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tWe introdu
e a new method of proving lower bounds on the depthof algebrai
 d-degree de
ision trees and apply it to prove a lower bound
(logN) for testing membership to an n-dimensional 
onvex polyhedronhaving N fa
es of all dimensions, provided that N > (nd)
(n). Thisbound apparently does not follow from the methods developed by M.Ben-Or, A. Bj�orner, L. Lovasz, and A. Yao [B. 83℄, [BLY 93℄, [Y 94℄be
ause topologi
al invariants used in these methods be
ome trivial for
onvex polyhedra.
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Introdu
tionA problem of testing membership to a semialgebrai
 set � was 
onsidered by manyauthors (see, e.g., [B 83℄, [B 92℄, [BKL 92℄, [BL 92℄, [BLY 92℄, [MH 85℄, [GKV 94℄, [Y 92℄, [Y93℄, [YR 80℄ and the referen
es there). We 
onsider a problem of testing membership to a
onvex polyhedron P in n-dimensional spa
e Rn. Let P have N fa
es of all the dimensions.In [MH 85℄ it was shown, in parti
ular, that for this problem O(logN)nO(1) upper boundis valid for the depth of linear de
ision trees, in [YR 80℄ a lower bound 
(logN) wasobtained. A similar question was open for algebrai
 de
ision trees. In [GKV 94℄ we proveda lower bound 
(logN) for the depth of algebrai
 de
ision trees testing membership to P ,provided that N > (dn)
(n2). In the present paper we weaken the latter assumption toN > (dn)
(n). In this new form the bound looks plausible to be appli
able to polyhedragiven by 2O(n) linear 
onstraints (like in \knapsa
k" problem), thus having 2O(n2) fa
es.In the present paper we apply the obtained lower bound to a 
on
rete 
lass of polyhedragiven by 
(n2) linear 
onstraints and with n
(n) fa
es.In [GV 94℄ the lower bound 
(plogN ) was proved for the PfaÆan 
omputation treemodel. This model uses at gates PfaÆan fun
tions, the latter in
lude all major elementarytrans
endental and algebrai
 fun
tions.Several topologi
al methods were introdu
ed for obtaining lower bounds for the 
om-plexity of testing membership to � by linear de
ision trees, algebrai
 de
ision trees, alge-brai
 
omputation trees (the de�nitions one 
an �nd in, e.g., [B 83℄).In [B 83℄ a lower bound 
(logC) was proved for the most powerful among the 
on-sidered in this area 
omputational models, namely algebrai
 
omputation trees, where Cis the number of 
onne
ted 
omponents of � or of the 
omplement of �. After that, in[BLY 92℄, a lower bound 
(log�) for linear de
ision trees was proved, where � is Euler
hara
teristi
 of �, in [Y 92℄ this lower bound was extended to algebrai
 
omputation trees.A stronger lower bound 
(logB) was proved later in [BL 92℄, [B 92℄ for linear de
isiontrees, where B is the sum of Betti numbers of � (obviously, C;� � B). In [Y 94℄ the latterlower bound was extended to the algebrai
 de
ision trees.Unfortunately, all the mentioned topologi
al tools fail when � is a 
onvex polyhedron,be
ause B = 1 in this situation. The same is true for the method developed in [BLY 92℄for linear de
ision trees, based on the minimal number of 
onvex polyhedra onto whi
h �
an be partitioned.To handle the 
ase of a 
onvex polyhedron, we introdu
e in Se
tions 1, 3 anotherapproa
h whi
h di�ers drasti
ally from [GKV 94℄. Let W be a semialgebrai
 set a

eptedby a bran
h of an algebrai
 de
ision tree. In Se
tion 3 we make an \in�nitesimal pertur-bation" of W whi
h transforms this set into a smooth hypersurfa
e. Then we des
ribe thesemialgebrai
 subset of all the points of the hypersurfa
e in whi
h all its prin
ipal 
urva-tures are \in�nitely large" (the set K0 in Se
tion 3). We also 
onstru
t a more general setKi (for ea
h 0 � i � n�1) of the points with in�nitely large 
urvatures in the interse
tionswith the shifts of a �xed (n � i)-dimensional plane. Se
tion 1 provides a short system ofinequalities for determining Ki. It is done by developing an expli
it symboli
 
al
ulis forprin
ipal 
urvatures.In Se
tion 2 we introdu
e some ne
essary notions 
on
erning in�nitesimals and apply2



them to de�ne the \standard part" Ki = st(Ki) � Rn. We show (Corollary to Lemma 5in Se
tion 3) that to obtain the required bound for the number of i-fa
es Pi of P su
hthat dim(Pi \W ) = i it is suÆ
ient to estimate the number of fa
es Pi with dim(Pi \Ki) = i. In Se
tion 4 we redu
e the latter bound to an estimate of the number of lo
almaxima of a generi
 linear fun
tion L on Ki with the help of a Whitney strati�
ationof Ki. To estimate these lo
al maxima we introdu
e in Se
tion 5 another in�nitesimalperturbation of Ki and obtain a new smooth hypersurfa
e. At this point a diÆ
ulty arisesdue to the fa
t that Ki (and therefore, the related smooth hypersurfa
e) are de�ned bysystems of inequalities involving algebrai
 fun
tions, rather than polynomials, be
ause inthe expressions for 
urvatures (in Se
tion 1) square roots of polynomials appear. Werepresent the set of lo
al maxima of L on the smooth hypersurfa
e by a formula of the�rst-order theory of real 
losed �elds with merely existential quanti�ers and quanti�er-freepart �. We estimate in Se
tion 5 (invoking [Mi 64℄ in a usual way) the number of the
onne
ted 
omponents of the semialgebrai
 set de�ned by �.In Se
tion 6 we des
ribe a parti
ular 
lass of polyhedra (dual to 
y
li
 polyhedra [MS71℄) having large numbers of fa
es, for whi
h Theorem 1 provides a nontrivial lower bound.Now let us formulate pre
isely the main result. We 
onsider algebrai
 de
ision treesof a �xed degree d (see, e.g., [B 83℄, [Y 93℄). Suppose that su
h a tree T , of the depth k,tests a membership to a 
onvex polyhedron P � Rn. Denote by N the number of fa
es ofP of all dimensions from zero to n� 1. In this paper we agree that a fa
e is \open", i.e.,does not 
ontain fa
es of smaller dimensions.Theorem 1. k � 
(logN);provided that N � (dn)
n for a suitable 
 > 0.Let us �x a bran
h of T whi
h returns \yes". Denote by fi 2 R[X1; : : : ;Xn℄; 1 � i � kthe polynomials of degrees deg(fi) � d, atta
hed to the verti
es of T along the �xed bran
h.Without loss of generality, we 
an assume that the 
orresponding signs of polynomials alongthe bran
h are f1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0:Then the (a

epted) semialgebrai
 setW = ff1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0glies in P .Our main te
hni
al tool is the following theorem.Theorem 2. The number of fa
es P 0 of P su
h that dim(P 0) = dim(P 0 \W ) is boundedfrom above by (knd)O(n).Let us dedu
e Theorem 1 from Theorem 2.For ea
h fa
e P 0 of P there exists at least one bran
h of the tree T with the output\yes" and having an a

epted set W1 � Rn su
h thatdim(W1 \ P 0) = dim(P 0):3



Sin
e there are at most 3k di�erent bran
hes of T , the inequalityN < 3k(knd)O(n)follows from Theorem 2. This inequality and the assumption N > (dn)
n (for a suitable
) imply k � 
(logN), whi
h proves Theorem 1.Note that in the 
ase k1 = 0 for an open set W and ea
h fa
e P 0 of P we haveP 0 \W = ;. Thus in what follows we 
an suppose that k1 � 1.1. Computer algebra for 
urvaturesLet a polynomial F 2 R[X1; : : : ;Xn℄ with deg(F ) < d. Assume that at a pointx 2 fF = 0g � Rn the gradient gradx(F ) = � �F�X1 ; : : : ; �F�Xn�(x) 6= 0. Then, a

