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Abstract

We introduce a new method of proving lower bounds on the depth
of algebraic d-degree decision trees and apply it to prove a lower bound
Q(log N) for testing membership to an n-dimensional convex polyhedron
having N faces of all dimensions, provided that N > (nd)Q("). This
bound apparently does not follow from the methods developed by M.
Ben-Or, A. Bjorner, L. Lovasz, and A. Yao [B. 83], [BLY 93], [Y 94]
because topological invariants used in these methods become trivial for
convex polyhedra.



Introduction

A problem of testing membership to a semialgebraic set ¥ was considered by many
authors (see, e.g., [B 83], [B 92], [BKL 92], [BL 92|, [BLY 92|, [MH 85|, [GKV 94], [Y 92|, [Y
93], [YR 80] and the references there). We consider a problem of testing membership to a
convex polyhedron P in n-dimensional space R™. Let P have N faces of all the dimensions.
In [MH 85] it was shown, in particular, that for this problem O(log N)n®™ upper bound
is valid for the depth of linear decision trees, in [YR 80] a lower bound Q(log N) was
obtained. A similar question was open for algebraic decision trees. In [GKV 94] we proved
a lower bound Q(log N) for the depth of algebraic decision trees testing membership to P,
provided that N > (dn)Q("Q). In the present paper we weaken the latter assumption to
N > (dn)Q("). In this new form the bound looks plausible to be applicable to polyhedra
given by 29(") linear constraints (like in “knapsack” problem), thus having 20(n*) faces.
In the present paper we apply the obtained lower bound to a concrete class of polyhedra
given by Q(n?) linear constraints and with n®(") faces.

In [GV 94] the lower bound (y/log N) was proved for the Pfaffian computation tree
model. This model uses at gates Pfaffian functions, the latter include all major elementary
transcendental and algebraic functions.

Several topological methods were introduced for obtaining lower bounds for the com-
plexity of testing membership to ¥ by linear decision trees, algebraic decision trees, alge-
braic computation trees (the definitions one can find in, e.g., [B 83]).

In [B 83] a lower bound §(log C') was proved for the most powerful among the con-
sidered in this area computational models, namely algebraic computation trees, where C'
is the number of connected components of ¥ or of the complement of ¥. After that, in
[BLY 92], a lower bound (log x) for linear decision trees was proved, where y is Euler
characteristic of 3, in [Y 92] this lower bound was extended to algebraic computation trees.
A stronger lower bound (log B) was proved later in [BL 92], [B 92] for linear decision
trees, where B is the sum of Betti numbers of ¥ (obviously, C, x < B). In [Y 94] the latter
lower bound was extended to the algebraic decision trees.

Unfortunately, all the mentioned topological tools fail when ¥ is a convex polyhedron,
because B = 1 in this situation. The same is true for the method developed in [BLY 92]
for linear decision trees, based on the minimal number of convex polyhedra onto which ¥
can be partitioned.

To handle the case of a convex polyhedron, we introduce in Sections 1, 3 another
approach which differs drastically from [GKV 94]. Let W be a semialgebraic set accepted
by a branch of an algebraic decision tree. In Section 3 we make an “infinitesimal pertur-
bation” of W which transforms this set into a smooth hypersurface. Then we describe the
semialgebraic subset of all the points of the hypersurface in which all its principal curva-
tures are “infinitely large” (the set Ko in Section 3). We also construct a more general set
K; (for each 0 < i < n—1) of the points with infinitely large curvatures in the intersections
with the shifts of a fixed (n — i)-dimensional plane. Section 1 provides a short system of
inequalities for determining K;. It is done by developing an explicit symbolic calculis for
principal curvatures.

