
ESPRIT BR Project RAND-REC( EC-US Exploratory Collaborative Activity {EC-US030)
Annual Progress ReportJuly 1, 1993 { June 30, 1994Contents1 Overview of Research Activities 22 Research Papers (RAND-REC) 23 Reports on visits 4

1



1 Overview of Research ActivitiesThe research within the project RAND-REC has concentrated on the threemajor areas (see Section 2, Research Papers):(1) Design Of E�cient Randomized and Approximative Algorithms ([2], [3],[6], [7], [8], [14], [15]),(2) VC Dimension and Sample Sizes of Sigmoidal Neural Networks and E�-cient Learnability ([4], [10], [12]),(3) Derandomized Probabilistic Methods and Algorithms ([9]),(4) Deterministic and Randomized PET (Priority Encoding Transmission)Systems ([1], [4]).2 Research Papers (RAND-REC)1. Albanese, A., Bloemer, J., Edmonds, J., Luby, M. and Sudan, M.:Priority Encoding Transmission,Proc. 35th IEEE FOCS (1994), pp. 604{612.2. Alon, N., Frieze, A. and Welsh, D.J.A.:Polynomial Time Randomized Approximation Schemes for the Tutte Poly-nomial of Dense Graphs,Proc. 35th IEEE FOCS (1994), pp. 24-35.3. Arora, S., Karger, D. and Karpinski, M.:Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems,Research Report No. 85119-CS, Univ. Bonn, 1994; to appear in 1995ACM STOC.4. Bloemer, J., Karp, R., Karpinski, M., Luby, M. and Zuckerman, D.:An XOR-Based Erasure-Resilient Coding Scheme,Preprint, ICSI Berkeley, 1994.5. Bshouty, N. Hancock, T.R., Hellerstein, L. and Karpinski, M.:An Algorithm to Learn Read{Once Threshold Formulas, and Transforma-tions between Learning Models,Journal of Computational Complexity 4, pp. 37{61.6. Freivalds, R. and Karpinski, M.:Lower Space Bounds for Randomized Computation,Research Report No. 85104-CS, Universit�at Bonn, 1994,Proc. ICALP '94, Lecture Notes in Computer Science Vol 820 (1994),pp. 580{592. 2



7. Frieze, A. and Jerrum, M.:Improved approximation algorithms for MAX k-CUT and MAX BISEC-TION,Report ECS-LFCS-94-292, Department of Computer Science, Universi-tyof Edinburgh, June 1994; to appear in: Proceedings of the 4th Inte-ger Programming and Combinatorial Optimisation Conference (IPCO4),K�obenhaven, May 1994; Journal version submitted to Algorithmica.8. Frieze, A., Jerrum, M., Molloy, M., Robinson, R. and Wormald, N.:Approximately counting Hamilton cycles in random regular graphs;submitted to: Journal of Algorithms.9. Goldmann, M. and Karpinski, M.:Simulating Threshold Circuits by Majority Circuits (Extended Version),Technical Report TR-94-030, International Computer Science Institute,Berkeley, 1994, submitted to SIAM Journal on Computing.10. Karpinski, M.:Approximation Hardness of Some Counting Problems in Algebra,Preprint, Universit�at Bonn, 1994.11. Karpinski, M. and MacIntyre, A.:Polynomial Bounds for VC Dimension of Sigmoidal Neural Networks,Research Report No. 85116-CS, Universit�at Bonn, 1994; to appear in1995 ACM STOC.12. Karpinski, M. and Rytter, W.:On a Sublinear Time Parallel Construction of Optimal Binary SearchTrees,Research Report No. 85102-CS, Universit�at Bonn, 1993; in Proc. MFCS'94, Lecture Notes in Computer Science, Springer-Verlag Vol. 841 (1994),pp. 453{461.13. Karpinski, M. and Werther, T.:VC Dimension and Uniform Learnability of Sparse Polynomials and Ra-tional Functions,SIAM Journal of Computing 22 (1993), pp. 1276{1283.14. Karpinski, M. and Shparlinski, I.:E�cient Approximation Algorithms for Sparse Polynomials over FiniteFields,Technical Report TR-94-029, International Computer Science Institute,Berkeley, 1994; to appear in Theoretical Computer Science.15. Karpinski, M. and Zelikovsky, A.:1.757 and 1.267 - Approximation Algorithms for the Network and Recti-linear Steiner Tree Problems,Research Report No. 85115-CS, Universit�at Bonn, 1994.3