ordingto the impli
it fun
tion theorem, the real algebrai
 variety fF = 0g � Rn is a smoothhypersurfa
e in a neighbourhood of x.Fix a point x 2 fF = 0g. Consider a linear transformation X �! AX + x, where Ais an arbitrary orthogonal matrix su
h thatu1 = Ae1 + x = gradx(F )kgradx(F )kis the normalized gradient and e1; : : : ; en is the 
oordinate basis at the origin. Then thelinear hull of ve
tors uj = Aej + x; 2 � j � n is the tangent spa
e Tx to fF = 0g at x.Denote by U1; : : : ; Un the 
oordinate variables in the basis u1; : : : ; un. By the impli
itfun
tion theorem, there exists a smooth fun
tion Hx(U2; : : : ; Un) de�ned in a neighbour-hood of x on Tx su
h that fF = 0g = fU1 = Hx(U2; : : : ; Un)g in this neighbourhood.Let u1 = (~�1; : : : ; ~�n) with ~�i0 6= 0. Take any permutation �i0 of f1; : : : ; ng su
hthat �i0 (1) = i0. Denote (�1; : : : ; �n) = (~��i0 (1); : : : ; ~��i0 (n)) (thus �1 6= 0) and �i =p�21 + � � �+ �2i ; 1 � i � n. Obviously �i > 0 and �n = 1.As A one 
an take the following produ
t of (n� 1) orthogonal matri
es:Y0�k�n�20BBBBBBBBBBB� �n�k�1�n�k 0 � � � 0 �n�k�n�k 0 � � � 00 1 � � � 0 0 0 � � � 0... ... . . . ... ... ... . . . ...0 0 � � � 1 0 0 � � � 0��n�k�n�k 0 � � � 0 �n�k�1�n�k 0 � � � 00 0 � � � 0 0 1 � � � 0... ... . . . ... ... ... . . . ...0 0 � � � 0 0 0 � � � 11CCCCCCCCCCCA(in kth matrix of this produ
t the element �n�k�1�n�k o

urs at the positions (1; 1) and (n�k; n� k)).Denote Fx(U1; : : : ; Un) = F (AT (U1; : : : ; Un) + x). Di�erentiating this fun
tion twi
eand taking into the a

ount that Fx(Hx(U2; : : : ; Un); U2; : : : ; Un) = 0 in a neighbourhoodof x in Tx we get �2Fx�U1�Uj �Hx�Ui + �Fx�U1 �2Hx�Ui�Uj + �2Fx�Ui�Uj = 0 (1)4



for 2 � i; j � n.Sin
e �Hx�Ui ???(U2;:::;Un)=0 = 0 and �Fx�U1 ???(U1;:::;Un)=0 = kgradx(F )k 6= 0;evaluating the equality (1) at x (i.e., substituting (U1; : : : ; Un) = 0) we obtain (
f. [Mi64℄): � �2Hx�Ui�Uj �???(U2;:::;Un)=0 = (kgradx(F )k)�1� �2Fx�Ui�Uj �???(U1;:::;Un)=0: (2)Introdu
e the symmetri
 (n� 1)� (n� 1)-matrix (the matrix of Weingarten map [Th77℄, Ch.9) Hx = � �2Hx�Ui�Uj �???(U2;:::;Un)=0:Its eigenvalues �2; : : : ; �n belong to R and are 
alled the prin
ipal 
urvatures of the hy-persurfa
e fF = 0g at x [Th 77℄, Ch.12.Now we des
ribe symboli
ally the set of all points x with all prin
ipal 
urvaturesgreater than some parameter �.Denote by �(Z) the 
hara
teristi
 polynomial of the matrix Hx. The roots of � areexa
tly �2; : : : ; �n. Due to Sturm theorem, every �2; : : : ; �n is greater than � if and onlyif �l(�)�l+1(�) < 0; 0 � l � n � 2, where �0 = �; �1 = �00 and �2; : : : ; �n�1 is thepolynomial remainder sequen
e of �0; �1 [Lo 82℄. Obviously degZ(�l) = n� l� 1.Observe that every element of the matrix A 
an be represented as a fra
tion 
1=
2where 
2 = ��11 � � ���n�1n�1 kgradx(F )k�and 
1 = �(�1; : : : ; �n�1;X1; : : : ;Xn) is a polynomial in�1(X1; : : : ;Xn); : : : ; �n�1(X1; : : : ;Xn);X1; : : : ;Xnwith � 2 R[Z1; : : : ; Zn�1;X1; : : : ;Xn℄. Moreover, �1 + � � � + �n�1 + � � 2(n � 1) anddeg(�) � d(n � 1). Hen
e all elements of A are algebrai
 fun
tions in X1; : : : ;Xn ofquadrati
-irrational type. By the degree of su
h quadrati
-irrational fun
tion we meanmaxfdeg(�); �1 + � � � + �n�1 + �g. In what follows we deal with algebrai
 fun
tions inX1; : : : ;Xn of the similar type.Formula (2) and Habi
ht's theorem [Lo 82℄ imply that deg(�l) � (nd)O(1).We summarize a des
ription of the set of all points with large prin
ipal 
urvatures inthe following lemma.Lemma 1. Fix 1 � i0 � n. The set of all points x 2 fF = 0g su
h that gradx(F ) =(�̂1; : : : ; �̂n) has �̂i0 6= 0 and all prin
ipal 
urvatures of the hypersufa
e fF = 0g at x aregreater than � 
an be represented as fF = 0; g1 > 0; : : : ; gn > 0g. Here g1 = �̂2i0 ; g2; : : : ; gnare polynomials in � of degrees at most 2n with 
oeÆ
ients being quadrati
-irrationalalgebrai
 fun
tions (see above) of degrees less than (nd)O(1).5



Remark. Observe that a set given by a system of inequalities involving real algebrai
fun
tions is semialgebrai
. Hen
e the set introdu
ed in Lemma 1 is semialgebrai
.2. Cal
ulis with in�nitesimalsThe following de�nitions 
on
erning in�nitesimals follow [GV 88℄.Let F be an arbitrary real 
losed �eld (see, e.g., [L 65℄) and an element " be in�nites-imal relative to elements of F. The latter means that for any positive element a 2 Finequalities 0 < " < a are valid in the ordered �eld F("). Obviously, the element " is tran-s
endental over F. For an ordered �eld F0 we denote by ~F0 its (unique up to isomorphism)real 
losure, preserving the order on F0 [L 65℄.Let us remind some other well-known statements 
on
erning real 
losed �elds. APuiseux (formal power-fra
tional) series over F is series of the kindb =Xi�0 ai"�i=�;where 0 6= ai 2 F for all i � 0, integers �0 < �1 < : : : in
rease and the natural number� � 1. The �eld F(("1=1)) 
onsisting of all Puiseux series (appended by zero) is real
losed, hen
e F(("1=1)) � gF(") � F("). Besides the �eld F[p�1℄(("1=1)) is algebrai
ally
losed.If �0 < 0, then the element b 2 F(("1=1)) is in�nitely large. If �0 > 0, then b isin�nitesimal relative to elements of the �eld F. A ve
tor (b1; : : : ; bn) 2 �F(("1=1))�n is
alled F-�nite if ea
h 
oordinate bi; 1 � i � n is not in�nitely large relative to elementsof F.For any F-�nite element b 2 F(("1=1)) its standard part st(b) is de�nable, namelyst(b) = a0 in the 
ase �0 = 0 and st(b) = 0 if �0 > 0. For any F-�nite ve
tor (b1; : : : ; bn) 2�F(("1=1))�n its standard part is de�ned by the equalityst(b1; : : : ; bn) = (st(b1); : : : ; st(bn)):For a set W � �F(("1=1))�n we de�nest(W) = fst(w) : w 2 W and w is F��niteg:The following \transfer prin
iple" is true [T 51℄. If F0; F00 are real 
losed �elds withF0 � F00 and P is a 
losed (without free variables) formula of the �rst order theory of the�eld F0, then P is true over F0 if and only if P is true over F00.In the sequel we 
onsider in�nitesimals "1; "2; : : : su
h that "i+1 is in�nitesimal relativeto the real 
losure Ri of the �eld R("1; : : : ; "i) for ea
h i � 0. We assume that R0 = R.For an Ri-�nite element b 2 Ri+1 its standard part (relative to Ri) denote by sti(b) 2Ri. For any b 2 Rj ; j > i we de�ne sti(b) = sti(sti+1(: : : stj�1(b) : : :). For a semialgebrai
set V � Fn1 de�ned by a 
ertain formula � of the �rst order theory of the real 
losed �eldF1 and for a real 
losed �eld F2 � F1 we de�ne the 
ompletion V (F2) � Fn2 of V as thesemialgebrai
 set given in Fn2 by the same formula � (we say that V (F2) is de�ned over6