In Section 2 we introduce some necessary notions concerning infinitesimals and apply
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them to define the “standard part” K; = st(K;) C R™. We show (Corollary to Lemma 5
in Section 3) that to obtain the required bound for the number of i-faces P; of P such
that dim(P; N W) = ¢ it is sufficient to estimate the number of faces P; with dim(P; N
K;) = i. In Section 4 we reduce the latter bound to an estimate of the number of local
maxima of a generic linear function L on K; with the help of a Whitney stratification
of K;. To estimate these local maxima we introduce in Section 5 another infinitesimal
perturbation of K; and obtain a new smooth hypersurface. At this point a difficulty arises
due to the fact that K; (and therefore, the related smooth hypersurface) are defined by
systems of inequalities involving algebraic functions, rather than polynomials, because in
the expressions for curvatures (in Section 1) square roots of polynomials appear. We
represent the set of local maxima of L on the smooth hypersurface by a formula of the
first-order theory of real closed fields with merely existential quantifiers and quantifier-free
part ®. We estimate in Section 5 (invoking [Mi 64] in a usual way) the number of the
connected components of the semialgebraic set defined by ®.

In Section 6 we describe a particular class of polyhedra (dual to cyclic polyhedra [MS
71]) having large numbers of faces, for which Theorem 1 provides a nontrivial lower bound.

Now let us formulate precisely the main result. We consider algebraic decision trees
of a fixed degree d (see, e.g., [B 83], [Y 93]). Suppose that such a tree T, of the depth k,
tests a membership to a convex polyhedron P C R". Denote by N the number of faces of
P of all dimensions from zero to n — 1. In this paper we agree that a face is “open”, i.e.,
does not contain faces of smaller dimensions.

Theorem 1.

k> Q(log N),
provided that N > (dn)°™ for a suitable ¢ > 0.

Let us fix a branch of T which returns “yes”. Denote by f; € R[Xy,..., X,], 1 <i: <k
the polynomials of degrees deg( f;) < d, attached to the vertices of T along the fixed branch.
Without loss of generality, we can assume that the corresponding signs of polynomials along
the branch are

fl ::fk1 :07 fk1+1 >07"'7 k> 0.
Then the (accepted) semialgebraic set

W:{flz"':fk1:07 fk1+1>07"'7fk>0}

lies in P.
Our main technical tool is the following theorem.

Theorem 2. The number of faces P’ of P such that dim(P’) = dim(P’' NW) is bounded
from above by (knd)®™.

Let us deduce Theorem 1 from Theorem 2.
For each face P’ of P there exists at least one branch of the tree T' with the output
yes” and having an accepted set W; C R" such that

dim(W; N P') = dim(P’).
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Since there are at most 3% different branches of T, the inequality
N < 3% (knd)°™

follows from Theorem 2. This inequality and the assumption N > (dn)°™ (for a suitable
¢) imply k& > Q(log N), which proves Theorem 1.

Note that in the case ky = 0 for an open set W and each face P’ of P we have
P'NW = (. Thus in what follows we can suppose that ki > 1.

1. Computer algebra for curvatures

Let a polynomial F € R[Xy,...,X,] with deg(F) < d. Assume that at a point

x € {F =0} C R" the gradient grad (F) = <aa§1,...,%>(x) # 0. Then, according

to the implicit function theorem, the real algebraic variety {F = 0} C R" is a smooth
hypersurface in a neighbourhood of .

Fix a point € {F = 0}. Consider a linear transformation X — AX + x, where A
is an arbitrary orthogonal matrix such that

grad, (F)
= Aey o=
~ [lerad, (F)]
is the normalized gradient and ey, ..., e, is the coordinate basis at the origin. Then the

linear hull of vectors u; = Ae; + x, 2 < j < n is the tangent space T, to {F =0} at z.
Denote by Uy, ..., U, the coordinate variables in the basis uy,...,u,. By the implicit
function theorem, there exists a smooth function H,(Us,...,U,) defined in a neighbour-
hood of x on T, such that {F =0} = {U; = Hy(Us,...,Upy)} in this neighbourhood.
Let uy = (a1,...,ay) with &;, # 0. Take any permutation m;, of {1,...,n} such
that m; (1) = io. Denote (aq,...,apn) = (&ﬁio(l),...,&mo(n)) (thus a7 # 0) and f; =

\/m7 1 <1 <n. Obviously #; > 0 and 3,, = 1.