16. Santha, M. and Tan, S.:Verifying the Determinant in Parallel,Proc. 5th International Symposium on Algorithms and Computation,INCS, Springer-Verlag, 1994.17. Welsh, D.J.A:Complexity: Knots, Colourings and Counting,London Mathematical Society Lecture Note Series 186, Cambridge, Uni-versity Press (1993), pp. 1{163.18. Welsh, D.J.A.:The Random Cluster Process,Discrete Mathematics 136 (1994), pp. 373{390.3 Reports on visitsReport on a visit to Carnegie Mellon Universitysupported by RAND{REC (M. Jerrum)I visited the Mathematics Department of Carnegie Mellon University from 1stto 31st June 1994 for collaborative research with Alan Frieze and Ravi Kan-nan. The main topics we considered were (a) extensions of a recently intro-duced technique of Goemans and Williamson for combinatorial optimisation,and (b) learning product distributions and classes of convex bodies in high di-mensional Euclidean space. Topic (a) has been thoroughly worked out and isthe subject of a report [1], while (b) is more speculative. I shall describe (a)here, and leave (b) until such time as the picture becomes clearer.Goemans and Williams [2] have recently achieved a signi�cant advance inthe theory of approximation algorithms. Previous work on approximation al-gorithms for problems in combinatorial optimisation was largely dependent oncomparing a heuristic solution value to that of an Linear Programming (LP)relaxation, either implicitly or explicitly. The main novelty of [2] is that ituses a Semi-De�nite Program (SDP) as a relaxation. To be more precise let usconsider the problem MAX-CUT studied (among others) in [2]: we are givena vertex set V , with jV j = n and non-negative weights wi;j for 1 � i; j � n,where wi;j = wj;i and wi;i = 0 for all i; j. If S � V and �S = V n S then theweight of the cut (S : �S) is w(S : �S) =Pi2S;j2�S wi;j. The aim is to �nd the cutof maximum weight.Introducing integer variables yj 2 f�1; 1g for j 2 V , we can formulate theMAX CUT problem asIP: maximise 12Pi<j wi;j(1� yiyj)subject to yj 2 f�1; 1g; 8j 2 V (1)The key insight of Goemans and Williamson is that instead of converting this toan integer linear program and then considering the LP relaxation, it is possible4



to relax IP directly to a semide�nite program (a special class of convex program,and hence solvable in polynomial time). The basic strategy is to interpret thevalues �1 taken by the variables y1 as the two points of the 1-dimensional unitsphere centred at the origin, and the product yiyj as scalar product of vectors.The relaxation is obtained by allowing yi to range over the n-dimensional unitsphere. It turns out that the relaxation is a semide�nite program, which is aspecial kind of a convex program and hence solvable in polynomial time.The idea of Goemans and Williamson is to solve the SDP and then use asimple (randomised rounding) heuristic to obtain a remarkably good solution toMAX-CUT. The heuristic used is to choose a random hyperplane and partitionthe vectors yi according to which side of the hyperplane they lie. It can beshown that the expected weight of the resulting partition is within a factor0�878 of the optimum; previously, no algorithm with worst-case performanceratio better than the trivial 12 was known.This is an exciting new idea, and Alan Frieze and I thought it was importantto see in what directions it can be generalised. First we considered MAX k-CUT where the aim is to partition V into k subsets. Note that MAX k-CUThas an important interpretation as the search for the ground state in the anti-ferromagnetic k-state Potts model. To attack this problem we needed to beable to handle variables which can take on one of k values, as opposed to justtwo. Our approach was conceptually simple: modify the integer program IP byconstraining the variables yi to take one of k vector values, corresponding to thevertices of a (k � 1)-dimensional equilateral simplex. As before, the relaxationis obtained by allowing the variables yi to range over the entire unit sphere inn-dimensions rather than just the k points determined by the simplex. Ourheuristic is (roughly) to take k random unit vectors and associate each vectoryi to the nearest random vector: in this way we obtain a natural partition ofthe yi and hence of the vertex set V .The resulting algorithm, though simple to describe, proved di�cult to anal-yse. However we were able to show that its performance ratio is always betterthan 1 � k�1, which is achieved by random partitioning, and was the bestpreviously known. For example, when k = 3, the performance ratio is betterthan 0�800217, and when k = 10 better than 0�926642. The perfomance ratiofor k = 2 is the same as that achieved by Goemans and Williamson, as ourheuristic is a generalisation of theirs.Next we considered the problem MAX BISECTION: partition V into twosubsets of equal size (assuming that n is even) so as to maximise the weight ofthe cut. A random bisection produces an expected performance ratio of 12 . Wemodify the SDP by including a linear constraint that (infomally) guaranteesthat the average angle between the vectors (variables) yij is large, i.e., that thevectors are \spread out." Then we show that a modi�ed version of Goemansand Williamson's heuristic produces a cut whose weight is at least 0�65 timesthe weight of an optimal cut. Mark JerrumJune 3, 19945



