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IntrodutionA problem of testing membership to a semialgebrai set � was onsidered by manyauthors (see, e.g., [B 83℄, [B 92℄, [BKL 92℄, [BL 92℄, [BLY 92℄, [MH 85℄, [GKV 94℄, [Y 92℄, [Y93℄, [YR 80℄ and the referenes there). We onsider a problem of testing membership to aonvex polyhedron P in n-dimensional spae Rn. Let P have N faes of all the dimensions.In [MH 85℄ it was shown, in partiular, that for this problem O(logN)nO(1) upper boundis valid for the depth of linear deision trees, in [YR 80℄ a lower bound 
(logN) wasobtained. A similar question was open for algebrai deision trees. In [GKV 94℄ we proveda lower bound 
(logN) for the depth of algebrai deision trees testing membership to P ,provided that N > (dn)
(n2). In the present paper we weaken the latter assumption toN > (dn)
(n). In this new form the bound looks plausible to be appliable to polyhedragiven by 2O(n) linear onstraints (like in \knapsak" problem), thus having 2O(n2) faes.In the present paper we apply the obtained lower bound to a onrete lass of polyhedragiven by 
(n2) linear onstraints and with n
(n) faes.In [GV 94℄ the lower bound 
(plogN ) was proved for the PfaÆan omputation treemodel. This model uses at gates PfaÆan funtions, the latter inlude all major elementarytransendental and algebrai funtions.Several topologial methods were introdued for obtaining lower bounds for the om-plexity of testing membership to � by linear deision trees, algebrai deision trees, alge-brai omputation trees (the de�nitions one an �nd in, e.g., [B 83℄).In [B 83℄ a lower bound 
(logC) was proved for the most powerful among the on-sidered in this area omputational models, namely algebrai omputation trees, where Cis the number of onneted omponents of � or of the omplement of �. After that, in[BLY 92℄, a lower bound 
(log�) for linear deision trees was proved, where � is Eulerharateristi of �, in [Y 92℄ this lower bound was extended to algebrai omputation trees.A stronger lower bound 
(logB) was proved later in [BL 92℄, [B 92℄ for linear deisiontrees, where B is the sum of Betti numbers of � (obviously, C;� � B). In [Y 94℄ the latterlower bound was extended to the algebrai deision trees.Unfortunately, all the mentioned topologial tools fail when � is a onvex polyhedron,beause B = 1 in this situation. The same is true for the method developed in [BLY 92℄for linear deision trees, based on the minimal number of onvex polyhedra onto whih �an be partitioned.To handle the ase of a onvex polyhedron, we introdue in Setions 1, 3 anotherapproah whih di�ers drastially from [GKV 94℄. Let W be a semialgebrai set aeptedby a branh of an algebrai deision tree. In Setion 3 we make an \in�nitesimal pertur-bation" of W whih transforms this set into a smooth hypersurfae. Then we desribe thesemialgebrai subset of all the points of the hypersurfae in whih all its prinipal urva-tures are \in�nitely large" (the set K0 in Setion 3). We also onstrut a more general setKi (for eah 0 � i � n�1) of the points with in�nitely large urvatures in the intersetionswith the shifts of a �xed (n � i)-dimensional plane. Setion 1 provides a short system ofinequalities for determining Ki. It is done by developing an expliit symboli alulis forprinipal urvatures.In Setion 2 we introdue some neessary notions onerning in�nitesimals and apply2



them to de�ne the \standard part" Ki = st(Ki) � Rn. We show (Corollary to Lemma 5in Setion 3) that to obtain the required bound for the number of i-faes Pi of P suhthat dim(Pi \W ) = i it is suÆient to estimate the number of faes Pi with dim(Pi \Ki) = i. In Setion 4 we redue the latter bound to an estimate of the number of loalmaxima of a generi linear funtion L on Ki with the help of a Whitney strati�ationof Ki. To estimate these loal maxima we introdue in Setion 5 another in�nitesimalperturbation of Ki and obtain a new smooth hypersurfae. At this point a diÆulty arisesdue to the fat that Ki (and therefore, the related smooth hypersurfae) are de�ned bysystems of inequalities involving algebrai funtions, rather than polynomials, beause inthe expressions for urvatures (in Setion 1) square roots of polynomials appear. Werepresent the set of loal maxima of L on the smooth hypersurfae by a formula of the�rst-order theory of real losed �elds with merely existential quanti�ers and quanti�er-freepart �. We estimate in Setion 5 (invoking [Mi 64℄ in a usual way) the number of theonneted omponents of the semialgebrai set de�ned by �.In Setion 6 we desribe a partiular lass of polyhedra (dual to yli polyhedra [MS71℄) having large numbers of faes, for whih Theorem 1 provides a nontrivial lower bound.Now let us formulate preisely the main result. We onsider algebrai deision treesof a �xed degree d (see, e.g., [B 83℄, [Y 93℄). Suppose that suh a tree T , of the depth k,tests a membership to a onvex polyhedron P � Rn. Denote by N the number of faes ofP of all dimensions from zero to n� 1. In this paper we agree that a fae is \open", i.e.,does not ontain faes of smaller dimensions.Theorem 1. k � 
(logN);provided that N � (dn)n for a suitable  > 0.Let us �x a branh of T whih returns \yes". Denote by fi 2 R[X1; : : : ;Xn℄; 1 � i � kthe polynomials of degrees deg(fi) � d, attahed to the verties of T along the �xed branh.Without loss of generality, we an assume that the orresponding signs of polynomials alongthe branh are f1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0:Then the (aepted) semialgebrai setW = ff1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0glies in P .Our main tehnial tool is the following theorem.Theorem 2. The number of faes P 0 of P suh that dim(P 0) = dim(P 0 \W ) is boundedfrom above by (knd)O(n).Let us dedue Theorem 1 from Theorem 2.For eah fae P 0 of P there exists at least one branh of the tree T with the output\yes" and having an aepted set W1 � Rn suh thatdim(W1 \ P 0) = dim(P 0):3