F1). We omit super-index (F2) in V (F2) when this does not lead to ambiguity. In a similarway one 
an de�ne 
ompletions of polynomials and algebrai
 fun
tions.Observe that for any polynomial f 2 Ri[X1; : : : ;Xn℄ and a point w 2 Rnj ; j � i su
hthat sti(y) is de�nable, we have sti(f(y)) = f(sti(y)).Denote by Bx(r) the open ball in Rni 
entered at x and of radius r, and by k � k the
ompletion of Eu
lidean distan
e fun
tion.The following lemma shows that the standard part of a semialgebrai
 set 
oin
ideswith the standard part of its 
ompletion.Lemma 2 Let Rm � F � Rj where F is a real 
losed �eld and V � Fn is a semialgebrai
set de�ned over F. Then stm(V ) = stm(V (Rj)).Proof. The in
lusion stm(V ) � stm(V (Rj))is trivial.To prove the opposite in
lusion take a point x 2 stm(V (Rj)) and 
onsider a semialge-brai
 set fkx� yk2 : y 2 V g � F. This set is a �nite union of (either 
losed, either openor semi-open) intervals. This is obvious for a semialgebrai
 subset of R, for an arbitraryreal 
losed �eld this follows from the transfer prin
iple. Let ! be the left endpoint of theleft-most among these intervals. If x =2 stm(V ) then there exists 0 < r0 2 Rm su
h that! > r20, hen
e Bx(r0) \ V = ;. By the transfer prin
iple the 
ompletion of the latter setis also empty: Bx(r0) \ V (Rj) = ;. This 
ontradi
ts to the in
lusion x 2 stm(V (Rj)) andproves the lemma.For a subset E � Rnm denote by 
l(E) its 
losure in the topology with the base of allopen balls. Denote by �E the boundaryfy 2 Rnm : for any 0 < r 2 Rm ; 6= By(r) \E 6= By(r)g:Note that the above de�nition of the 
losure, being applied to a semialgebrai
 setand written as a formula of �rst order theory of the �eld Rm, involves quanti�ers. Thefollowing lemma shows that the 
losure of a semialgebrai
 set 
an be des
ribed in terms ofin�nitesimals.Lemma 3 (
f. Lemma 1 [GV 92℄).a) Let polynomials h1; : : : ; hj ; g1; : : : ; gs 2 Rq[X1; : : : ;Xn℄and natural numbers q; l;m satisfy inequalities q < l < m. Consider semialgebrai
 setsV = fg1 � 0; : : : ; gs � 0; h1 > 0; : : : ; hj > 0g � Rnqand V = fg1 > �"m; : : : ; gs > �"m; h1 > "l; : : : ; hj > "lg � Rnm:7



Then 
l(V ) = stq(V) = stq(
l(V)):b) �V � stq(�V).Proof.a) Let x 2 
l(V) and the standard part y = stq(x) be de�nable. We prove that y 2 
l(V ).Consider a point y1 = stl(x), thengs1(y1) = stl(gs1(x)) � 0; 1 � s1 � s; hj1(y1) = stl(hj1 (x)) � "l; 1 � j1 � j:Hen
e y1 2 V (Rl).If y =2 
l(V ) then there exists 0 < r 2 Rq su
h that By(r)\V = ;. Due to the transferprin
iple the latter relation holds also over the �eld Rl, namely, By(r) \ V (Rl) = ;. Onthe other hand, y1 2 By(r) \ V (Rl) sin
e stq(y1) = y. The obtained 
ontradi
tion provesthe in
lusion stq(
l(V)) � 
l(V ).Now let y 2 
l(V ). Consider a semialgebrai
 set fky� zk2 : z 2 Vg � Rm. Then thisset is a �nite union of (either 
losed, either open or semi-open) intervals (
f. the proof ofLemma 2). Let ! be the left endpoint of the left-most among these intervals. If y =2 stq(V)then there exists an element r1; 0 < r1 2 Rq su
h that ! > r21, i.e., V \ By(r1) = ;. Onthe other hand, V \ By(r1) 6= ; sin
e y 2 
l(V ). Taking into the a

ount the in
lusionV � V, we get a 
ontradi
tion whi
h proves the in
lusion 
l(V ) � stq(V).b) Let x 2 �V and x =2 stq(�V). Then there exists an element r2; 0 < r2 2 Rq su
h thatBx(r2) \ �V = ; (
f. the proof of a)). Be
ause of a), x 2 stq(V), therefore Bx(r2) � V.On the other hand, V \Rnq � V , hen
e Bx(r2)\Rnq � V , this 
ontradi
ts to the in
lusionx 2 �V .Lemma is proved.In the proof of Lemma 3 a) it was a
tually shown that for any semialgebrai
 setU � Rnm we have stq(U) = stq(
l(U)); q < m.Corollary. Denote V0 = fh = 0; h1 > 0; : : : ; hj > 0g � Rnq ;V0 = fh = "m; h1 > "l; : : : ; hj > "lg � Rnm:Then stq(V0) � 
l(V0).To prove Corollary, in Lemma 3 a) instead of V 
onsider a modi�ed setf�2"m < h < 2"m; h1 > "l; : : : ; hj > "lg � V0:Lemma 4 (
f. Lemma 4a) in [GV 88℄). Let F be a smooth algebrai
 fun
tion de�nedon an open semialgebrai
 set U � Rni and determined by a polynomial with 
oeÆ
ients8



from Ri. Then "i+1 is not a 
riti
al value of F (i.e., grady(F ) does not vanish at any pointy 2 fF = "i+1g \ U).Proof. Sard's theorem [Hi 76℄ and the transfer prin
iple imply the �niteness of the setof all 
riti
al values of F , moreover this set lies in Ri.3. Curved pointsFor any i-fa
e Pi denote by P i the i-plane 
ontaining Pi.First let us redu
e Theorem 2 to the 
ase of 
ompa
t P . Let t be the minimaldimension of fa
es of P and Pt be a fa
e with dim(Pt) = t. Then P t is a t-plane.For ea
h i-fa
e Pi of P with dim(Pi \W ) = i 
hoose a point xPi 2 (Pi \W ) su
h thata suitable neighbourhood of xPi in Pi is 
ontained in W .First 
onsider the 
ase t � 1. Choose any hyperplane � transversal to Pt su
h that thepoints xPi for all i-fa
es Pi lie in one of two semi-spa
es of Rn n�, denote this semi-spa
eby ~�. Repla
e P by (P \ ~�) [ � redu
ing t by one. Continue this pro
ess while t � 1.Now 
onsider the 
ase t = 0.Observe that there exists a linear form L = �1X1+ � � �+�nXn with �j 2 R; 1 � j � nsu
h that for every 
 2 R the interse
tion fL + 
 � 0g \ P is 
ompa
t. Take 
 su
hthat xPi 2 P 0 = fL + 
 � 0g \ P for all Pi. The number of all i-fa
es P 0i of P 0 su
hthat dim(P 0i \W ) = i is greater or equal than the number of all i-fa
es Pi of P su
h thatdim(Pi \W ) = i. >From now on we assume, without loss of generality, that P is 
ompa
t.For an m-plane Q � Rnm and a point x 2 Rnm denote by Q(x) the m-plane 
ollinearto Q and 
ontaining x.Two planes Q1; Q2 of arbitrary dimensions are 
alled transversal ifdim�Q1(0) \Q2(0)� = maxf0; dim�Q1(0)�+ dim�Q2(0)� � ng:For every 0 � i < n 
hoose an (n� i)-plane �n�i (de�ned over R) transversal to anyfa
e of the polyhedron P .Denote f = f21 + � � �+ f2k1 .Fix 0 � i < n and denote by f (x) the restri
tion of f on �n�i(x) (for x 2 Rnm).De�nition. A point y 2 ff = "3g is 
alled i-
urved if grady(f (y) � "3) 6= 0, all prin
ipal
urvatures of the variety ff (y) = "3g � �n�i(y) at y are greater than "�12 and fk1+1(y) >"2; : : : ; fk(y) > "2.Remark. We �x an orthogonal basis in �n�i(0) with 
oordinates belonging to R. Thenin De�nition we 
onsider 
urvatures in �n�i(y) with respe
t to the basis obtained fromthe �xed one by the shift Y �! Y + y.One 
an 
onsider this de�nition as a kind of \lo
alization" of the key 
on
ept of anangle point from [GV 94℄.Denote the set of all i-
urved points by Ki � Rn3 . Observe that Ki is semialgebrai
due to the remark at the end of Se
tion 1. Denote Ki = st0(Ki) � Rn, this set is 
losedsemialgebrai
 by Lemma 5.1 from [RV 94℄. Corollary to Lemma 3 implies that Ki � 
l(W ).9