As A one can take the following product of (n — 1) orthogonal matrices:

571— —1 Ay —
7571: 0 --- 0 —ﬁn_: 0 .- 0
0 1 - 0 0 0 .- 0
H 0 0 1 5 0 0 0
Qn_k n—k—1
osk<n2 | 8 - 8 T 8
0 0 --- 0 0 0 .. 1
(in kth matrix of this product the element 5"‘% occurs at the positions (1,1) and (n —
E,n—Fk)).
Denote F,.(Uy,...,Uy) = F(AT(Uy,...,U,) + ). Dlﬁerentlatlng this function twice
and taking into the account that F,(H, (Ug, ooy Un),Usz,y...,Uy) = 0 in a neighbourhood

of x in T, we get

0°F, 0H,  OF, 0°H, , O'F,
oU,0U, oU, ' 0U, 0U,0U, | oU,0U;

~0 (1)
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for 2 <4, 7 <n.
Since

0H,

F,
v, =0 and g

(Us,...,Up)=0 o,

(U1,...,Up)=0 ||gra 17( )H 7£ )

evaluating the equality (1) at = (i.e., substituting (Uy,...,U,) = 0) we obtain (cf. [Mi
64]):

2 2
<8?]lgé]> ‘ (Us,...,Up)=0 - (||gradx(F)||)_1 <8glg(1}]> ‘ (Uy,....Up)=0 (2)

Introduce the symmetric (n — 1) X (n — 1)-matrix (the matrix of Weingarten map [Th

77], Ch.9) 2
0°H,
anaU]‘> ‘ (UQ,...,Un)zo'

- (

Its eigenvalues Ay,..., A\, belong to R and are called the principal curvatures of the hy-
persurface {F = 0} at « [Th 77], Ch.12.

Now we describe symbolically the set of all points & with all principal curvatures
greater than some parameter k.

Denote by x(Z) the characteristic polynomial of the matrix H,. The roots of y are
exactly Ag,...,\,. Due to Sturm theorem, every Ay, ..., A, is greater than « if and only
if vi(k)xi+1(k) < 0, 0 <1 < n—2, where xo = x, x1 = x{ and Yz2,...,Yn—1 is the
polynomial remainder sequence of o, y1 [Lo 82]. Obviously deg,(x;) =n —1— 1.

Observe that every element of the matrix A can be represented as a fraction /7,
where

v2 =By B lgrad, (F)|)”

and y1 =I'(f1,...,Bn=1,X1,...,Xy) is a polynomial in
BU(Xtse s X ) ee s Bt (Xt X )y Xy X

with I' € R[Z4,...,Z,-1,X1,...,X,]. Moreover, 11 + -+ + vp—1 + v < 2(n — 1) and
deg(T") < d(n — 1). Hence all elements of A are algebraic functions in Xi,...,X, of
quadratic-irrational type. By the degree of such quadratic-irrational function we mean
max{deg(I'), 11 + -+ 4+ vn—1 + v}. In what follows we deal with algebraic functions in
Xq,..., X, of the similar type.

Formula (2) and Habicht’s theorem [Lo 82] imply that deg(x;) < (nd)°W.

We summarize a description of the set of all points with large principal curvatures in
the following lemma.

Lemma 1. Fix 1 < iy < n. The set of all points + € {F = 0} such that grad, (F) =
(61,...,6,) has &;, # 0 and all principal curvatures of the hypersuface {F = 0} at « are
greater than k can be represented as {F =0, g; > 0,...,g, > 0}. Here g1 = o??o,gg, cesOn
are polynomials in k of degrees at most 2n with coefficients being quadratic-irrational
algebraic functions (see above) of degrees less than (nd)®™.