Sine there are at most 3k di�erent branhes of T , the inequalityN < 3k(knd)O(n)follows from Theorem 2. This inequality and the assumption N > (dn)n (for a suitable) imply k � 
(logN), whih proves Theorem 1.Note that in the ase k1 = 0 for an open set W and eah fae P 0 of P we haveP 0 \W = ;. Thus in what follows we an suppose that k1 � 1.1. Computer algebra for urvaturesLet a polynomial F 2 R[X1; : : : ;Xn℄ with deg(F ) < d. Assume that at a pointx 2 fF = 0g � Rn the gradient gradx(F ) = � �F�X1 ; : : : ; �F�Xn�(x) 6= 0. Then, aordingto the impliit funtion theorem, the real algebrai variety fF = 0g � Rn is a smoothhypersurfae in a neighbourhood of x.Fix a point x 2 fF = 0g. Consider a linear transformation X �! AX + x, where Ais an arbitrary orthogonal matrix suh thatu1 = Ae1 + x = gradx(F )kgradx(F )kis the normalized gradient and e1; : : : ; en is the oordinate basis at the origin. Then thelinear hull of vetors uj = Aej + x; 2 � j � n is the tangent spae Tx to fF = 0g at x.Denote by U1; : : : ; Un the oordinate variables in the basis u1; : : : ; un. By the impliitfuntion theorem, there exists a smooth funtion Hx(U2; : : : ; Un) de�ned in a neighbour-hood of x on Tx suh that fF = 0g = fU1 = Hx(U2; : : : ; Un)g in this neighbourhood.Let u1 = (~�1; : : : ; ~�n) with ~�i0 6= 0. Take any permutation �i0 of f1; : : : ; ng suhthat �i0 (1) = i0. Denote (�1; : : : ; �n) = (~��i0 (1); : : : ; ~��i0 (n)) (thus �1 6= 0) and �i =p�21 + � � �+ �2i ; 1 � i � n. Obviously �i > 0 and �n = 1.As A one an take the following produt of (n� 1) orthogonal matries:Y0�k�n�20BBBBBBBBBBB� �n�k�1�n�k 0 � � � 0 �n�k�n�k 0 � � � 00 1 � � � 0 0 0 � � � 0... ... . . . ... ... ... . . . ...0 0 � � � 1 0 0 � � � 0��n�k�n�k 0 � � � 0 �n�k�1�n�k 0 � � � 00 0 � � � 0 0 1 � � � 0... ... . . . ... ... ... . . . ...0 0 � � � 0 0 0 � � � 11CCCCCCCCCCCA(in kth matrix of this produt the element �n�k�1�n�k ours at the positions (1; 1) and (n�k; n� k)).Denote Fx(U1; : : : ; Un) = F (AT (U1; : : : ; Un) + x). Di�erentiating this funtion twieand taking into the aount that Fx(Hx(U2; : : : ; Un); U2; : : : ; Un) = 0 in a neighbourhoodof x in Tx we get �2Fx�U1�Uj �Hx�Ui + �Fx�U1 �2Hx�Ui�Uj + �2Fx�Ui�Uj = 0 (1)4



for 2 � i; j � n.Sine �Hx�Ui ???(U2;:::;Un)=0 = 0 and �Fx�U1 ???(U1;:::;Un)=0 = kgradx(F )k 6= 0;evaluating the equality (1) at x (i.e., substituting (U1; : : : ; Un) = 0) we obtain (f. [Mi64℄): � �2Hx�Ui�Uj �???(U2;:::;Un)=0 = (kgradx(F )k)�1� �2Fx�Ui�Uj �???(U1;:::;Un)=0: (2)Introdue the symmetri (n� 1)� (n� 1)-matrix (the matrix of Weingarten map [Th77℄, Ch.9) Hx = � �2Hx�Ui�Uj �???(U2;:::;Un)=0:Its eigenvalues �2; : : : ; �n belong to R and are alled the prinipal urvatures of the hy-persurfae fF = 0g at x [Th 77℄, Ch.12.Now we desribe symbolially the set of all points x with all prinipal urvaturesgreater than some parameter �.Denote by �(Z) the harateristi polynomial of the matrix Hx. The roots of � areexatly �2; : : : ; �n. Due to Sturm theorem, every �2; : : : ; �n is greater than � if and onlyif �l(�)�l+1(�) < 0; 0 � l � n � 2, where �0 = �; �1 = �00 and �2; : : : ; �n�1 is thepolynomial remainder sequene of �0; �1 [Lo 82℄. Obviously degZ(�l) = n� l� 1.Observe that every element of the matrix A an be represented as a fration 1=2where 2 = ��11 � � ���n�1n�1 kgradx(F )k�and 1 = �(�1; : : : ; �n�1;X1; : : : ;Xn) is a polynomial in�1(X1; : : : ;Xn); : : : ; �n�1(X1; : : : ;Xn);X1; : : : ;Xnwith � 2 R[Z1; : : : ; Zn�1;X1; : : : ;Xn℄. Moreover, �1 + � � � + �n�1 + � � 2(n � 1) anddeg(�) � d(n � 1). Hene all elements of A are algebrai funtions in X1; : : : ;Xn ofquadrati-irrational type. By the degree of suh quadrati-irrational funtion we meanmaxfdeg(�); �1 + � � � + �n�1 + �g. In what follows we deal with algebrai funtions inX1; : : : ;Xn of the similar type.Formula (2) and Habiht's theorem [Lo 82℄ imply that deg(�l) � (nd)O(1).We summarize a desription of the set of all points with large prinipal urvatures inthe following lemma.Lemma 1. Fix 1 � i0 � n. The set of all points x 2 fF = 0g suh that gradx(F ) =(�̂1; : : : ; �̂n) has �̂i0 6= 0 and all prinipal urvatures of the hypersufae fF = 0g at x aregreater than � an be represented as fF = 0; g1 > 0; : : : ; gn > 0g. Here g1 = �̂2i0 ; g2; : : : ; gnare polynomials in � of degrees at most 2n with oeÆients being quadrati-irrationalalgebrai funtions (see above) of degrees less than (nd)O(1).5



Remark. Observe that a set given by a system of inequalities involving real algebraifuntions is semialgebrai. Hene the set introdued in Lemma 1 is semialgebrai.2. Calulis with in�nitesimalsThe following de�nitions onerning in�nitesimals follow [GV 88℄.Let F be an arbitrary real losed �eld (see, e.g., [L 65℄) and an element " be in�nites-imal relative to elements of F. The latter means that for any positive element a 2 Finequalities 0 < " < a are valid in the ordered �eld F("). Obviously, the element " is tran-sendental over F. For an ordered �eld F0 we denote by ~F0 its (unique up to isomorphism)real losure, preserving the order on F0 [L 65℄.Let us remind some other well-known statements onerning real losed �elds. APuiseux (formal power-frational) series over F is series of the kindb =Xi�0 ai"�i=�;where 0 6= ai 2 F for all i � 0, integers �0 < �1 < : : : inrease and the natural number� � 1. The �eld F(("1=1)) onsisting of all Puiseux series (appended by zero) is reallosed, hene F(("1=1)) � gF(") � F("). Besides the �eld F[p�1℄(("1=1)) is algebraiallylosed.If �0 < 0, then the element b 2 F(("1=1)) is in�nitely large. If �0 > 0, then b isin�nitesimal relative to elements of the �eld F. A vetor (b1; : : : ; bn) 2 �F(("1=1))�n isalled F-�nite if eah oordinate bi; 1 � i � n is not in�nitely large relative to elementsof F.For any F-�nite element b 2 F(("1=1)) its standard part st(b) is de�nable, namelyst(b) = a0 in the ase �0 = 0 and st(b) = 0 if �0 > 0. For any F-�nite vetor (b1; : : : ; bn) 2�F(("1=1))�n its standard part is de�ned by the equalityst(b1; : : : ; bn) = (st(b1); : : : ; st(bn)):For a set W � �F(("1=1))�n we de�nest(W) = fst(w) : w 2 W and w is F��niteg:The following \transfer priniple" is true [T 51℄. If F0; F00 are real losed �elds withF0 � F00 and P is a losed (without free variables) formula of the �rst order theory of the�eld F0, then P is true over F0 if and only if P is true over F00.In the sequel we onsider in�nitesimals "1; "2; : : : suh that "i+1 is in�nitesimal relativeto the real losure Ri of the �eld R("1; : : : ; "i) for eah i � 0. We assume that R0 = R.For an Ri-�nite element b 2 Ri+1 its standard part (relative to Ri) denote by sti(b) 2Ri. For any b 2 Rj ; j > i we de�ne sti(b) = sti(sti+1(: : : stj�1(b) : : :). For a semialgebraiset V � Fn1 de�ned by a ertain formula � of the �rst order theory of the real losed �eldF1 and for a real losed �eld F2 � F1 we de�ne the ompletion V (F2) � Fn2 of V as thesemialgebrai set given in Fn2 by the same formula � (we say that V (F2) is de�ned over6