Lemma 5. Let for an i-fa
et Pi of P the dimension dim(W \Pi) = i. ThenW \Pi � Ki.Proof. Let x 2 W \ Pi. Then fj (x) > 
; k1 + 1 � j � k for a 
ertain 0 < 
 2 R.Hen
e there exists 0 < r 2 R su
h that for any point y from the open ball Bx(r) we havefj(y) > 
; k1 + 1 � j � k. Due to the transfer prin
iple, fj (y) > 
; k1 + 1 � j � k for anypoint y 2 Bx(r) \Rn3 .Observe that ff = "3g \�n�i(x) = ff (x) = "3g is a smooth hypersurfa
e in �n�i(x),be
ause x 2 Rn and "3 is not a 
riti
al value of the polynomial f (x) by Lemma 4.Our purpose is to prove that x = st2(y) (and a fortiori x = st0(y)) for a suitabley 2 ff = "3g\�n�i(x) su
h that all prin
ipal 
urvatures of the variety ff = "3g\�n�i(x)at the point y are greater than "�12 . This would imply Lemma 5 sin
e grady(f (x)� "3) 6= 0(see De�nition).The point x is a vertex of the polyhedron P = P \�n�i(x) be
ause �n�i is transversalto Pi. Note that for ea
h (n�i�1)-fa
e of P the normalized orthogonal ve
tor (in �n�i(x))to this fa
e has all 
oordinates in R. The vertex x belongs to at least (n � i) among(n� i� 1)-fa
es of the polyhedron P.Choose any (n � i � 1)-fa
es T1; : : : ; Tn�i of this kind. Denote by T � �n�j(x) the
losed 
one with vertex at x, formed by planes T 1; : : : ; Tn�i and 
ontaining P.Observe that for any point y 2 
l(Bx(r=2)) \Rn3 the inequalities fj (y) > 
; k1 + 1 �j � k hold, sin
e 
l(Bx(r=2)) � Bx(r). Therefore,ff = 0; fj > 
; k1 + 1 � j � kg \ 
l(Bx(r=2)) = ff = 0g \ 
l(Bx(r=2)):Denote D = T \ 
l(Bx(r=2)). For any point z 2 ff = "3g \�n�i(x) \ 
l(Bx(r=2)) wehave st2(z) 2 ff = 0g \�n�i(x) \ 
l(Bx(r=2)) (see Se
tion 2). Hen
est2(z) 2W \ �n�i(x) \ 
l(Bx(r=2)) � P \ 
l(Bx(r=2)) � D;in parti
ular, the distan
e �(z;D) from z to D is in�nitesimal relative to R2 (the distan
efrom a point to a bounded set 
losed in the topology with the base of all open balls, doesexist be
ause it is true over the �eld R, over arbitrary real 
losed �eld use the transferprin
iple).Sin
e the set ff = "3g\�n�i(x) \ 
l(Bx(r=2)) is bounded and 
losed in the topologywith the base of all open balls, there exists �0 = max �(z;D) (sf. the above arguing) wherez ranges over all points from ff = "3g \ �n�i(x) \ 
l(Bx(r=2)), and �0 is in�nitesimalrelative to R2.Let us shift (in �n�i) ea
h (n� i� 1)-dimensional plane among T 1; : : : ; T n�i parallelto itself outward the 
one T to the distan
e �0. The shifted planes form a new 
losed 
oneT 0 with a vertex x0. Obviously T � T 0. Observe that the distan
e kx�x0k is in�nitesimalrelative toR2. DenoteD0 = T 0\
l(Bx(r=2)). Then ff = "3g\�n�i(x)\
l(Bx(r=2)) � D0.In the plane �n�i(x) 
hoose a hyperplane Q su
h that the 
oordinates of the nor-malized ve
tor orthogonal to Q belong to R, and T 0 \ Q(x0) = fx0g. Take a hyperplaneQ(y) (in �n�i(x)) su
h that its distan
e from the point x0 is positive, belongs to R, andT 0 \ Q(y) 6= ;. Observe that T 0 \ Q(y) is 
ontained in a 
ertain (n � i � 1)-dimensionalopen ball B � Q(y) with the 
enter z su
h that the radius and the 
oordinates of the pointz � x0 belong to R. 10



There exists the unique (n � i � 1)-dimensional sphere S � �n�i(x) 
ontaining boththe point (x0 + z)=2 and the (n � i � 2)-dimensional sphere �B. Then the point x0 liesoutside the (n� i)-dimensional open ball B bounded by S.Denote by T 00 � �n�i(x) the 
losed 
one with the vertex at x0 and with the base S.Then T 0 � (T 00 n �T 00) be
ause T 0 \Q(y) � B � B.The interse
tion S \ �T 00 is a (n � i � 2)-dimensional sphere situated in a 
ertainhyperplane � (in �n�i(x)). Then S \ �T 00 divides S n (S \ �T 00) into two 
onne
ted
omponents S1 and S2. Let S1 be lo
ated in the same half-spa
e (in �n�i(x)) with theboundary � as the point x0.Denote by S1(�) the dilation of S1 with the 
oeÆ
ient � with respe
t to the point x0.Observe that the open 
one T 00 n �T 00 is the disjoint union of the dilations S1(�) over all0 < � 2 R3. There exists the minimal �0 > 0 su
h thatS1(�0) \ ff = "3g \ �n�i(x) \ 
l(Bx(r=2)) 6= ;:Then S1(�0) divides the open 
one T 00 n �T 00 into two 
onne
ted 
omponents, moreoverthe set ff = "3g \ �n�i(x) \ 
l(Bx(r=2))and all points from T 00 n �T 00 suÆ
iently 
lose to the point x0 belong to the di�erent
onne
ted 
omponents.Taking into the a

ount that f(x) = 0, and applying Lemma 3 from [GV 88℄ to thepolynomial f (x), we 
on
lude that there exists a point y0 2 ff = "3g \ �n�i(x) su
hthat the distan
e kx� y0k is in�nitesimal relative to R2. Evidently, y0 2 
l(Bx(r=2)) andky0 � x0k is also in�nitesimal relative to R2. Hen
e �0 is in�nitesimal relative to R2 aswell. Therefore, the radius � of the sphere S(�0) is also in�nitesimal relative to R2.Consider a pointy 2 S1(�0) \ ff = "3g \ �n�i(x) \ 
l(Bx(r=2)):Then ky � x0k is in�nitesimal relative to R2. Besides, the hypersurfa
es S1(�0) and ff ="3g \�n�i(x) (as well as the set ff = "3g \�n�i(x) \ 
l(Bx(r=2))) has the same tangentplane T (in �n�i(x)) at the point y.Let Hy be (n� i� 1)� (n� i� 1)-matrix introdu
ed in Se
tion 1 (with f (x) playingthe role of F and y playing the role of x). For any normalized ve
tor v 2 T the se
ondderivative vHyv of the fun
tion Hy (see Se
tion 1) in the dire
tion v is greater or equal tothe 
orresponding se
ond derivative for the sphere S(�0) (at the point y). The latter se
ondderivative equals to 1=� (
f. the proof of Theorem 4 in Ch. 12 [Th 77℄). In parti
ular, forthe prin
ipal 
urvatures of the hypersurfa
e ff (x) = "3g = ff = "3g\�n�i(x) (in �n�i(x)),the inequalities �2 � 1=�; : : : ; �n�i � 1=� are valid, hen
e �2 > "�12 ; : : : ; �n�i > "�12 .Thus, the point y is i-
urved (re
all that fj(y) > 
 > "2; k1 + 1 � j � k sin
ey 2 Bx(r)).Finally, st2(y) = x, be
ause kx � yk is in�nitesimal relative to R2 and x 2 Rn, afortiori st0(y) = x, i.e., x 2 Ki. Lemma is proved.Corollary. If dim(W \ Pi) = i then dim(Ki \ Pi) = i.11



