B = (V [ W;E) with all edges incident withexactly one vertex in V and exactly one vertex in W . Note that B has onlya perfect matching if V and W have the same size.We construct an interval representation as follows.The tree T is consists of a main node c, vertices tv, for each v 2 V , andvertices sw;i, 1 � i < deg(w), w 2 W . The parent of each tv and each sw;1 isc and the the parent of each sw;i is sw;i�1, for i 6= 1.The collection P of paths is constructed as follows. For each node t 6= c ofT , we provide a one node path pt containing exactly t, and for each vw 2 E,we have a path qvw containing tv, c, and all nodes sw;i.It is easily seen that this path representation and therefore also the re-sulting path graph G = (P; EG) can be constructed in O(log n) time withO(n2) processors by a CREW-PRAM.It remains to show that each perfect matching in G induces a perfectmatching in B and vice versa.Suppose a perfect matching M og G is given. Note that there are asmany paths pt as paths qvw. Note that each path pt shares a node onlywith a path qvw. Therefore a perfect matching of G consists only of edges ofthe form ptqvw. Since there are deg(w) � 1 nodes sw;i, exactly and deg(w)many paths qv;w, exactly one path qv;w is matched with pt;v, say qvw;w. ThenM 0 = fvwwjw 2 Wg de�nes a perfect matching in B.Vice versa, we assume that a perfect matching M 0 of B is given. Foreach vw 2 M 0, let ptvqvw 2 M and for each v0w 2 E with v0 6= v, choosea distinguished number iv0 < deg(w) and let sw;iv0qv0w 2 M . M de�nes aperfect matching of G.� (theorem) 13



6 ConclusionsWe would like to mention that the parallel perfect matching algorithm forstrongly chordal graphs is not optimal. It remains an intersting problem to�nd an optimal parallel perfect elimination algorithm for strongly chordalgraphs.Finally we would like to remark that strongly chordal graphs are exactlythe chordal graphs that are complements of comparability graphs [7]. It isknown that the perfect matching problem restricted to complements of co-comparability graphs is equivalent to 2-processor scheduling, and this canbe done in log2 n) time with a polynomial processor bound [8]. It might beinteresting to �nd a reasonable upper class of strongly chordal graphs andcomplements of comparability graphs such that the perfect matching problemcan still be parallelized.7 AcknowledgementsRecently Stephan Olariu mentioned that his student Lin got similar resultsrelated to perfect matching on strongly chordal graphs. We are grateful to AviWigderson, Joseph Naor, and Alejandro Schae�er for a number of interstingconversations.References[1] P. Bunemann, A Characterization of Rigid Circuit Graphs, DiscreteMathematics 9 (1974), pp. 205-212.[2] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf paralleleAlgorithmen, Habilitation Thesis, University of Bonn, 1991.[3] M. Farber, Characterizations of Strongly Chordal Graphs, DiscreteMathematics 43 (1983), pp. 173-189.14
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