S



Remark. Observe that a set given by a system of inequalities involving real algebraic
functions is semialgebraic. Hence the set introduced in Lemma 1 is semialgebraic.

2. Calculis with infinitesimals

The following definitions concerning infinitesimals follow [GV 88].

Let F be an arbitrary real closed field (see, e.g., [L 65]) and an element ¢ be infinites-
imal relative to elements of F. The latter means that for any positive element a € F
inequalities 0 < ¢ < a are valid in the ordered field F(¢). Obviously, the element ¢ is tran-
scendental over F. For an ordered field F’ we denote by F/ its (unique up to isomorphism)
real closure, preserving the order on F’ [L 65].

Let us remind some other well-known statements concerning real closed fields. A
Puiseux (formal power-fractional) series over F is series of the kind

b= Zaiafw/“,

i>0

where 0 # a; € F for all 1 > 0, integers 1y < 11 < ... increase and the natural number
p > 1. The field F((s'/%°)) consisting of all Puiseux series (appended by zero) is real

closed, hence F((z'/%°)) D F(¢) D F(¢). Besides the field F[\/—1]((c'/°°)) is algebraically
closed.

If vy < 0, then the element b € F((!'/°°)) is infinitely large. If v > 0, then b is
infinitesimal relative to elements of the field F. A vector (by,...,b,) € (F((sl/oo))>n is
called F-finite if each coordinate b;, 1 < i < n is not infinitely large relative to elements
of F.

For any F-finite element b € F((c'/°)) its standard part st(b) is definable, namely
st(b) = ap in the case vy = 0 and st(b) = 0 if v > 0. For any F-finite vector (by,...,b,) €
(F 1/00 ) its standard part is defined by the equality

st(byy...,bn) = (st(by),...,st(by)).
For a set W C (F((el/oo))>n we define
st(W) = {st(w) : w € W and w is F—finite}.

The following “transfer principle” is true [T 51]. If F', F” are real closed fields with
F' C F” and P is a closed (without free variables) formula of the first order theory of the
field F’/, then P is true over F’ if and only if P is true over F”.

In the sequel we consider infinitesimals 1, 5, ... such that ¢;4; is infinitesimal relative
to the real closure R; of the field R(eq,...,&;) for each ¢ > 0. We assume that Rg = R.

For an R,;-finite element b € R4 its standard part (relative to R;) denote by st;(b) €
R;. Forany b € R;, j > i we define st;(b) = st;(st;41(...st;—1(b)...). For a semialgebraic
set V C F7 defined by a certain formula ® of the first order theory of the real closed field
F, and for a real closed field F5 D F; we define the completion V(F2) F of V' as the
semialgebraic set given in FJ by the same formula ® (we say that V(F2) s defined over
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F;). We omit super-index (F3) in V(F2) when this does not lead to ambiguity. In a similar
way one can define completions of polynomials and algebraic functions.

Observe that for any polynomial f € R;[X1,..., X,] and a point w € R}, j > 1 such
that st;(y) is definable, we have st;(f(y)) = f(sti(y)).

Denote by B,(r) the open ball in R? centered at x and of radius r, and by || - || the
completion of Euclidean distance function.

The following lemma shows that the standard part of a semialgebraic set coincides
with the standard part of its completion.

Lemma2 LetR,, CF C R; whereF is a real closed field and V C F" is a semialgebraic
set defined over F. Then st,, (V) = stm(V(RJ)).

Proof. The inclusion

st (V) C st (VIR

is trivial.

To prove the opposite inclusion take a point = € stm(V(RJ)) and consider a semialge-
braic set {||z — y||* : y € V} C F. This set is a finite union of (either closed, either open
or semi-open) intervals. This is obvious for a semialgebraic subset of R, for an arbitrary
real closed field this follows from the transfer principle. Let w be the left endpoint of the
left-most among these intervals. If « ¢ st,, (V) then there exists 0 < ro € R, such that
w > 12, hence B,(ro) NV = . By the transfer principle the completion of the latter set
is also empty: By(ro) N VRi) — (). This contradicts to the inclusion = € stm(V(RJ)) and
proves the lemma.