This Corollary implies that in order to prove Theorem 2 it is suÆ
ient to bound thenumber of i-fa
ets Pi for whi
h dim(Ki \ Pi) = i.Lemma 6. For any smooth point z 2 Ki with the dimension dimz(Ki) � i + 1 thetangent plane Tz to Ki at z is not transversal to �n�i.Remark. In the parti
ular 
ase i = 0 Lemma 6 states that K0 
onsists of a �nite numberof points.Proof of Lemma 6. First let us redu
e the proof to the 
ase i = 0 (so assume in theredu
tion that dim(K0) � 0). Thus, let i � 1 and suppose that e = dimz(Ki) � i + 1.Assume that Tz is transversal to �n�i, then dim(Tz \�n�i(z)) = e� i. Take any (n� e)-plane R � �n�i(z) de�ned over R for whi
h Tz \R = fzg. Consider the linear orthogonalproje
tion � : Rn3 �! Re3 onto e-subspa
e along R. Then dim(�(Tz)) = e. Therefore,by the impli
it fun
tion theorem, �(Ki) � Re 
ontains e-dimensional ball B�(z)(r) for a
ertain 0 < r 2 R.For any point x 2 Ki there is a point x0 2 Ki su
h that st0(x0) = x, hen
e st0(�(Ki)) �B�(z)(r).For any point y 2 Rn the set K(y)0 of 0-
urved points of the restri
tion f (y) 
oin
ideswith �n�i(y) \ Ki a

ording to De�nition. Applying the assumption that the lemma isvalid for i = 0 to the polynomial f (y) we obtain the inequality dim�st0(�n�i(y)\Ki)� � 0(taking into the a

ount that f (y) is de�ned over R).Let us show that �(Ki) does not 
ontain a ball Bw(r1) for any 0 < r1 2 R and w 2 Rn3 .Assume the 
ontrary, then there exists a point w1 2 Bw(r1) \Re. Let y1 2 Rn be a pointsu
h that �(y1) = w1. Denote �0 = �(�n�i), then dim(�0) = e� i; �n�i = ��1(�0). Thenthe following inequalities hold:dimst0��0(w1) \ �(Ki)� � dimst0��0(w1) \ Bw(r1)� = e� i � 1:On the other hand, �0(w1) \ �(Ki) = �(Ki \ �n�i(y1)), and, therefore,dimst0��0(w1) \ �(Ki)� � dimst0�Ki \�n�i(y1)� � 0;(the latter inequality was proved above). The obtained 
ontradi
tion shows that �(Ki)does not 
ontain a ball Bw(r1) for any 0 < r1 2 R.We 
laim that for any ball By2(r2) � B�(z)(r) de�ned over R3 su
h that 0 < r2 2 R,the interse
tion By2(r2)\ ��(Ki) 6= ;. Assume the 
ontrary. Then either By2(r2) � �(Ki)or By2(r2) \ �(Ki) = ;. The in
lusion By2(r2) � �(Ki) is impossible as was shown above.If By2(r2) \ �(Ki) = ;, then st0(y2) =2 st0(�(Ki)), the latter 
ontradi
ts the in
lusionsBst0(y2)(r2=2) � B�(z)(r) � st0(�(Ki)) of the sets in the spa
e Re. This proves the 
laim.Observe that dim��(�(Ki))� � e � 1. Applying Lemma 5.1 from [RV 94℄, we getdimst0��(�(Ki))� � e� 1.On the other hand we shall now prove that st0��(�(Ki))� � B�(z)(r). This 
ontra-di
tion would 
omplete the proof of the redu
tion of the lemma to the 
ase i = 0. Indeed,12



let y3 2 B�(z)(r). Observe that the set fky � y3k2 : y 2 �(�(Ki))g is semialgebrai
.Hen
e, this set is a �nite union of points and intervals (
f. the proof of Lemma 2). Let! be the minimal among these points and the endpoints of these intervals. Suppose thaty3 =2 st0��(�(Ki))�, i.e., there does not exist y 2 �(�(Ki)) su
h that st0(y) = y3. Thus,! > r23 for a suitable 0 < r3 2 R. It follows that By3(r3) \ �(�(Ki)) = ;. This 
ontradi
tsto the proved above 
laim.Now let i = 0. Suppose that the statement of the lemma is wrong and dim(K0) =s � 1. There is a linear proje
tion � : Rn3 �! R3 onto one of the 
oordinates su
hthat �(K0) � [�01; �02℄ for some �01; �02 2 R; �01 < �02. Sin
e st0(�(K0)) � [�01; �02℄ and�(K0) � R3, being a semialgebrai
 set, 
onsists of a �nite union of intervals and points,there exist �1; �2 2 R; �1 < �2 su
h that �(K0) � [�1; �2℄(R3).Our nearest purpose is to prove the existen
e of a semialgebrai
 
urve C 0 � K0 su
hthat the mapping � : C 0 �! [�1; �2℄(R3) is bije
tive.For any point u 2 [�1; �2℄(R3) take the unique point vu 2 K0 su
h that �(vu) = ua

ording to the following rule (whi
h is, in fa
t, quite 
exible).A proje
tion �1(��1(u)) of ��1(u) onto the 
oordinate X1, being a semialgebrai
 set,is a union of a �nite number of points and intervals (with or without endpoints). Let �1; �2be the endpoints of the left-most interval.Consider four 
ases. In the �rst 
ase �1; �2 2 R3, then put � = (�1 + �2)=2. In these
ond 
ase the interval is given either by inequality X < �2 or by inequality X � �2, weput � = �2 � 1. In the third 
ase the interval is either fX > �1g or fX � �1g, we put� = �1 + 1. In the last 
ase the interval 
oin
ides with the whole R3, we put � = 0.Note that � 2 �1(��1(u)). We �x the �rst 
oordinate of the point vu under 
onstru
-tion equal to �.Consider the proje
tion �2(��1(u) \ fX1 = �g) onto the axis X2. Continuing in thesimilar way, after n steps we obtain a point vu = (�; : : :) 2 ��1(u).We de�ne the semialgebrai
 
urve C 0 to be the set of all the obtained points vu foru 2 [�1; �2℄(R3).The 
urve C 0 has only a �nite number of singular points (this is well-known for al-gebrai
 
urves over R, for arbitrary real 
losed �elds we use the transfer prin
iple). The
urve C 0 with deleted singular points is a �nite union of smooth 
onne
ted semialge-brai
 
urves. Take one of these 
urves C su
h that �(C) � [�3; �4℄(R3) for appropriate�3 < �4; �3; �4 2 R.Sin
e C � K0, Theorem 1 from Ch. 9 in [Th 77℄ implies that for any point w 2C its 
urvature k(w) is greater or equal to the minimum of prin
ipal 
urvatures of thehypersurfa
e ff = "3g at this point w, hen
e k(w) > "�12 (a