F1). We omit super-index (F2) in V (F2) when this does not lead to ambiguity. In a similarway one an de�ne ompletions of polynomials and algebrai funtions.Observe that for any polynomial f 2 Ri[X1; : : : ;Xn℄ and a point w 2 Rnj ; j � i suhthat sti(y) is de�nable, we have sti(f(y)) = f(sti(y)).Denote by Bx(r) the open ball in Rni entered at x and of radius r, and by k � k theompletion of Eulidean distane funtion.The following lemma shows that the standard part of a semialgebrai set oinideswith the standard part of its ompletion.Lemma 2 Let Rm � F � Rj where F is a real losed �eld and V � Fn is a semialgebraiset de�ned over F. Then stm(V ) = stm(V (Rj)).Proof. The inlusion stm(V ) � stm(V (Rj))is trivial.To prove the opposite inlusion take a point x 2 stm(V (Rj)) and onsider a semialge-brai set fkx� yk2 : y 2 V g � F. This set is a �nite union of (either losed, either openor semi-open) intervals. This is obvious for a semialgebrai subset of R, for an arbitraryreal losed �eld this follows from the transfer priniple. Let ! be the left endpoint of theleft-most among these intervals. If x =2 stm(V ) then there exists 0 < r0 2 Rm suh that! > r20, hene Bx(r0) \ V = ;. By the transfer priniple the ompletion of the latter setis also empty: Bx(r0) \ V (Rj) = ;. This ontradits to the inlusion x 2 stm(V (Rj)) andproves the lemma.For a subset E � Rnm denote by l(E) its losure in the topology with the base of allopen balls. Denote by �E the boundaryfy 2 Rnm : for any 0 < r 2 Rm ; 6= By(r) \E 6= By(r)g:Note that the above de�nition of the losure, being applied to a semialgebrai setand written as a formula of �rst order theory of the �eld Rm, involves quanti�ers. Thefollowing lemma shows that the losure of a semialgebrai set an be desribed in terms ofin�nitesimals.Lemma 3 (f. Lemma 1 [GV 92℄).a) Let polynomials h1; : : : ; hj ; g1; : : : ; gs 2 Rq[X1; : : : ;Xn℄and natural numbers q; l;m satisfy inequalities q < l < m. Consider semialgebrai setsV = fg1 � 0; : : : ; gs � 0; h1 > 0; : : : ; hj > 0g � Rnqand V = fg1 > �"m; : : : ; gs > �"m; h1 > "l; : : : ; hj > "lg � Rnm:7



Then l(V ) = stq(V) = stq(l(V)):b) �V � stq(�V).Proof.a) Let x 2 l(V) and the standard part y = stq(x) be de�nable. We prove that y 2 l(V ).Consider a point y1 = stl(x), thengs1(y1) = stl(gs1(x)) � 0; 1 � s1 � s; hj1(y1) = stl(hj1 (x)) � "l; 1 � j1 � j:Hene y1 2 V (Rl).If y =2 l(V ) then there exists 0 < r 2 Rq suh that By(r)\V = ;. Due to the transferpriniple the latter relation holds also over the �eld Rl, namely, By(r) \ V (Rl) = ;. Onthe other hand, y1 2 By(r) \ V (Rl) sine stq(y1) = y. The obtained ontradition provesthe inlusion stq(l(V)) � l(V ).Now let y 2 l(V ). Consider a semialgebrai set fky� zk2 : z 2 Vg � Rm. Then thisset is a �nite union of (either losed, either open or semi-open) intervals (f. the proof ofLemma 2). Let ! be the left endpoint of the left-most among these intervals. If y =2 stq(V)then there exists an element r1; 0 < r1 2 Rq suh that ! > r21, i.e., V \ By(r1) = ;. Onthe other hand, V \ By(r1) 6= ; sine y 2 l(V ). Taking into the aount the inlusionV � V, we get a ontradition whih proves the inlusion l(V ) � stq(V).b) Let x 2 �V and x =2 stq(�V). Then there exists an element r2; 0 < r2 2 Rq suh thatBx(r2) \ �V = ; (f. the proof of a)). Beause of a), x 2 stq(V), therefore Bx(r2) � V.On the other hand, V \Rnq � V , hene Bx(r2)\Rnq � V , this ontradits to the inlusionx 2 �V .Lemma is proved.In the proof of Lemma 3 a) it was atually shown that for any semialgebrai setU � Rnm we have stq(U) = stq(l(U)); q < m.Corollary. Denote V0 = fh = 0; h1 > 0; : : : ; hj > 0g � Rnq ;V0 = fh = "m; h1 > "l; : : : ; hj > "lg � Rnm:Then stq(V0) � l(V0).To prove Corollary, in Lemma 3 a) instead of V onsider a modi�ed setf�2"m < h < 2"m; h1 > "l; : : : ; hj > "lg � V0:Lemma 4 (f. Lemma 4a) in [GV 88℄). Let F be a smooth algebrai funtion de�nedon an open semialgebrai set U � Rni and determined by a polynomial with oeÆients8



from Ri. Then "i+1 is not a ritial value of F (i.e., grady(F ) does not vanish at any pointy 2 fF = "i+1g \ U).Proof. Sard's theorem [Hi 76℄ and the transfer priniple imply the �niteness of the setof all ritial values of F , moreover this set lies in Ri.3. Curved pointsFor any i-fae Pi denote by P i the i-plane ontaining Pi.First let us redue Theorem 2 to the ase of ompat P . Let t be the minimaldimension of faes of P and Pt be a fae with dim(Pt) = t. Then P t is a t-plane.For eah i-fae Pi of P with dim(Pi \W ) = i hoose a point xPi 2 (Pi \W ) suh thata suitable neighbourhood of xPi in Pi is ontained in W .First onsider the ase t � 1. Choose any hyperplane � transversal to Pt suh that thepoints xPi for all i-faes Pi lie in one of two semi-spaes of Rn n�, denote this semi-spaeby ~�. Replae P by (P \ ~�) [ � reduing t by one. Continue this proess while t � 1.Now onsider the ase t = 0.Observe that there exists a linear form L = �1X1+ � � �+�nXn with �j 2 R; 1 � j � nsuh that for every  2 R the intersetion fL +  � 0g \ P is ompat. Take  suhthat xPi 2 P 0 = fL +  � 0g \ P for all Pi. The number of all i-faes P 0i of P 0 suhthat dim(P 0i \W ) = i is greater or equal than the number of all i-faes Pi of P suh thatdim(Pi \W ) = i. >From now on we assume, without loss of generality, that P is ompat.For an m-plane Q � Rnm and a point x 2 Rnm denote by Q(x) the m-plane ollinearto Q and ontaining x.Two planes Q1; Q2 of arbitrary dimensions are alled transversal ifdim�Q1(0) \Q2(0)� = maxf0; dim�Q1(0)�+ dim�Q2(0)� � ng:For every 0 � i < n hoose an (n� i)-plane �n�i (de�ned over R) transversal to anyfae of the polyhedron P .Denote f = f21 + � � �+ f2k1 .Fix 0 � i < n and denote by f (x) the restrition of f on �n�i(x) (for x 2 Rnm).De�nition. A point y 2 ff = "3g is alled i-urved if grady(f (y) � "3) 6= 0, all prinipalurvatures of the variety ff (y) = "3g � �n�i(y) at y are greater than "�12 and fk1+1(y) >"2; : : : ; fk(y) > "2.Remark. We �x an orthogonal basis in �n�i(0) with oordinates belonging to R. Thenin De�nition we onsider urvatures in �n�i(y) with respet to the basis obtained fromthe �xed one by the shift Y �! Y + y.One an onsider this de�nition as a kind of \loalization" of the key onept of anangle point from [GV 94℄.Denote the set of all i-urved points by Ki � Rn3 . Observe that Ki is semialgebraidue to the remark at the end of Setion 1. Denote Ki = st0(Ki) � Rn, this set is losedsemialgebrai by Lemma 5.1 from [RV 94℄. Corollary to Lemma 3 implies that Ki � l(W ).9