For a subset E C R}, denote by ¢l(E) its closure in the topology with the base of all
open balls. Denote by OF the boundary
{y e R}, : forany 0 <r € R,, 0 # By(r) N E # By(r)}.

Note that the above definition of the closure, being applied to a semialgebraic set
and written as a formula of first order theory of the field R,,, involves quantifiers. The
following lemma shows that the closure of a semialgebraic set can be described in terms of
infinitesimals.

Lemma 3 (cf. Lemma 1 [GV 92]).
a) Let polynomials
hl,...,h]‘,gl,...,gs ERq[Xl,...,Xn]

and natural numbers g, [, m satisfy inequalities ¢ < | < m. Consider semialgebraic sets

V=4{6120,...,9s>0,h1 >0,...,h; >0} C R}

and
V=_{¢g1 > —emy.--19s > —€m,h1 >e1,....,h; >} CR},.
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Then
c(V) = st (V) = sty(cl(V)).

b) AV Csty(dV).

Proof.
a) Let « € ¢l(V) and the standard part y = st,(z) be definable. We prove that y € ¢l(V).
Consider a point y; = st;(x), then

Gs, (Y1) = sti(gs, (2)) >0, 1 < sy <55 hjy (yr) =sti(hy, () > e, 1< g1 < g

Hence y;, € V(B0

If y ¢ cl(V) then there exists 0 < r € R, such that B, (r)NV = (. Due to the transfer
principle the latter relation holds also over the field R;, namely, By(r) N V(R) — (. On
the other hand, y; € B,(r) N VB since st,(y1) = y. The obtained contradiction proves
the inclusion st (cl(V)) C ¢l(V).

Now let y € ¢l(V). Consider a semialgebraic set {||y —z||* : 2 € V} C R,,,. Then this
set is a finite union of (either closed, either open or semi-open) intervals (cf. the proof of
Lemma 2). Let w be the left endpoint of the left-most among these intervals. If y ¢ st (V)
then there exists an element r;, 0 < r; € R, such that w > r{, i.e., VN By(r;) = 0. On
the other hand, V' N B,(r1) # 0 since y € ¢[(V). Taking into the account the inclusion
V C V, we get a contradiction which proves the inclusion ¢l(V') C sty (V).

b) Let 2 € 0V and = ¢ st (9V). Then there exists an element r5, 0 < ro € R, such that
B,(r2) NV = 0 (cf. the proof of a)). Because of a), © € sty (V), therefore B,(ry) C V.
On the other hand, VN Ry C V, hence B,(r2) "Ry C V, this contradicts to the inclusion
x € IV.

Lemma is proved.

In the proof of Lemma 3 a) it was actually shown that for any semialgebraic set

U C R?, we have st (U) = st (cl(U)), ¢ < m.
Corollary. Denote
Vo={h=0,h >0,...,h; >0} CR},

Vo={h=¢em,h1 >¢e1,....h; >} CR},.
Then sty (Vo) C el(Vp).

To prove Corollary, in Lemma 3 a) instead of V consider a modified set
{—2em <h <2e4,h1 >er,...,h; >} D Vo

Lemma 4 (cf. Lemma 4a) in [GV 88]). Let F be a smooth algebraic function defined
on an open semialgebraic set U C R} and determined by a polynomial with coefficients
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from R;. Then ¢;1, is not a critical value of ' (i.e., grad, (F) does not vanish at any point
Yy € {F = €i_|_1} N U)

Proof. Sard’s theorem [Hi 76] and the transfer principle imply the finiteness of the set
of all critical values of F', moreover this set lies in R;.