ording to De�nition).Consider the Gauss map G : C �! Sn�1 where Sn�1 is (n�1)-sphere and for a pointw 2 C the image G(w) is the normalized ve
tor tangent to C at w.Let us prove the following statement.For any reals �; l and any smooth semialgebrai
 
urve C with the proje
tion on a
ertain 
oordinate axis greater than l and with the 
urvature at ea
h point greater than�, there exists a hyperplane � su
h that the semialgebrai
 set � \ Sn�1 \ G(C) has thedimension zero and 
ontains at least bl�=�
 points. To prove this statement for a 
urveC de�ned over R observe that the length (with multipli
ities) of the image G(C) � Sn�113



equals to Zw2C k(w) � l�(
f. Ch. 10 in [Th 77℄). Observe that the length of a 
urve C1 � Sn�1 equals to the average(with respe
t to the uniform Borel measure) number of points of interse
tion C1\Sn�1\�over all hyperplanes �, multiplied by �. This implies the statement for the semialgebrai

urves C de�ned over R. For 
urves C de�ned over an arbitrary real 
losed �eld thisstatement follows from the transfer prin
iple (applied for �xed � and l).Applying the statement to the 
urve C with l = �4 � �3 and �xed arbitrary real �(taking into the a

ount that for any point w 2 C the 
urvature k(w) > "�12 > �), we
on
lude that there exists a ve
tor (�1; : : : ; �n) su
h that C 
ontains at least bl�=�
 pointsw1 with the tangent ve
tor tw1 to C at w1 satisfying the linear equation tw1 � (�1; : : : ; �n) =0, and there is a �nite number of su
h points.One 
an formulate the 
ondition tw1 � (�1; : : : ; �n) = 0 on a point w1 2 C as a formulaof the �rst-order theory of real 
losed �elds (for a �xed �). Therefore, there is only a �xed�nite number (depending on C) of su
h points w1, but sin
e one 
an take an arbitrary �,we get a 
ontradi
tion.This implies that dim(K0) � 0 and 
ompletes the proof of the lemma.4. Fa
ets of P and Whitney strati�
ation of KiRe
all that Ki, as any semialgebrai
 set, admits a Whitney strati�
ation (see, e.g.,[GM 88℄). Namely, Ki 
an be represented as a disjoint unionKi = Sj Sj of a �nite numberof semialgebrai
 sets, 
alled strata, whi
h are smooth manifolds and su
h that:(1) (frontier 
ondition) Sj1 \
l(Sj2 ) 6= ; if and only if Sj1 � 
l(Sj2) (this de�nes a partialorder Sj1 � Sj2 on the strata);(2) (Whitney 
ondition A) Let Sj1 � 
l(Sj2) and a sequen
e of points ym 2 Sj2 tends toa point y 2 Sj1 when m!1. Assume that the sequen
e of tangent planes Tym to Sj2 atpoints ym tends to a 
ertain plane T . Then Ty � T where Ty is a tangent plane to Sj1 aty.Lemma 7. Let for an i-fa
e Pi of P the dimension dim(Ki \ Pi) = i. Assume that S0j isa 
onne
ted 
omponent of a stratum Sj of Ki su
h that dim�
l(S0j) \Ki \ Pi� = i. ThenS0j � Pi.Proof. If dim(Sj) = i then S0j � Pi be
ause S0j � Ki � 
l(W ) (see the de�nition ofKi in Se
tion 3) and 
l(W ) � P , taking into the a

ount that S0j is a 
onne
ted smoothsemialgebrai
 set.Now let e = dimSj � i + 1. We 
an assume without loss of generality that Sj isone of the maximal strata (with respe
t to the partial order �), otherwise take a maximalstratum 
ontaining Sj in its 
losure.There is a stratum Sl su
h that dim(Sl \ 
l(S0j) \Ki \ Pi) = i. The property (1) ofWhitney strati�
ation implies that Sl � 
l(Sj). Take a 
onne
ted 
omponent S0l of Sl forwhi
h dim(S0l \ 
l(S0j) \ Ki \ Pi) = i. Then dim(S0l) = i, i.e., dim(Sl) = i be
ause S0l is14



smooth and S0l � P , hen
e S0l � Pi arguing as above. Let a point y 2 S0l \ 
l(S0j) \Ki \Pibe su
h that for a suitable 0 < r 2 R we have(By(r) \ Pi) � (S0l \ 
l(S0j) \Ki \ Pi);then Ty(S0l) = P i.There exists a 
onverging sequen
e ym �!m!1 y; ym 2 S0j su
h that the sequen
e ofe-dimensional tangent planes Tym(S0j) 
onverges when m!1 to a 
ertain e-dimensionalplane � . Due to (2) (Whitney 
ondition A), P i � � .Lemma 6 implies that Tym(S0j) is not transversal to �n�i (taking into the a

ountthat ym is a smooth point of Ki be
ause Sj is a maximal stratum). Therefore, e0m =dim(Tym(S0j) \�n�i(ym)) � e� i+ 1. Some subsequen
e Tymq (S0j) \�n�j(ymq ) of planes
onverges when q !1 to a 
ertain e0-dimensional plane � � �n�i(y), where e0 = e0mq �e� i+ 1 for any large enough q.Choose a basis a1; : : : ; ai of i-plane P i(0) and a basis b1; : : : ; be0 of �(0). Then ve
torsa1; : : : ; ai; b1; : : : ; be0 are linearly independent due to transversality of P i and �n�i. Forlarge enough q0, for any q � q0 there exist ve
torsa(q)1 ; : : : ; a(q)i ; b(q)1 ; : : : ; b(q)e0 2 �Tymq (S0j)�(0)situated suÆ
iently 
lose to ve
tors a1; : : : ; ai; b1; : : : ; be0 , respe
tively, so that the ve
torsa(q)1 ; : : : ; a(q)i ; b(q)1 ; : : : ; b(q)e0 are also linearly independent. Hen
e dim(Tymq (S0j)) � e0 + i �e+ 1. This leads to a 
ontradi
tion with the equality dim(Sj) = e and proves the lemma.Denote g = fk1+1 � � � fk. Choose 0 < � 2 R satisfying the following properties:(a) � is less than the absolute values of all 
riti
al values of the restri
tions of g oni-fa
ets Pi (note that Sard's theorem implies the �niteness of the number of all 
riti
alvalues, moreover they all belong to R due to Lemma 4);(b) for any Pi su
h that dim(Ki \ Pi) = i the dimensiondim�fg = �g \ 
l(S0j) \Ki \ Pi� � i� 2for every 
onne
ted 
omponent S0j of a stratum Sj su
h that S0j is not 
ontained in Pi.Observe that due to Lemma 7 there exists at most �nite number of � violating this 
on-dition be
ause dim(
l(S0j) \Ki \ Pi) � i � 1, together with (a) this justi�es the existen
eof the required �.Denote K 0i = Ki \ fg = �g.Lemma 8. K 0i = st0(Ki \ fjg � �j < "1g):Proof. First prove the in
lusion �. 15



Denote by F the real 
losure of the �eld R("2; "3). Sin
e Ki is de�ned over F we haveKi = (Ki \ Fn)(R3). Apply Lemma 2 to the �elds R � F � R3 taking the set Ki \ Fn asV . Then st0(Ki \ Fn) = st0(Ki) = Ki.Let x 2 K 0i. It follows that there exists a point y 2 Ki \ Fn su
h that st0(y) = x.Hen
e st0(g(y)) = g(st0(y)) = g(x) = �. Then (g(y) � �) 2 F is in�nitesimal relative toR. Taking into the a