Lemma 5. Let for an i-faet Pi of P the dimension dim(W \Pi) = i. ThenW \Pi � Ki.Proof. Let x 2 W \ Pi. Then fj (x) > ; k1 + 1 � j � k for a ertain 0 <  2 R.Hene there exists 0 < r 2 R suh that for any point y from the open ball Bx(r) we havefj(y) > ; k1 + 1 � j � k. Due to the transfer priniple, fj (y) > ; k1 + 1 � j � k for anypoint y 2 Bx(r) \Rn3 .Observe that ff = "3g \�n�i(x) = ff (x) = "3g is a smooth hypersurfae in �n�i(x),beause x 2 Rn and "3 is not a ritial value of the polynomial f (x) by Lemma 4.Our purpose is to prove that x = st2(y) (and a fortiori x = st0(y)) for a suitabley 2 ff = "3g\�n�i(x) suh that all prinipal urvatures of the variety ff = "3g\�n�i(x)at the point y are greater than "�12 . This would imply Lemma 5 sine grady(f (x)� "3) 6= 0(see De�nition).The point x is a vertex of the polyhedron P = P \�n�i(x) beause �n�i is transversalto Pi. Note that for eah (n�i�1)-fae of P the normalized orthogonal vetor (in �n�i(x))to this fae has all oordinates in R. The vertex x belongs to at least (n � i) among(n� i� 1)-faes of the polyhedron P.Choose any (n � i � 1)-faes T1; : : : ; Tn�i of this kind. Denote by T � �n�j(x) thelosed one with vertex at x, formed by planes T 1; : : : ; Tn�i and ontaining P.Observe that for any point y 2 l(Bx(r=2)) \Rn3 the inequalities fj (y) > ; k1 + 1 �j � k hold, sine l(Bx(r=2)) � Bx(r). Therefore,ff = 0; fj > ; k1 + 1 � j � kg \ l(Bx(r=2)) = ff = 0g \ l(Bx(r=2)):Denote D = T \ l(Bx(r=2)). For any point z 2 ff = "3g \�n�i(x) \ l(Bx(r=2)) wehave st2(z) 2 ff = 0g \�n�i(x) \ l(Bx(r=2)) (see Setion 2). Henest2(z) 2W \ �n�i(x) \ l(Bx(r=2)) � P \ l(Bx(r=2)) � D;in partiular, the distane �(z;D) from z to D is in�nitesimal relative to R2 (the distanefrom a point to a bounded set losed in the topology with the base of all open balls, doesexist beause it is true over the �eld R, over arbitrary real losed �eld use the transferpriniple).Sine the set ff = "3g\�n�i(x) \ l(Bx(r=2)) is bounded and losed in the topologywith the base of all open balls, there exists �0 = max �(z;D) (sf. the above arguing) wherez ranges over all points from ff = "3g \ �n�i(x) \ l(Bx(r=2)), and �0 is in�nitesimalrelative to R2.Let us shift (in �n�i) eah (n� i� 1)-dimensional plane among T 1; : : : ; T n�i parallelto itself outward the one T to the distane �0. The shifted planes form a new losed oneT 0 with a vertex x0. Obviously T � T 0. Observe that the distane kx�x0k is in�nitesimalrelative toR2. DenoteD0 = T 0\l(Bx(r=2)). Then ff = "3g\�n�i(x)\l(Bx(r=2)) � D0.In the plane �n�i(x) hoose a hyperplane Q suh that the oordinates of the nor-malized vetor orthogonal to Q belong to R, and T 0 \ Q(x0) = fx0g. Take a hyperplaneQ(y) (in �n�i(x)) suh that its distane from the point x0 is positive, belongs to R, andT 0 \ Q(y) 6= ;. Observe that T 0 \ Q(y) is ontained in a ertain (n � i � 1)-dimensionalopen ball B � Q(y) with the enter z suh that the radius and the oordinates of the pointz � x0 belong to R. 10



There exists the unique (n � i � 1)-dimensional sphere S � �n�i(x) ontaining boththe point (x0 + z)=2 and the (n � i � 2)-dimensional sphere �B. Then the point x0 liesoutside the (n� i)-dimensional open ball B bounded by S.Denote by T 00 � �n�i(x) the losed one with the vertex at x0 and with the base S.Then T 0 � (T 00 n �T 00) beause T 0 \Q(y) � B � B.The intersetion S \ �T 00 is a (n � i � 2)-dimensional sphere situated in a ertainhyperplane � (in �n�i(x)). Then S \ �T 00 divides S n (S \ �T 00) into two onnetedomponents S1 and S2. Let S1 be loated in the same half-spae (in �n�i(x)) with theboundary � as the point x0.Denote by S1(�) the dilation of S1 with the oeÆient � with respet to the point x0.Observe that the open one T 00 n �T 00 is the disjoint union of the dilations S1(�) over all0 < � 2 R3. There exists the minimal �0 > 0 suh thatS1(�0) \ ff = "3g \ �n�i(x) \ l(Bx(r=2)) 6= ;:Then S1(�0) divides the open one T 00 n �T 00 into two onneted omponents, moreoverthe set ff = "3g \ �n�i(x) \ l(Bx(r=2))and all points from T 00 n �T 00 suÆiently lose to the point x0 belong to the di�erentonneted omponents.Taking into the aount that f(x) = 0, and applying Lemma 3 from [GV 88℄ to thepolynomial f (x), we onlude that there exists a point y0 2 ff = "3g \ �n�i(x) suhthat the distane kx� y0k is in�nitesimal relative to R2. Evidently, y0 2 l(Bx(r=2)) andky0 � x0k is also in�nitesimal relative to R2. Hene �0 is in�nitesimal relative to R2 aswell. Therefore, the radius � of the sphere S(�0) is also in�nitesimal relative to R2.Consider a pointy 2 S1(�0) \ ff = "3g \ �n�i(x) \ l(Bx(r=2)):Then ky � x0k is in�nitesimal relative to R2. Besides, the hypersurfaes S1(�0) and ff ="3g \�n�i(x) (as well as the set ff = "3g \�n�i(x) \ l(Bx(r=2))) has the same tangentplane T (in �n�i(x)) at the point y.Let Hy be (n� i� 1)� (n� i� 1)-matrix introdued in Setion 1 (with f (x) playingthe role of F and y playing the role of x). For any normalized vetor v 2 T the seondderivative vHyv of the funtion Hy (see Setion 1) in the diretion v is greater or equal tothe orresponding seond derivative for the sphere S(�0) (at the point y). The latter seondderivative equals to 1=� (f. the proof of Theorem 4 in Ch. 12 [Th 77℄). In partiular, forthe prinipal urvatures of the hypersurfae ff (x) = "3g = ff = "3g\�n�i(x) (in �n�i(x)),the inequalities �2 � 1=�; : : : ; �n�i � 1=� are valid, hene �2 > "�12 ; : : : ; �n�i > "�12 .Thus, the point y is i-urved (reall that fj(y) >  > "2; k1 + 1 � j � k siney 2 Bx(r)).Finally, st2(y) = x, beause kx � yk is in�nitesimal relative to R2 and x 2 Rn, afortiori st0(y) = x, i.e., x 2 Ki. Lemma is proved.Corollary. If dim(W \ Pi) = i then dim(Ki \ Pi) = i.11