3. Curved points

For any i-face P; denote by P; the i-plane containing P;.

First let us reduce Theorem 2 to the case of compact P. Let t be the minimal
dimension of faces of P and P; be a face with dim(F;) =t. Then P, is a t-plane.

For each i-face P; of P with dim(P; NW') = i choose a point xp, € (P; N W) such that
a suitable neighbourhood of xp, in P; is contained in W.

First consider the case t > 1. Choose any hyperplane ¥ transversal to P; such that the
points x p, for all i-faces P; lie in one of two semi-spaces of R™ \ &, denote this semi-space
by ¥. Replace P by (PN i]) U ¥ reducing ¢ by one. Continue this process while ¢ > 1.

Now consider the case t = 0.

Observe that there exists a linear form L = 7 Xy +---+ 7, X, with; e R, 1 <7 <n
such that for every v € R the intersection {L +~ > 0} N P is compact. Take v such
that «p, € P’ = {L 4+~ > 0} N P for all P;. The number of all i-faces P/ of P’ such
that dim(P/ N W) =i is greater or equal than the number of all i-faces P; of P such that
dim(P; N W) = 1. (From now on we assume, without loss of generality, that P is compact.

For an m-plane @ C R”, and a point @ € R? denote by Q(z) the m-plane collinear
to @) and containing .

Two planes @)1, Q)2 of arbitrary dimensions are called transversal if

dim<Q1 (0)nN Q2(0)> = max{0, dim<Q1 (O)) + dim<Q2(0)> —n}.

For every 0 < ¢ < n choose an (n — i)-plane II,,_; (defined over R) transversal to any
face of the polyhedron P.

Denote f = f? —|—---—|—f,?1.
Fix 0 < i < n and denote by f(*) the restriction of f on II,,_;(z) (for z € R™).

Definition. A pointy € {f = ¢e3} is called i-curved ifgrady(f(y) —e3) # 0, all principal
curvatures of the variety {fW) =31 C II,,_i(y) at y are greater than ;' and fy, 11(y) >
€2y 7fk(y) > €2.

Remark. We fix an orthogonal basis in II,,_;(0) with coordinates belonging to R. Then
in Definition we consider curvatures in II,,_;(y) with respect to the basis obtained from
the fixed one by the shift Y — YV 4 y.

One can consider this definition as a kind of “localization” of the key concept of an
angle point from [GV 94].

Denote the set of all i-curved points by K; C RY. Observe that K; is semialgebraic
due to the remark at the end of Section 1. Denote K; = sto(K;) C R, this set is closed
semialgebraic by Lemma 5.1 from [RV 94]. Corollary to Lemma 3 implies that K; C ¢l(WV).
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Lemma 5. Let for an i-facet P; of P the dimension dim(WNP;) =1. Then WNP; C K;.

Proof. Let + € W N P;. Then fj(z) > ¢, k1 +1 < j < k for a certain 0 < ¢ € R.
Hence there exists 0 < r € R such that for any point y from the open ball B,(r) we have
fily) > ¢, k1 +1 < j < k. Due to the transfer principle, f;(y) > ¢, k1 +1 < j < k for any
point y € B,(r) N RY.

Observe that {f =3} NI, _;(x) = {f(x) = 3} is a smooth hypersurface in II,,_;(z),
because & € R™ and 3 is not a critical value of the polynomial f(*) by Lemma 4.

Our purpose is to prove that © = sty(y) (and a fortior:i @ = sto(y)) for a suitable
y € {f = es}NIl,_;(x) such that all principal curvatures of the variety {f = 3} NIL,,_;(x)
at the point y are greater than 52_1. This would imply Lemma 5 since grady(f(l’) —e3) #0
(see Definition).

The point « is a vertex of the polyhedron P = PNIL,, _;(x) because II,,_; is transversal
to P;. Note that for each (n—i—1)-face of P the normalized orthogonal vector (in II,,_;(x))
to this face has all coordinates in R. The vertex = belongs to at least (n — ¢) among
(n — 1 — 1)-faces of the polyhedron P.