References[1] Alan Frieze, Mark Jerrum, Improved approximation algorithms for MAXk{CUT and MAX BISECTION, Report ECS{LFCS{94{???, Departmentof Computer Science, University of Edinburgh, June 1994.[2] M. X. Goemans and D.P. Williamson, .878-Approximation algorithms forMAX{CUT and MAX 2SAT, in Proceedings of the 26th Annual ACM Sym-posium on Theory of Computing, pp 422{431, 1994.Report on Visit to the University of Edinburghunder EU{US Exploratory Collaborative Activi{ty RAND{REC ECUS030 (D. Randall)The principal purpose of my visit to Edinburgh was to continue work withDr. Alistair Sinclair on designing algorithms for combinatorial problems arisingin statistical mechanics. We explored directions for extending ideas developedin our recent paper Testable Algorithms for Self{Avoiding Walks, which ap-peared in the ACM{SIAM Symposium on Discrete Algorithms, January 1994.In this paper we present provably correct algorithms for uniformly generatingand counting self{avoiding walks of a given length in a d{dimensional Cartesianlattice. The algorithms rely on a single, widely believed conjecture which thealgorithm checks during its execution. Thus, we either have reliable outputs,or the program will alert us that the conjecture is false. Either of these out-comes would be instructive to physicists. This type of a testable algorithm iswell suited to other problems in statistical mechanics, for which there are manywell{established conjectures but very few provably correct algorithms.Our main research project during this time attempts to generalize thesetechniques to generating and counting trees of a given length in a d{dimensionallattice (this is joint work with Claire Kenyon, who was visiting Edinburgh fromLyon, France). A lattice tree is any acyclic connected subset of edges in thelattice (containing the origin). Lattice trees are studied as models for branchedpolymers in dilute solution. Also, it is conjectured that the critical exponentsfor the number of lattice trees are related to those of lattice animals. Thegrowth rate of the number of lattice trees of size n is expected to have a similarform to the number of self{avoiding walks, which suggests that similar methodscan be used. We are currently writing up our progress on this problem. Bothof these projects will be part of the doctoral thesis I am now completing underthe supervision of Dr. Sinclair.The techniques that we use can be summarized as follows: Each latticetree can be uniquely described by a depth{�rst traversal of the edges, startingat the origin. This traversal de�nes a walk in the lattice, where each edgein the tree is followed exactely once in each direction. Consider the space ofall walks of length at most 2n which follow any edge at most once in eachdirection, and such thet the union of all edges forms a tree. Our goal is to6



develop a Markov chain on this state space with the following two properties:First, the stationary distribution should be reasonably well concentrated onwalks of length 2n which end at the origin (corresponding bijectively to latticetrees of length n), and uniform on this set. Second, we require that the Markovchain converge quickly to this stationary distribution so that we can sample inpolynomial time. Our Markov chain walks on the set of partial walks via anappropriately parametrized backtracking scheme which allows any walk to beextended or shortened by one edge in any step. Dana Randall, UC BerkeleyAutomn 1993Report on Visit to the University of California, Berkeley,supported by RAND{REC (M. Santha)I have visited the International Computer Science Institute and the ComputerScience Division of the University of California between April 29 and May 13.The main purpose of my visit was to talk with people.I spent many time with Umesh Vazirani at the UC Berkeley. He is mostlyworking in quantum complexity where recently important progress has beenmade which might have serious consequences for our view about cryptographyand complexity in general. The mathematical model of a quantum computerwas formulated by Deutsch in 1985. He also gave the description of a universalquantum Turing machine which can be conceived as a �rst step for the thephysical realization of such a computer. Nonetheless this result was not satis-fying from a complexity theoretical point of view since this universal machinehad an exponential overhead with respect the running time of the simulatedmachine.In STOC 1993 Bernstein and Vazirani (\Quantum Complexity Theory")have proved the existence of a universal quantum Turing machine whose over-head is only polynomial. They also gave a certain evidence that quantum Turingmachines might be more powerful than classical probabilistic Turing machines.In particular they have shown that with respect some oracle there is a languagewhich can be accepted in polynomial time by a quantum TM but can not beaccepted by a bounded error probabilistic TM in time no(logn): Therefore withrespect to this oracle quantum polynomial time is not included into the classBPP:In a very recent development Shor (\Algorithms for Quantum Computa-tion") has shown that factorization and the computation of the discrete loga-rithm function can be done in random polynomial time on a quantum computerwith one-sided error. These number theoretical problems have been extensivelystudied and no polynomial time probabilistic algorithm is known for them.Since the apparent computational di�culty of these problems plays a crucialrole in numerous branches of modern, complexity based cryptography, the ex-istence of a fast (quantum) algorithm for them poses a threat for the security7