This Corollary implies that in order to prove Theorem 2 it is suÆient to bound thenumber of i-faets Pi for whih dim(Ki \ Pi) = i.Lemma 6. For any smooth point z 2 Ki with the dimension dimz(Ki) � i + 1 thetangent plane Tz to Ki at z is not transversal to �n�i.Remark. In the partiular ase i = 0 Lemma 6 states that K0 onsists of a �nite numberof points.Proof of Lemma 6. First let us redue the proof to the ase i = 0 (so assume in theredution that dim(K0) � 0). Thus, let i � 1 and suppose that e = dimz(Ki) � i + 1.Assume that Tz is transversal to �n�i, then dim(Tz \�n�i(z)) = e� i. Take any (n� e)-plane R � �n�i(z) de�ned over R for whih Tz \R = fzg. Consider the linear orthogonalprojetion � : Rn3 �! Re3 onto e-subspae along R. Then dim(�(Tz)) = e. Therefore,by the impliit funtion theorem, �(Ki) � Re ontains e-dimensional ball B�(z)(r) for aertain 0 < r 2 R.For any point x 2 Ki there is a point x0 2 Ki suh that st0(x0) = x, hene st0(�(Ki)) �B�(z)(r).For any point y 2 Rn the set K(y)0 of 0-urved points of the restrition f (y) oinideswith �n�i(y) \ Ki aording to De�nition. Applying the assumption that the lemma isvalid for i = 0 to the polynomial f (y) we obtain the inequality dim�st0(�n�i(y)\Ki)� � 0(taking into the aount that f (y) is de�ned over R).Let us show that �(Ki) does not ontain a ball Bw(r1) for any 0 < r1 2 R and w 2 Rn3 .Assume the ontrary, then there exists a point w1 2 Bw(r1) \Re. Let y1 2 Rn be a pointsuh that �(y1) = w1. Denote �0 = �(�n�i), then dim(�0) = e� i; �n�i = ��1(�0). Thenthe following inequalities hold:dimst0��0(w1) \ �(Ki)� � dimst0��0(w1) \ Bw(r1)� = e� i � 1:On the other hand, �0(w1) \ �(Ki) = �(Ki \ �n�i(y1)), and, therefore,dimst0��0(w1) \ �(Ki)� � dimst0�Ki \�n�i(y1)� � 0;(the latter inequality was proved above). The obtained ontradition shows that �(Ki)does not ontain a ball Bw(r1) for any 0 < r1 2 R.We laim that for any ball By2(r2) � B�(z)(r) de�ned over R3 suh that 0 < r2 2 R,the intersetion By2(r2)\ ��(Ki) 6= ;. Assume the ontrary. Then either By2(r2) � �(Ki)or By2(r2) \ �(Ki) = ;. The inlusion By2(r2) � �(Ki) is impossible as was shown above.If By2(r2) \ �(Ki) = ;, then st0(y2) =2 st0(�(Ki)), the latter ontradits the inlusionsBst0(y2)(r2=2) � B�(z)(r) � st0(�(Ki)) of the sets in the spae Re. This proves the laim.Observe that dim��(�(Ki))� � e � 1. Applying Lemma 5.1 from [RV 94℄, we getdimst0��(�(Ki))� � e� 1.On the other hand we shall now prove that st0��(�(Ki))� � B�(z)(r). This ontra-dition would omplete the proof of the redution of the lemma to the ase i = 0. Indeed,12



let y3 2 B�(z)(r). Observe that the set fky � y3k2 : y 2 �(�(Ki))g is semialgebrai.Hene, this set is a �nite union of points and intervals (f. the proof of Lemma 2). Let! be the minimal among these points and the endpoints of these intervals. Suppose thaty3 =2 st0��(�(Ki))�, i.e., there does not exist y 2 �(�(Ki)) suh that st0(y) = y3. Thus,! > r23 for a suitable 0 < r3 2 R. It follows that By3(r3) \ �(�(Ki)) = ;. This ontraditsto the proved above laim.Now let i = 0. Suppose that the statement of the lemma is wrong and dim(K0) =s � 1. There is a linear projetion � : Rn3 �! R3 onto one of the oordinates suhthat �(K0) � [�01; �02℄ for some �01; �02 2 R; �01 < �02. Sine st0(�(K0)) � [�01; �02℄ and�(K0) � R3, being a semialgebrai set, onsists of a �nite union of intervals and points,there exist �1; �2 2 R; �1 < �2 suh that �(K0) � [�1; �2℄(R3).Our nearest purpose is to prove the existene of a semialgebrai urve C 0 � K0 suhthat the mapping � : C 0 �! [�1; �2℄(R3) is bijetive.For any point u 2 [�1; �2℄(R3) take the unique point vu 2 K0 suh that �(vu) = uaording to the following rule (whih is, in fat, quite exible).A projetion �1(��1(u)) of ��1(u) onto the oordinate X1, being a semialgebrai set,is a union of a �nite number of points and intervals (with or without endpoints). Let �1; �2be the endpoints of the left-most interval.Consider four ases. In the �rst ase �1; �2 2 R3, then put � = (�1 + �2)=2. In theseond ase the interval is given either by inequality X < �2 or by inequality X � �2, weput � = �2 � 1. In the third ase the interval is either fX > �1g or fX � �1g, we put� = �1 + 1. In the last ase the interval oinides with the whole R3, we put � = 0.Note that � 2 �1(��1(u)). We �x the �rst oordinate of the point vu under onstru-tion equal to �.Consider the projetion �2(��1(u) \ fX1 = �g) onto the axis X2. Continuing in thesimilar way, after n steps we obtain a point vu = (�; : : :) 2 ��1(u).We de�ne the semialgebrai urve C 0 to be the set of all the obtained points vu foru 2 [�1; �2℄(R3).The urve C 0 has only a �nite number of singular points (this is well-known for al-gebrai urves over R, for arbitrary real losed �elds we use the transfer priniple). Theurve C 0 with deleted singular points is a �nite union of smooth onneted semialge-brai urves. Take one of these urves C suh that �(C) � [�3; �4℄(R3) for appropriate�3 < �4; �3; �4 2 R.Sine C � K0, Theorem 1 from Ch. 9 in [Th 77℄ implies that for any point w 2C its urvature k(w) is greater or equal to the minimum of prinipal urvatures of thehypersurfae ff = "3g at this point w, hene k(w) > "�12 (aording to De�nition).Consider the Gauss map G : C �! Sn�1 where Sn�1 is (n�1)-sphere and for a pointw 2 C the image G(w) is the normalized vetor tangent to C at w.Let us prove the following statement.For any reals �; l and any smooth semialgebrai urve C with the projetion on aertain oordinate axis greater than l and with the urvature at eah point greater than�, there exists a hyperplane � suh that the semialgebrai set � \ Sn�1 \ G(C) has thedimension zero and ontains at least bl�=� points. To prove this statement for a urveC de�ned over R observe that the length (with multipliities) of the image G(C) � Sn�113