ount the representation of g(y) � � as a Puiseux series in "3 withthe 
oeÆ
ients being, in their turn, Puiseux series in "2 (see Se
tion 2), we dedu
e thatjg(y)� �j < "1. Thus y 2 Ki \ fjg � �j < "1g, whi
h proves the in
lusion �.To prove the in
lusion � take a point x 2 st0(Ki\fjg��j < "1g). Then, in parti
ular,x 2 st0(Ki) = Ki. There exists a point y 2 Ki \fjg��j < "1g su
h that st0(y) = x. Then� = st0(g(y)) = g(st0(y)) = g(x). The lemma is proved.Lemma 9. Let for an i-fa
e Pi of P the dimension dim(W \ Pi) = i. The followingequality of the varieties holds:K 0i \ Pi = fg = �g \ ffk1+1 > 0; : : : ; fk > 0g \ Piand, moreover, this variety is a nonempty smooth 
ompa
t hypersurfa
e in P i. Besides,dim�
l(K 0i n Pi) \K 0i \ Pi� � i� 2:Proof. First we prove the in
lusion(K 0i \ Pi) � fg = �g \ ffk1+1 > 0; : : : ; fk > 0g \ Pi:We haveffk1+1 > 0; : : : ; fk > 0g \ Pi = ff = 0; fk1+1 > 0; : : : ; fk > 0g \ Pi =W \ Pisin
e dim(W \ Pi) = i. By Lemma 5,(ff = 0; fk1+1 > 0; : : : ; fk > 0g \ Pi) � (Ki \ Pi):Interse
ting both sides with the variety fg = �g, we obtain the � in
lusion.To prove the in
lusion � observe that fj is nonnegative everywhere on Ki for ea
hk1 + 1 � j � k be
ause Ki � 
l(W ) (see Se
tion 3).On the other hand, fj is nonzero everywhere on K 0i for k1 + 1 � j � k sin
efk1+1 � � � fk = �. Thus, K 0i � ffk1+1 > 0; : : : ; fk > 0g whi
h proves � in
lusion.Now let us prove that K 0i \Pi is a nonempty smooth hypersurfa
e in P i. Observe thatK 0i \ Pi is bounded be
ause P is 
ompa
t, besides K 0i \ Pi is 
losed sin
e its 
losureK 0i \ 
l(Pi) = K 0i \ P i � ffk1+1 > 0; : : : ; fk > 0g \ P i =W \ P i =W \ Pi � Pi:Sin
e dim(ffk1+1 > 0; : : : ; fk > 0g\Pi) = i, ea
h 
onne
ted 
omponent of the set ffk1+1 >0; : : : ; fk > 0g\Pi 
ontains a 
onne
ted 
omponent of the smooth hypersurfa
e fg = �g\P i16



(in P i) due to Morse theory (see [Hi 76℄) and in view of (a). Moreover, ea
h 
onne
ted
omponent of the hypersurfa
e fg = �g \ P i either lies 
ompletely in the set ffk1+1 >0; : : : ; fk > 0g \ Pi or does not interse
t this set.Finally, the inequality dim�
l(K 0i n Pi) \K 0i \ Pi� � i � 2immediately follows from (b). The lemma is proved.The next se
tion is dedi
ated to the proof of the following lemma.Lemma 10. The number of i-fa
es Pi of P su
h that K 0i \ Pi is a nonempty 
ompa
tsmooth hypersurfa
e in P i anddim�
l(K 0i n Pi) \K 0i \ Pi� � i� 2;does not ex
eed (nkd)O(n).Theorem 2 immediately follows from Lemmas 9 and 10.5. Extremal points of a linear fun
tion on K 0iTake a linear form L = 
1X1 + � � � + 
nXn with generi
 
oeÆ
ients 
1; : : : ; 
n 2 R.Fix Pi satisfying the 
onditions of Lemma 10 and denote by L(Pi) the restri
tion of L onP i. Then L(Pi) attains its maximal value, say �(Pi)0 , on the 
ompa
t set K 0i \ Pi. Sin
eL(Pi) is a generi
 linear form on P i as well, the following two properties are ful�lled:(i) L(Pi) attains the value �(Pi)0 at a unique point v 2 K 0i \ Pi (
f. [Hi 76℄);(ii) the point v does not belong to 
l(K 0i n Pi) (
f. the 
onditions of Lemma 10).Indeed, the semialgebri
 set of linear forms on P i for whi
h the properties (i), (ii) fail,has the dimension less than the dimension of the set of all linear forms on P i, thus for thegeneri
 form L the properties (i), (ii) are valid.Denote by V a 
onne
ted 
omponent of K 0i \ Pi whi
h 
ontains v. The property (ii)implies that there exists 0 < r 2 R su
h that Bv(r) \K 0i = Bv(r) \ V . Thus, L attains alo
al isolated maximum on K 0i at the point v by the property (i). Hen
e, there exists anelement 0 < �(Pi) 2 R su
h that the values of L on the set �Bv(r=2) \ K 0i are less than�(Pi)0 � �(Pi).Lemma 11. The linear form L attains its maximal value �(Pi) on the set
l(Ki \ fjg � �j < "1g) \ Bv(r=2)(say, at a point w) and the values of L on the set
l(Ki \ fjg � �j < "1g) \ �Bv(r=2)17



are less than st0(�(Pi))� �(Pi). Moreover, st0(�(Pi)) = �(Pi)0 and st0(w) = v 2 Pi.Proof. Due to Lemma 8 and the Remark after Lemma 3 from Se
tion 2, we have:st0
l(Ki \ fjg � �j < "1g) = K 0i:By the transfer prin
iple, L attains its maximum �(Pi) on the 
losed bounded set 
l(Ki \fjg � �j < "1g) \ 
l(Bv(r=2)) at some point w. Then st0(�(Pi)) = �(Pi)0 and st0(w) = v(due to (i)).Sin
e st0�
l(Ki \ fjg � �j < "1g) \ �Bv(r=2)� � K 0i \ �Bv(r=2)we obtain the se
ond statement of the lemma from the de�ning property of �(Pi). Lemmais proved.Lemma 11 states that L attains a lo
al maximum on the set 
l(Ki \fjg��j < "1g) ata point w su
h that st0(w) 2 Pi. In order to estimate the number of su
h lo
al maximumvalues of L we shall now 
onstru
t a smooth hypersurfa
e whi
h is in�nitely 
lose to
l(Ki \ fjg � �j < "1g). After that it will be suÆ
ient to bound the number of lo
almaxima of L on this smooth hypersurfa
e.For a point y denote the 
oordinates of the gradientgrady(f (y) � "3) = (u1; : : : ; un�i)(
f. De�nition). The set Ki\fjg��j < "1g of the points y = (y1; : : : ; yn) 
an be representedas a union of n� i semialgebrai
 sets of the formU (i0) = ff � "3 = 0; u2i0 > 0; p1 > 0; : : : ; ps > 0g � Rn3 ; 1 � i0 � n� ifor some algebrai
 fun
tions p1; : : : ; ps of the quadrati
-irrational type introdu
ed in Se
-tion 1, i.e., rational fun
tions (with 
oeÆ
ients from R2) in y1; : : : ; yn and inqu2i0 ; qu2i0 + u2�i0 (2) ; : : : ;qu2i0 + u2�i0 (2) + � � �+ u2�i0 (n�i) (3)(see Lemma 1). Here �i0 is a permutation of f1; 2; : : : ; n � ig su
h that �i0 (1) = i0 (
f.Se
tion 1).Denote q = �"25 � (f � "3)2�(u2i0 � "4)(p1 � "4) � � � (ps � "4):Introdu
e semialgebrai
 setsU (i0)0 = f"25 > (f � "3)2; u2i0 > "4; p1 > "4; : : : ; ps > "4g � Rn5and U (i0) = fq = "6g \ �U (i0)0 �(R6) � Rn6 :18