Choose any (n —1 — 1)-faces Ti,...,T,—; of this kind. Denote by 7 C IL,,_;(z) the
closed cone with vertex at x, formed by planes T4,...,T,_; and containing P.

Observe that for any point y € c¢l(B.(r/2)) N RY the inequalities f;(y) > ¢, k1 +1 <
J < k hold, since cl(B;(r/2)) C By(r). Therefore,

{f=07i>c ki+1<5 <k}Ncl(Bo(r/2)) ={f =0} N cl(Ba(r/2)).

Denote D =T Nel(By(r/2)). For any point z € {f = 3} NIL,,_;(x) Nel(By(r/2)) we
have sto(z) € {f =0} NIL,—;(x) N cl(By(r/2)) (see Section 2). Hence

sto(z) € WNIL,_i(x) Nel(By(r/2)) CPNecl(By(r/2)) C D,

in particular, the distance p(z, D) from z to D is infinitesimal relative to Ry (the distance
from a point to a bounded set closed in the topology with the base of all open balls, does
exist because it is true over the field R, over arbitrary real closed field use the transfer
principle).

Since the set {f = es} NI, _;(x) Nel(By(r/2)) is bounded and closed in the topology
with the base of all open balls, there exists pg = max p(z, D) (sf. the above arguing) where
z ranges over all points from {f = es} N II,,_;(x) N cl(By(r/2)), and po is infinitesimal
relative to Ras.

Let us shift (in II,,_;) each (n —7 — 1)-dimensional plane among Ty, ..., T, _; parallel
to itself outward the cone T to the distance pg. The shifted planes form a new closed cone
T' with a vertex a’. Obviously 7 C T'. Observe that the distance ||z — || is infinitesimal
relative to Ry. Denote D' = T'Nel(By(r/2)). Then {f = es}NIL,—;(x)Nel(By(r/2)) C D'.

In the plane II,,_;(x) choose a hyperplane @) such that the coordinates of the nor-
malized vector orthogonal to @ belong to R, and 7' N Q(a') = {a'}. Take a hyperplane
Q(y) (in II,,_;(x)) such that its distance from the point « is positive, belongs to R, and
T'NQ(y) # 0. Observe that 7' N Q(y) is contained in a certain (n — ¢ — 1)-dimensional
open ball B C Q(y) with the center z such that the radius and the coordinates of the point
z — z' belong to R.
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There exists the unique (n — ¢ — 1)-dimensional sphere § C II,,_;(«) containing both
the point (2’ + z)/2 and the (n — ¢ — 2)-dimensional sphere dB. Then the point 2’ lies
outside the (n — ¢)-dimensional open ball B bounded by S.

Denote by 7" C II,,_;(«) the closed cone with the vertex at =’ and with the base S.
Then 7' C (T"\ 9T") because T' N Q(y) C B C B.

The intersection S N 97" is a (n — ¢ — 2)-dimensional sphere situated in a certain
hyperplane I' (in II,—;(z)). Then S N JT" divides S\ (§ N IT") into two connected
components &1 and Sz. Let §; be located in the same half-space (in II,,_;(z)) with the
boundary I' as the point 2’

Denote by S1(p) the dilation of & with the coefficient p with respect to the point @',
Observe that the open cone 7"\ 0T is the disjoint union of the dilations S (i) over all
0 < p € R3. There exists the minimal gy > 0 such that

81(/10) N {f = 53} N Hn_l(l') N CZ(BJ;(T/Q)) 7§ @

Then &1(po) divides the open cone 7"\ 97" into two connected components, moreover
the set

{f =es} NIlhi(x) Nel(Ba(r/2))

and all points from 7" \ OT" sufficiently close to the point z' belong to the different
connected components.