equals to Zw2C k(w) � l�(f. Ch. 10 in [Th 77℄). Observe that the length of a urve C1 � Sn�1 equals to the average(with respet to the uniform Borel measure) number of points of intersetion C1\Sn�1\�over all hyperplanes �, multiplied by �. This implies the statement for the semialgebraiurves C de�ned over R. For urves C de�ned over an arbitrary real losed �eld thisstatement follows from the transfer priniple (applied for �xed � and l).Applying the statement to the urve C with l = �4 � �3 and �xed arbitrary real �(taking into the aount that for any point w 2 C the urvature k(w) > "�12 > �), weonlude that there exists a vetor (�1; : : : ; �n) suh that C ontains at least bl�=� pointsw1 with the tangent vetor tw1 to C at w1 satisfying the linear equation tw1 � (�1; : : : ; �n) =0, and there is a �nite number of suh points.One an formulate the ondition tw1 � (�1; : : : ; �n) = 0 on a point w1 2 C as a formulaof the �rst-order theory of real losed �elds (for a �xed �). Therefore, there is only a �xed�nite number (depending on C) of suh points w1, but sine one an take an arbitrary �,we get a ontradition.This implies that dim(K0) � 0 and ompletes the proof of the lemma.4. Faets of P and Whitney strati�ation of KiReall that Ki, as any semialgebrai set, admits a Whitney strati�ation (see, e.g.,[GM 88℄). Namely, Ki an be represented as a disjoint unionKi = Sj Sj of a �nite numberof semialgebrai sets, alled strata, whih are smooth manifolds and suh that:(1) (frontier ondition) Sj1 \l(Sj2 ) 6= ; if and only if Sj1 � l(Sj2) (this de�nes a partialorder Sj1 � Sj2 on the strata);(2) (Whitney ondition A) Let Sj1 � l(Sj2) and a sequene of points ym 2 Sj2 tends toa point y 2 Sj1 when m!1. Assume that the sequene of tangent planes Tym to Sj2 atpoints ym tends to a ertain plane T . Then Ty � T where Ty is a tangent plane to Sj1 aty.Lemma 7. Let for an i-fae Pi of P the dimension dim(Ki \ Pi) = i. Assume that S0j isa onneted omponent of a stratum Sj of Ki suh that dim�l(S0j) \Ki \ Pi� = i. ThenS0j � Pi.Proof. If dim(Sj) = i then S0j � Pi beause S0j � Ki � l(W ) (see the de�nition ofKi in Setion 3) and l(W ) � P , taking into the aount that S0j is a onneted smoothsemialgebrai set.Now let e = dimSj � i + 1. We an assume without loss of generality that Sj isone of the maximal strata (with respet to the partial order �), otherwise take a maximalstratum ontaining Sj in its losure.There is a stratum Sl suh that dim(Sl \ l(S0j) \Ki \ Pi) = i. The property (1) ofWhitney strati�ation implies that Sl � l(Sj). Take a onneted omponent S0l of Sl forwhih dim(S0l \ l(S0j) \ Ki \ Pi) = i. Then dim(S0l) = i, i.e., dim(Sl) = i beause S0l is14



smooth and S0l � P , hene S0l � Pi arguing as above. Let a point y 2 S0l \ l(S0j) \Ki \Pibe suh that for a suitable 0 < r 2 R we have(By(r) \ Pi) � (S0l \ l(S0j) \Ki \ Pi);then Ty(S0l) = P i.There exists a onverging sequene ym �!m!1 y; ym 2 S0j suh that the sequene ofe-dimensional tangent planes Tym(S0j) onverges when m!1 to a ertain e-dimensionalplane � . Due to (2) (Whitney ondition A), P i � � .Lemma 6 implies that Tym(S0j) is not transversal to �n�i (taking into the aountthat ym is a smooth point of Ki beause Sj is a maximal stratum). Therefore, e0m =dim(Tym(S0j) \�n�i(ym)) � e� i+ 1. Some subsequene Tymq (S0j) \�n�j(ymq ) of planesonverges when q !1 to a ertain e0-dimensional plane � � �n�i(y), where e0 = e0mq �e� i+ 1 for any large enough q.Choose a basis a1; : : : ; ai of i-plane P i(0) and a basis b1; : : : ; be0 of �(0). Then vetorsa1; : : : ; ai; b1; : : : ; be0 are linearly independent due to transversality of P i and �n�i. Forlarge enough q0, for any q � q0 there exist vetorsa(q)1 ; : : : ; a(q)i ; b(q)1 ; : : : ; b(q)e0 2 �Tymq (S0j)�(0)situated suÆiently lose to vetors a1; : : : ; ai; b1; : : : ; be0 , respetively, so that the vetorsa(q)1 ; : : : ; a(q)i ; b(q)1 ; : : : ; b(q)e0 are also linearly independent. Hene dim(Tymq (S0j)) � e0 + i �e+ 1. This leads to a ontradition with the equality dim(Sj) = e and proves the lemma.Denote g = fk1+1 � � � fk. Choose 0 < � 2 R satisfying the following properties:(a) � is less than the absolute values of all ritial values of the restritions of g oni-faets Pi (note that Sard's theorem implies the �niteness of the number of all ritialvalues, moreover they all belong to R due to Lemma 4);(b) for any Pi suh that dim(Ki \ Pi) = i the dimensiondim�fg = �g \ l(S0j) \Ki \ Pi� � i� 2for every onneted omponent S0j of a stratum Sj suh that S0j is not ontained in Pi.Observe that due to Lemma 7 there exists at most �nite number of � violating this on-dition beause dim(l(S0j) \Ki \ Pi) � i � 1, together with (a) this justi�es the existeneof the required �.Denote K 0i = Ki \ fg = �g.Lemma 8. K 0i = st0(Ki \ fjg � �j < "1g):Proof. First prove the inlusion �. 15