Lemma 12 (
f. Lemmas 1, 4 in [GV 92℄).st3(U (i0)) = 
l(U (i0)):Proof. Let us �rst show that to prove the lemma it is suÆ
ient to establish the equalityst5(U (i0)) = �U (i0)0 : (4)Indeed, due to Lemma 3a),st3(�U (i0)0 ) � st3(
l(U (i0)0 )) = 
l(U (i0));thus, due to (4), st3(U (i0)) � 
l(U (i0)).On the other hand, 
l(U (i0)) = �(U (i0)) be
ause U (i0) � ff = "3g and thereby U (i0)
ontains no internal points. Hen
e, Lemma 3b) implies that 
l(U (i0)) � st3(�U (i0)0 ). Itfollows from (4) that 
l(U (i0)) � st3(U (i0)). This would prove the lemma, provided that(4) holds.Now we prove (4) starting with the in
lusion �.Let a point y 2 U (i0) and the standard part x = st5(y) be de�nable. Then q(x) = 0and "25 � (f � "3)2; u2i0 � "4; p1 � "4; : : : ; ps � "4:Suppose that x =2 �U (i0)0 . Therefore there exists 0 < r0 2 R5 su
h that eitherBx(r0) � U (i0)0 or Bx(r0) \ U (i0)0 = ;.If Bx(r0) � U (i0)0 we get a 
ontradi
tion with q(x) = 0.If Bx(r0)\U (i0)0 = ; we 
on
lude that the interse
tion Bx(r0)\ (U (i0)0 )(R6) = ;. Sin
ey belongs to this interse
tion we again get a 
ontradi
tion whi
h proves tie in
lusion � in(4). To prove the in
lusion � in (4) take a point x 2 �U (i0)0 . Observe that q is positiveeverywhere on U (i0)0 and q vanishes everywhere on �U (i0)0 , in parti
ular q(x) = 0.Suppose that x =2 st5(U (i0)). Then there exists 0 < r1 2 R5 su
h that Bx(r1)\U (i0) =; (
f. the proof of Lemma 2). Consider the de
omposition of the interse
tionBx(r1) \ U (i0)0 =[j Ujinto its 
onne
ted 
omponents (whi
h are also semialgebrai
 sets and there is a �nitenumber of them, see e.g. [GV 88℄). Sin
e x 2 
l(Bx(r1) \ U (i0)0 ) there is j0 for whi
hx 2 
l(Uj0). All the values of the polynomial q on Uj0 form a 
onne
ted semialgebrai
subset � � R5. So, � is an interval (or a point) with endpoints �1; �2 2 R5; �1 � �2,the set � 
ould be either 
losed, either open, or semi-open. Observe that �1 � 0 be
auseUj0 � U (i0)0 . On the other hand, �1 = 0 sin
e q(x) = 0 and x 2 
l(Uj0). Obviously,�2 > 0. Due to the transfer prin
iple, q attains on the set U (R6)j0 all the values from the19



interval (0; �2)(R6). In parti
ular, there exists a point y 2 U (R6)j0 su
h that q(y) = "6. Theny 2 Bx(r1) \ U (i0). The obtained 
ontradi
tion 
ompletes the proof of the lemma.Lemma 13. For a 
ertain 1 � i0 � n � i the linear form L attains its maximal value�(Pi)1 on the set 
l(U (i0)) \ Bv(r=2) at a 
ertain point w1, and the values of L on theset 
l(U (i0)) \ �Bv(r=2) are less than st0(�(Pi)1 ) � �(Pi). Moreover, st3(�(Pi)1 ) = �(Pi) andst0(w1) = v 2 Pi.Proof. Sin
e Ki \ fjg � �j < "1g = [1�i0�n�iU (i0)there is 1 � i0 � n� i su
h that w 2 
l(U (i0)) (see Lemma 11). The linear form L attainsits maximum �(Pi)1 on the bounded 
losed set 
l(U (i0)) \ 
l(Bv(r=2)) at a point w1. UsingLemma 12 and the equaliy st3(U (i0)) = st3(
l(U (i0))) (see the Remark in Se
tion 2), weget: st3(�(Pi)1 ) = �(Pi). Due to (i), st0(w1) = v.The values of L on the set 
l(U (i0)) \ �Bv(r=2) are less than �(Pi)0 � �(Pi) due to thesimilar statement in Lemma 11, taking into the a

ount thatst3(
l(U (i0)) \ �Bv(r=2)) � �Bv(r=2):Lemma is proved.Sin
e w1 is a lo
al maximum of L on the set 
l(U (i0)) we obtain the following 
orollary.Corollary. The number of i-fa
es Pi satisfying the 
onditions of Lemma 10 does notex
eed the number of all the values of lo
al maxima of the linear form L on the set[1�i0�n�i 
l(U (i0)):Lemma 14. U (i0) is a smooth 
losed hypersurfa
e.Proof. First we prove that 
l(U (i0)) = U (i0). Let a point x 2 
l(U (i0)). Thenq(x) = "6; "25 � (f(x) � "3)2; u2i0(x) � "4; p1(x) � "4; : : : ; ps(x) � "4:Neither among the latter inequalities 
ould 
onvert into an equality be
ause q(x) ="6 6= 0, hen
e x 2 U (i0).Observe that in the open semialgebrai
 set fu2i0 > 0g all the square roots (3) arepositive. Therefore all algebrai
 fun
tions p1; : : : ; ps o

uring in U (i0) are smooth, hen
e qis smooth as well. Be
ause of Lemma 4, "6 is not a 
riti
al value of q in the set fu2i0 > 0g.Then the impli
it fun
tion theorem implies the lemma.Finally, let us prove the following lemma.20



Lemma 15. The number of lo
al maxima of L on U (i0) does not ex
eed (nkd)O(n).Proof. Be
ause of Lemma 14, the number of lo
al maxima of L on U (i0) does not ex
eedthe number of 
onne
ted 
omponents of the semialgebrai
 setM = f0 = q � "6 = 
i �q�Xj � 
j �q�Xi ; 1 � i < j � ng � Rn6(by the Lagrange multiplier theorem, see, e.g., Ch. 4 in [Th 77℄ and taking into the a

ountthe transfer prin
iple).Repla
e ea
h o

urren
e of the square rootqu2i0 + u2�i0 (2) + � � �+ u2�i0 (m);1 � m � n � i in q by a new variable Zm. Denote the resulting rational fun
tion byQ 2 R5[X1; : : : ;Xn℄(Z1; : : : ; Zn�i) (
f. Se
tion 1).Introdu
e the semialgebrai
 setM = f0 = Q� "6 = 
i �Q�Xj � 
j �Q�Xi ; 1 � i < j � n;Zm > 0; Z2m = u2i0 + u2�i0 (2) + � � �+ u2�i0 (m); 1 � m � n� ig � R2n�i6 :Consider the linear proje
tion� : R2n�i6 �! Rn6 ; �(X1; : : : ;Xn; Z1; : : : ; Zn�i) = (X1; : : : ;Xn):Then �(M) = M . Hen
e the number of 
onne
ted 
omponents of M is less or equal tothe number of 
onne
ted 
omponents of M.Observe that the degrees of rational fun
tions o

uring in M 
an be bounded fromabove by (knd)O(1) due to Lemma 1 and De�nition. Therefore, the number of 
onne
ted
omponents of M does not ex
eed (knd)O(n) by [Mi 64℄.This 
ompletes the proof of the lemma.Lemma 15 together with Corollary to Lemma 13 imply Lemma 10 and thereby The-orems 2 and 1.6. Lower bounds for 
on
rete polyhedraIn this se
tion we give an appli
ation of the lower bound from Theorem 1 to a 
on
rete
lass of polyhedra. We follow the 
onstru
tion of 
y
li
 polyhedra (see [MS 71℄), used inthe analysis of the simplex method.Take any m > 
(n2) points in Rn of the form (tj ; t2j ; : : : ; tnj ) for pairwise distin
ttj ; 1 � j � m. Consider the 
onvex hull of these points and denote by Pn;m � Rn itsdual polyhedron [MS 71℄. Then Pn;m has m fa
es of the highest dimension n� 1 and thenumber of fa
es of all dimensionsN > �m� bn=2
bn=2
 � > m
(n)21



(see [MS 71℄).Therefore, Theorem 1 implies that the 
omplexity of testing membership to Pn;m isbounded by 
(logN) > 
(n logm).We would like to mention that Se
tion 4 of [GKV 94℄ provides a weaker bound 
(logm)even for algebrai
 
omputation trees.7. Open problems1. Is it possible to get rid of any lower bound assumption on N in Theorem 1?2. Is it possible to extend the result of Theorem 1 to algebrai
 
omputation trees?A
knowledgementsWe thank Dima Burago, Friedhelm Meyer auf der Heide, Kolia Ivanov, Andy Yaofor a number of useful dis
ussions and Anders Bj�orner for a help with the example fromSe
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