of the concerned cryptosystems. The threat is real even if clearly no actualquantum computer is in view in the short future.Also in a recent paper, Bennett, Bernstein, Brassard and Vazirani (\What isFeasible on a Quantum Computer") show some possible limitation of quantumcomputation. They prove that with probability 1,NP with respect to a randomoracle is not included into bounded-error quantum polynomial time with thesame oracle. They also show that on the universal machine any bounded-errorquantum polynomial time algorithm can be simulated with only logarithmicalbit-precision in function of the running time of the simulated machine.In ICSI I mostly worked with Je� Edmonds on a nice combinatorial prob-lem of his. The problem came up from a paper of Edmonds and Impagliazzo(\Towards Time-Space Lower Bounds on Branching Programs") about oblivi-ous branching programs. It can be the most easily described as a game. Letf(x; y) be some Boolean function, where x and y are Boolean strings of the same(constant) length. The input to the game is 2n strings x1; : : : ; xn and y1; : : :yn:The game is played by several collaborating players who share a blackboard.Initially the blackboard is empty. Each player takes part in exactly one roundof the game. In that round the player looks at the blackboard, and in functionof it contents he choses to see for i = 1; : : : ; n exactly one of the strings xi; yi:Afterwards he writes a single bit on the blackboard and he quits the game. Thegame is over, when a player can decide if for all i; f(xi; yi) = 1: The complexityc(f) of the game is the smallest number of players such that with some commonstrategy such a decision can be made.Edmonds and Impagliazzo have shown that an 
(nc) lower bound for c(f)with some 0 < c < 1 would imply an 
(n1+c0) lower bound on the space-timetradeo� for oblivious branching programs for f; with 0 < c0 < c: This would besigni�cantly higher than the currently known best lower bounds. Edmonds andImpagliazzio have shown that if x and y are just 1-bit strings and by de�nitiong(x; y) = 1 when x = y; then c(g) = O(n1=2): They conjectured that actuallyc(g) = �(n1=2): This conjecture was disproved by Pudlak and Sgall (\An UpperBound for a Communication Game Related to Space-Time Trade-o�s") whohave shown that c(g) = O(n2=5(logn)3=5):The question of a polynomial lower bound on c(f) for any f is wide open. Iwas only able to show (which is a simple remark) that for any f , c(f) = O(n1=2):In case of the particular g above, even an 
((logn)2) lower bound seems to bevery hard. For this function a better upper bound would also be interesting.I also spoke extensively with Manuel Blum, Mike Luby and Alistair Sinclair.I gave a talk in ICSI about \Verifying the determinant in parallel".Miklos Santha8



A Report on the Workshop \Probabilityand Algorithms"supported by RAND-REC(D.J.A. Welsh)The workshop formed part of a year long programme on Emerging Applica-tions of Probability organized by the auspices of the American MathematicalSociety and SIAM. It was preceeded by a tutorial for young workers (typicallypost{docs) on Probability and Optimization. This was a set of lectures aimedat providing perspective and background relevant to workshop 1, Probabilityand Algorithms, and workshop 2, Finite Markov Chain Renaissance. The back-ground required was merely a good graduate course in probability, though somemodest exposure to the theory of algorithms and linear programming providedmotivation.Turning now to the workshop itself: the topics addressed included de-randomization, analysis of rapid factorization techniques, uses of probabilityin problems of Euclidian combinatorial optimizations, �nite Vapnik Chevo-nenkis classes in problems of computational geometry, the \bounded di�erencemethod", and random coloring algorithms.The main thrust of the tutorial was a set of lectures by Steele on subaddi-tive processes and functionals, Aldous on random walks and their applications,Spencer on Janson's inequality an Azuma's Inequality, and Diaconis who gavea survey of the current state of the art in the world of rapidly mixing MarkovChains.The main talks of the workshop are described below.Dominic J.A. Welsh, Institute for Mathematics and its ApplicationsMinneapolis, September 1993Abstracts of Talks� Richard M. Karp (UC Berkeley):Selection in the presence of noise: The design of playo� systemsIn every sport, playo�s and tournaments are used to select the best amonga set of competing players or teams. In this talk we consider the design ofsuch systems. We assume that there are n players, and that one of them,denoted Player 1, is the best in the following sense: whenever Player 1plays a game, he wins with a probability that depends on his opponent,but is always greater than 1/2. The identities of the players are initiallyunknown, and our goal is to determine Player 1 with high con�dencein a minimum expected number of rounds where, in each round, eachplayer who has not yet been eliminated participates in exactly one game.A secondary goal is to minimize the expected number of games played.We consider three models, which di�er in their assumptions about what9