Denote by F the real losure of the �eld R("2; "3). Sine Ki is de�ned over F we haveKi = (Ki \ Fn)(R3). Apply Lemma 2 to the �elds R � F � R3 taking the set Ki \ Fn asV . Then st0(Ki \ Fn) = st0(Ki) = Ki.Let x 2 K 0i. It follows that there exists a point y 2 Ki \ Fn suh that st0(y) = x.Hene st0(g(y)) = g(st0(y)) = g(x) = �. Then (g(y) � �) 2 F is in�nitesimal relative toR. Taking into the aount the representation of g(y) � � as a Puiseux series in "3 withthe oeÆients being, in their turn, Puiseux series in "2 (see Setion 2), we dedue thatjg(y)� �j < "1. Thus y 2 Ki \ fjg � �j < "1g, whih proves the inlusion �.To prove the inlusion � take a point x 2 st0(Ki\fjg��j < "1g). Then, in partiular,x 2 st0(Ki) = Ki. There exists a point y 2 Ki \fjg��j < "1g suh that st0(y) = x. Then� = st0(g(y)) = g(st0(y)) = g(x). The lemma is proved.Lemma 9. Let for an i-fae Pi of P the dimension dim(W \ Pi) = i. The followingequality of the varieties holds:K 0i \ Pi = fg = �g \ ffk1+1 > 0; : : : ; fk > 0g \ Piand, moreover, this variety is a nonempty smooth ompat hypersurfae in P i. Besides,dim�l(K 0i n Pi) \K 0i \ Pi� � i� 2:Proof. First we prove the inlusion(K 0i \ Pi) � fg = �g \ ffk1+1 > 0; : : : ; fk > 0g \ Pi:We haveffk1+1 > 0; : : : ; fk > 0g \ Pi = ff = 0; fk1+1 > 0; : : : ; fk > 0g \ Pi =W \ Pisine dim(W \ Pi) = i. By Lemma 5,(ff = 0; fk1+1 > 0; : : : ; fk > 0g \ Pi) � (Ki \ Pi):Interseting both sides with the variety fg = �g, we obtain the � inlusion.To prove the inlusion � observe that fj is nonnegative everywhere on Ki for eahk1 + 1 � j � k beause Ki � l(W ) (see Setion 3).On the other hand, fj is nonzero everywhere on K 0i for k1 + 1 � j � k sinefk1+1 � � � fk = �. Thus, K 0i � ffk1+1 > 0; : : : ; fk > 0g whih proves � inlusion.Now let us prove that K 0i \Pi is a nonempty smooth hypersurfae in P i. Observe thatK 0i \ Pi is bounded beause P is ompat, besides K 0i \ Pi is losed sine its losureK 0i \ l(Pi) = K 0i \ P i � ffk1+1 > 0; : : : ; fk > 0g \ P i =W \ P i =W \ Pi � Pi:Sine dim(ffk1+1 > 0; : : : ; fk > 0g\Pi) = i, eah onneted omponent of the set ffk1+1 >0; : : : ; fk > 0g\Pi ontains a onneted omponent of the smooth hypersurfae fg = �g\P i16



(in P i) due to Morse theory (see [Hi 76℄) and in view of (a). Moreover, eah onnetedomponent of the hypersurfae fg = �g \ P i either lies ompletely in the set ffk1+1 >0; : : : ; fk > 0g \ Pi or does not interset this set.Finally, the inequality dim�l(K 0i n Pi) \K 0i \ Pi� � i � 2immediately follows from (b). The lemma is proved.The next setion is dediated to the proof of the following lemma.Lemma 10. The number of i-faes Pi of P suh that K 0i \ Pi is a nonempty ompatsmooth hypersurfae in P i anddim�l(K 0i n Pi) \K 0i \ Pi� � i� 2;does not exeed (nkd)O(n).Theorem 2 immediately follows from Lemmas 9 and 10.5. Extremal points of a linear funtion on K 0iTake a linear form L = 1X1 + � � � + nXn with generi oeÆients 1; : : : ; n 2 R.Fix Pi satisfying the onditions of Lemma 10 and denote by L(Pi) the restrition of L onP i. Then L(Pi) attains its maximal value, say �(Pi)0 , on the ompat set K 0i \ Pi. SineL(Pi) is a generi linear form on P i as well, the following two properties are ful�lled:(i) L(Pi) attains the value �(Pi)0 at a unique point v 2 K 0i \ Pi (f. [Hi 76℄);(ii) the point v does not belong to l(K 0i n Pi) (f. the onditions of Lemma 10).Indeed, the semialgebri set of linear forms on P i for whih the properties (i), (ii) fail,has the dimension less than the dimension of the set of all linear forms on P i, thus for thegeneri form L the properties (i), (ii) are valid.Denote by V a onneted omponent of K 0i \ Pi whih ontains v. The property (ii)implies that there exists 0 < r 2 R suh that Bv(r) \K 0i = Bv(r) \ V . Thus, L attains aloal isolated maximum on K 0i at the point v by the property (i). Hene, there exists anelement 0 < �(Pi) 2 R suh that the values of L on the set �Bv(r=2) \ K 0i are less than�(Pi)0 � �(Pi).Lemma 11. The linear form L attains its maximal value �(Pi) on the setl(Ki \ fjg � �j < "1g) \ Bv(r=2)(say, at a point w) and the values of L on the setl(Ki \ fjg � �j < "1g) \ �Bv(r=2)17



are less than st0(�(Pi))� �(Pi). Moreover, st0(�(Pi)) = �(Pi)0 and st0(w) = v 2 Pi.Proof. Due to Lemma 8 and the Remark after Lemma 3 from Setion 2, we have:st0l(Ki \ fjg � �j < "1g) = K 0i:By the transfer priniple, L attains its maximum �(Pi) on the losed bounded set l(Ki \fjg � �j < "1g) \ l(Bv(r=2)) at some point w. Then st0(�(Pi)) = �(Pi)0 and st0(w) = v(due to (i)).Sine st0�l(Ki \ fjg � �j < "1g) \ �Bv(r=2)� � K 0i \ �Bv(r=2)we obtain the seond statement of the lemma from the de�ning property of �(Pi). Lemmais proved.Lemma 11 states that L attains a loal maximum on the set l(Ki \fjg��j < "1g) ata point w suh that st0(w) 2 Pi. In order to estimate the number of suh loal maximumvalues of L we shall now onstrut a smooth hypersurfae whih is in�nitely lose tol(Ki \ fjg � �j < "1g). After that it will be suÆient to bound the number of loalmaxima of L on this smooth hypersurfae.For a point y denote the oordinates of the gradientgrady(f (y) � "3) = (u1; : : : ; un�i)(f. De�nition). The set Ki\fjg��j < "1g of the points y = (y1; : : : ; yn) an be representedas a union of n� i semialgebrai sets of the formU (i0) = ff � "3 = 0; u2i0 > 0; p1 > 0; : : : ; ps > 0g � Rn3 ; 1 � i0 � n� ifor some algebrai funtions p1; : : : ; ps of the quadrati-irrational type introdued in Se-tion 1, i.e., rational funtions (with oeÆients from R2) in y1; : : : ; yn and inqu2i0 ; qu2i0 + u2�i0 (2) ; : : : ;qu2i0 + u2�i0 (2) + � � �+ u2�i0 (n�i) (3)(see Lemma 1). Here �i0 is a permutation of f1; 2; : : : ; n � ig suh that �i0 (1) = i0 (f.Setion 1).Denote q = �"25 � (f � "3)2�(u2i0 � "4)(p1 � "4) � � � (ps � "4):Introdue semialgebrai setsU (i0)0 = f"25 > (f � "3)2; u2i0 > "4; p1 > "4; : : : ; ps > "4g � Rn5and U (i0) = fq = "6g \ �U (i0)0 �(R6) � Rn6 :18



Lemma 12 (f. Lemmas 1, 4 in [GV 92℄).st3(U (i0)) = l(U (i0)):Proof. Let us �rst show that to prove the lemma it is suÆient to establish the equalityst5(U (i0)) = �U (i0)0 : (4)Indeed, due to Lemma 3a),st3(�U (i0)0 ) � st3(l(U (i0)0 )) = l(U (i0));thus, due to (4), st3(U (i0)) � l(U (i0)).On the other hand, l(U (i0)) = �(U (i0)) beause U (i0) � ff = "3g and thereby U (i0)ontains no internal points. Hene, Lemma 3b) implies that l(U (i0)) � st3(�U (i0)0 ). Itfollows from (4) that l(U (i0)) � st3(U (i0)). This would prove the lemma, provided that(4) holds.Now we prove (4) starting with the inlusion �.Let a point y 2 U (i0) and the standard part x = st5(y) be de�nable. Then q(x) = 0and "25 � (f � "3)2; u2i0 � "4; p1 � "4; : : : ; ps � "4:Suppose that x =2 �U (i0)0 . Therefore there exists 0 < r0 2 R5 suh that eitherBx(r0) � U (i0)0 or Bx(r0) \ U (i0)0 = ;.If Bx(r0) � U (i0)0 we get a ontradition with q(x) = 0.If Bx(r0)\U (i0)0 = ; we onlude that the intersetion Bx(r0)\ (U (i0)0 )(R6) = ;. Siney belongs to this intersetion we again get a ontradition whih proves tie inlusion � in(4). To prove the inlusion � in (4) take a point x 2 �U (i0)0 . Observe that q is positiveeverywhere on U (i0)0 and q vanishes everywhere on �U (i0)0 , in partiular q(x) = 0.Suppose that x =2 st5(U (i0)). Then there exists 0 < r1 2 R5 suh that Bx(r1)\U (i0) =; (f. the proof of Lemma 2). Consider the deomposition of the intersetionBx(r1) \ U (i0)0 =[j Ujinto its onneted omponents (whih are also semialgebrai sets and there is a �nitenumber of them, see e.g. [GV 88℄). Sine x 2 l(Bx(r1) \ U (i0)0 ) there is j0 for whihx 2 l(Uj0). All the values of the polynomial q on Uj0 form a onneted semialgebraisubset � � R5. So, � is an interval (or a point) with endpoints �1; �2 2 R5; �1 � �2,the set � ould be either losed, either open, or semi-open. Observe that �1 � 0 beauseUj0 � U (i0)0 . On the other hand, �1 = 0 sine q(x) = 0 and x 2 l(Uj0). Obviously,�2 > 0. Due to the transfer priniple, q attains on the set U (R6)j0 all the values from the19



interval (0; �2)(R6). In partiular, there exists a point y 2 U (R6)j0 suh that q(y) = "6. Theny 2 Bx(r1) \ U (i0). The obtained ontradition ompletes the proof of the lemma.Lemma 13. For a ertain 1 � i0 � n � i the linear form L attains its maximal value�(Pi)1 on the set l(U (i0)) \ Bv(r=2) at a ertain point w1, and the values of L on theset l(U (i0)) \ �Bv(r=2) are less than st0(�(Pi)1 ) � �(Pi). Moreover, st3(�(Pi)1 ) = �(Pi) andst0(w1) = v 2 Pi.Proof. Sine Ki \ fjg � �j < "1g = [1�i0�n�iU (i0)there is 1 � i0 � n� i suh that w 2 l(U (i0)) (see Lemma 11). The linear form L attainsits maximum �(Pi)1 on the bounded losed set l(U (i0)) \ l(Bv(r=2)) at a point w1. UsingLemma 12 and the equaliy st3(U (i0)) = st3(l(U (i0))) (see the Remark in Setion 2), weget: st3(�(Pi)1 ) = �(Pi). Due to (i), st0(w1) = v.The values of L on the set l(U (i0)) \ �Bv(r=2) are less than �(Pi)0 � �(Pi) due to thesimilar statement in Lemma 11, taking into the aount thatst3(l(U (i0)) \ �Bv(r=2)) � �Bv(r=2):Lemma is proved.Sine w1 is a loal maximum of L on the set l(U (i0)) we obtain the following orollary.Corollary. The number of i-faes Pi satisfying the onditions of Lemma 10 does notexeed the number of all the values of loal maxima of the linear form L on the set[1�i0�n�i l(U (i0)):Lemma 14. U (i0) is a smooth losed hypersurfae.Proof. First we prove that l(U (i0)) = U (i0). Let a point x 2 l(U (i0)). Thenq(x) = "6; "25 � (f(x) � "3)2; u2i0(x) � "4; p1(x) � "4; : : : ; ps(x) � "4:Neither among the latter inequalities ould onvert into an equality beause q(x) ="6 6= 0, hene x 2 U (i0).Observe that in the open semialgebrai set fu2i0 > 0g all the square roots (3) arepositive. Therefore all algebrai funtions p1; : : : ; ps ouring in U (i0) are smooth, hene qis smooth as well. Beause of Lemma 4, "6 is not a ritial value of q in the set fu2i0 > 0g.Then the impliit funtion theorem implies the lemma.Finally, let us prove the following lemma.20



Lemma 15. The number of loal maxima of L on U (i0) does not exeed (nkd)O(n).Proof. Beause of Lemma 14, the number of loal maxima of L on U (i0) does not exeedthe number of onneted omponents of the semialgebrai setM = f0 = q � "6 = i �q�Xj � j �q�Xi ; 1 � i < j � ng � Rn6(by the Lagrange multiplier theorem, see, e.g., Ch. 4 in [Th 77℄ and taking into the aountthe transfer priniple).Replae eah ourrene of the square rootqu2i0 + u2�i0 (2) + � � �+ u2�i0 (m);1 � m � n � i in q by a new variable Zm. Denote the resulting rational funtion byQ 2 R5[X1; : : : ;Xn℄(Z1; : : : ; Zn�i) (f. Setion 1).Introdue the semialgebrai setM = f0 = Q� "6 = i �Q�Xj � j �Q�Xi ; 1 � i < j � n;Zm > 0; Z2m = u2i0 + u2�i0 (2) + � � �+ u2�i0 (m); 1 � m � n� ig � R2n�i6 :Consider the linear projetion� : R2n�i6 �! Rn6 ; �(X1; : : : ;Xn; Z1; : : : ; Zn�i) = (X1; : : : ;Xn):Then �(M) = M . Hene the number of onneted omponents of M is less or equal tothe number of onneted omponents of M.Observe that the degrees of rational funtions ouring in M an be bounded fromabove by (knd)O(1) due to Lemma 1 and De�nition. Therefore, the number of onnetedomponents of M does not exeed (knd)O(n) by [Mi 64℄.This ompletes the proof of the lemma.Lemma 15 together with Corollary to Lemma 13 imply Lemma 10 and thereby The-orems 2 and 1.6. Lower bounds for onrete polyhedraIn this setion we give an appliation of the lower bound from Theorem 1 to a onretelass of polyhedra. We follow the onstrution of yli polyhedra (see [MS 71℄), used inthe analysis of the simplex method.Take any m > 
(n2) points in Rn of the form (tj ; t2j ; : : : ; tnj ) for pairwise distinttj ; 1 � j � m. Consider the onvex hull of these points and denote by Pn;m � Rn itsdual polyhedron [MS 71℄. Then Pn;m has m faes of the highest dimension n� 1 and thenumber of faes of all dimensionsN > �m� bn=2bn=2 � > m
(n)21



(see [MS 71℄).Therefore, Theorem 1 implies that the omplexity of testing membership to Pn;m isbounded by 
(logN) > 
(n logm).We would like to mention that Setion 4 of [GKV 94℄ provides a weaker bound 
(logm)even for algebrai omputation trees.7. Open problems1. Is it possible to get rid of any lower bound assumption on N in Theorem 1?2. Is it possible to extend the result of Theorem 1 to algebrai omputation trees?AknowledgementsWe thank Dima Burago, Friedhelm Meyer auf der Heide, Kolia Ivanov, Andy Yaofor a number of useful disussions and Anders Bj�orner for a help with the example fromSetion 6.
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