happens in games that do not involve Player 1. In the adversary modelthe outcomes are determined by a malicious adversary. In the strongtransitivity and discriminating models more restrictive assumptions aremade. We also consider two versions of each model: one in which Player1's win probabilities are known to the algorithm, and the other in whichthey are unknown. For each of the six models an upper bound and a lowerlevel bound are derived on the expected number of rounds required. In thecourse of deriving these bounds we provide insight into the advantages anddisadvantages of some commonly used systems for conducting eliminationtournaments.(Joint work with Micah Adler, Peter Gemmell, Mor Harchol and ClaireKenyon)� Carl Pommerance (University of Georgia):The role of randomness in primality testingIt has been known since the 1970's that there are simple probabilistic algo-rithms that �nd proofs of compositeness for composite inputs in expectedpolynomial time. More recently, Adleman and Huang gave a di�cultprobabilistic algorithm that �nds proofs of primality for prime inputs inexpected polynomial time. What of simpler primality tests? One of themost basic, known as the n � 1 test, can �nd a proof that n is primein expected polynomial time, if a large completely factored divisor ofn � 1 is given as part of the input. It was known that this test could bemade deterministic on assumption of the Generalized Riemann Hypoth-esis (GRH). In this talk I shall describe some recent joint results withS. Konyagin which show how the n � 1 test may be made deterministicwithout the assumption of the GRH. A corollary of our results is thatthe number of primes uo to x which can be proved prime in deterministicpolynomial time exceeds x1��.� J. Spencer (Courant Institute/IMA):From Erdos to algorithmsThe lecture was intended to illustrate the gap existing between the purelyexistence proofs based on clever use of the probabilistic method and thealgorithmic search for a solution. This was colorfully illustrated by threesolutions to the problem of the Tenure Game, together with other exam-ples of derandomization technique.� Noga Alon (Tel Aviv University/Institute for Advanced Study,Princeton):Expanders, nuts and boltsWe describe various applications of pseudo random graphs to the deran-domization of certain randomized sorting algorithms focusing on recentjoint work with Blum, Fiat, Kannan, Naor and Ostrovsky concerning anew sorting problem. 10



� Andrew Odlyzko (AT&T Bell Laboratories):Search for the maximum of a random walkLet X1; X2; : : : be independent and identically distributed with Prob(Xj= 1) = Prob(Xj = �1) = 1=2, and let Sk = X1 + X2 + : : : +Xk. ThusSk is the position of a symmetric random walk on the line after k steps.It is shown that any algorithm that determines maxfS0; : : : ; Sng withcertainty must examine at least c1n1=2 of the Sk on average for a certainconstant c1 > 0, if all random walks with n steps are considered equallylikely, there is also an algorithm that on average examinesonly cs; n1=2 ofthe Sk to determine their maximum for another constant c2.� Eli Shamir (Hebrew University/IMA):The bounded di�erence method in learning algorithms and thresholdsOur framework is Approximate Learning of concept classes by randomqueries, or related Rangespaces problems in Computational Geometry {usually for families of a �nite VC dimension.1. Filtering random streams: A good �lter should block (ultimatelymost) examples, allowing through examples which as queries haveconditional expected \information gain" above a certain positive B.Submartingale tail estimates are handy in proving that the \pre-diction error" then becomes exponentially small in the number of�ltered queries.2. Thresholds for � nets: We study conditions under which the con-�dence level in getting � net by a random sample exhibits a sharpthreshold in the sample size.� M. Steele (University of Pennsylvania/IMA):Subsequence optimizations { Random and pseudo{randomA problem which typi�ed the sort considered was that of �nding thelength of the longest increasing subsequence in a random sequence ofgiven length. Techniques developed for working on this problem extend toproblems more relevant to combinatorial Optimization such as TravellingSalesman in the unit hypercube. Basic techniques illustrated included thetheory of subadditive stochastic processes and subadditive functionals.� John N. Tsitsiklis (MIT):On the average communication complexity of distributed algorithmsWe study the communication complexity of asynchronous algorithms, inwhich message receptions can trigger further computation and transmis-sion of new messages. Such algorithms can generate excessively manymessages in the worst case. Nevertheless, we show that, under certainprobabilistic assumptions, and under a very general model of distributedcomputation, the expected number of generated messages is only O (nT ),11



where n is the number of processors and T is the running time. We con-clude that (under our model) any asynchronous algorithm will also havegood communication complexity, on the average.� M. Talagrand (Ohio State University):Isoperimetric methods and optimization problemsThe lecture by Michel Talagrand aroused a considerable degree of interestparticularly among the probabilists, in that his work gives a series ofinequalities which considerably strengthen the very useful inequality ofAzuma. They are fairly technical to explain but I do have a \partial"preprint and \translation" of one of the simplest forms of the inequality.I will be happy to send copies to anyone who asks.� Dominic J.A. Welsh (University of Oxford):Randomized approximaton schemes for Tutte{Gr�othendieck invariantsConsider the following very simple counting problems associated with agraph G.(i) What is the number of connected subgraphs of G?(ii) How many subgraphs of G are forests?(iii) How many acyclic orientations has G?Each of these is a special case of the general problem of evaluating theTutte polynomial of a graph (or matroid) at a particular point of the(x; y){plane { in other words is a Tutte{Gr�othendieck invariant (see [2]).Other invariants include:(iv) the chromatic and 
ow polynomials of a graph;(v) the partition function of a Q{state Potts model;(vi) the Jones polynomial of an alternating link;(vii) the weight enumerator of a linear code over GF (q).It has been shown in [1] that apart from a few special points and 2 specialhyperbolae, the exact evaluation of any such invariant is #P{hard even forthe very restricted class of planar bipartite graphs. However the questionof which points have a fully polynomial randomized approximation schemeis wide open. I shall discuss this problem and give a survey of what iscurrently known.� Moni Naor (Weizmann Institute):Derandomization, witnesses for Boolean matrix multiplication and con-struction of perfect hash functionsSmall sample spaces with almost independent random variables are ap-plied to design e�cient sequential deterministic algorithms for two prob-lems. The �rst algorithm, motivated by the attempt to design e�cient12



algorithms for the All Pairs Shortest Path problem using fast matrix mul-tiplication, solves the problem of computing witnesses for the Booleanproduct of two matrices. That is, if A and B are two n by n matrices,and C = AB is their Boolean product, the algorithm �nds for every entryCij = 1 a witness, an index k so that Aik = Bkj = 1. Its running timeexceeds that of computing the product of two n by n matrices with smallinteger entries by a polylogarithmic factor. The second algorithm is anearly linear time deterministic procedure for constructing a perfect hashfunction for a given n{subset of f1; : : : ; mg.(Joint work with Noga Alon)� Dimitris Berstimas (MIT):Linear programming relaxations, approximation algorithms and random-izationIn recent years progress has been made in our �ner understanding ofNP. In terms of the degree of approximability, NP{hard problems can bedivided into four broad categories: Problems that can be approximatedin polynomial time1. within any constant (for example the Knapsack Problem),2. up to a �nite constant factor (for example the Travelling Salesmanproblem),3. up to a logarithmic factor (for example the Set Covering Problem),and4. within a sublinear but superlogarithmic factor (for example the Col-oring Problem).On the negative side, however, there is a lack of uni�cation of the methodsused to design the approximation algorithm. We show that the use of ran-domized rounding of linear programming relaxations of discrete optimiza-tion problems, but with nonlinear rounding functions leads to a uni�edway of approximating NP{hard problems matching the best known perfor-mance guarantees. We illustrate our methods using several examples: theSet Covering problem, facility location problems, MAXSAT, network con-nectivity problems and the minimum approximation algorithms throughthe use of randomization.� Alan Frieze (Carnegie Mellon University):Greedy algorithms from a probabilistic point of viewI will review some results on the average case of Greedy algorithms andon a randomized Greedy algorithm for matchings.13