Taking into the account that f(x) = 0, and applying Lemma 3 from [GV 88] to the
polynomial f(*) we conclude that there exists a point yo € {f = 3} N I,_;(x) such
that the distance ||x — yo|| is infinitesimal relative to Ry. Evidently, yo € ¢l(B,(r/2)) and
llyo — 2'|| is also infinitesimal relative to Ry. Hence pio is infinitesimal relative to Ry as
well. Therefore, the radius v of the sphere S(ug) is also infinitesimal relative to Ra.

Consider a point

y € S1(po) N {f = e3} N Iu_s(z) N cl(Ba(r/2)).

Then ||y — «'|| is infinitesimal relative to Ry. Besides, the hypersurfaces Sy (po) and {f =
ezt NIL,—;(x) (as well as the set {f = ez} NII,,_;(x) Ncl(By(r/2))) has the same tangent
plane T (in IT,,_;(«)) at the point y.

Let H, be (n —i — 1) x (n — i — 1)-matrix introduced in Section 1 (with f(*) playing
the role of F' and y playing the role of x). For any normalized vector v € T the second
derivative vH,v of the function H, (see Section 1) in the direction v is greater or equal to
the corresponding second derivative for the sphere S(uo) (at the point ). The latter second
derivative equals to 1/v (cf. the proof of Theorem 4 in Ch. 12 [Th 77]). In particular, for
the principal curvatures of the hypersurface { f*) = 3} = {f = e3}N,_;(z) (in I, _;(2)),
the inequalities Ay > 1/v,..., \y—; > 1/v are valid, hence Ay > &5, ., \my > 65",

Thus, the point y is i-curved (recall that fj(y) > ¢ > &2, k1 +1 < j < k since
y € Bu(r)).

Finally, st2(y) = x, because ||z — y|| is infinitesimal relative to Ry and 2 € R", a
fortiori sto(y) = , i.e., # € K;. Lemma is proved.

Corollary. If dim(W N P;) =1 then dim(K; N FP;) = 1.
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This Corollary implies that in order to prove Theorem 2 it is sufficient to bound the
number of i-facets P; for which dim(K; N P;) = 1.

Lemma 6. For any smooth point z € K; with the dimension dim,(K;) > ¢ + 1 the
tangent plane T, to K; at z is not transversal to II,,_;.

Remark. In the particular case 1 = 0 Lemma 6 states that Ky consists of a finite number
of points.

Proof of Lemma 6. First let us reduce the proof to the case i = 0 (so assume in the
reduction that dim(Ap) < 0). Thus, let ¢« > 1 and suppose that e = dim,(K;) > 7 + 1.
Assume that T, is transversal to II,,_;, then dim(7T, NII,_;(z)) = e —i. Take any (n — e)-
plane R C II,,_;(z) defined over R for which 7. N R = {z}. Consider the linear orthogonal
projection 7 : R — RS onto e-subspace along R. Then dim(n (7)) = e. Therefore,
by the implicit function theorem, 7(K;) C R® contains e-dimensional ball B.(.y(r) for a
certain 0 < r € R.

For any point # € K; there is a point 2’ € K; such that sto(z') = x, hence sto(#(K;)) D
Brs(r).

For any point y € R" the set IC(()y) of 0-curved points of the restriction f(*) coincides
with II,,_;(y) N K; according to Definition. Applying the assumption that the lemma is
valid for 7 = 0 to the polynomial f*) we obtain the inequality dim(sto(Hn_i(y) ﬂlCi)> <0
(taking into the account that f(¥) is defined over R).

Let us show that 7(K;) does not contain a ball B,,(r1) for any 0 < r; € Rand w € RY.
Assume the contrary, then there exists a point w; € By, (r1) NR°. Let y; € R™ be a point
such that 7(y;) = wy. Denote II' = w(Il,,—;), then dim(Il") = e —4, II,,—; = 7~ *(IT'). Then
the following inequalities hold:

dim stg (H’(wl) N F(ICZ‘)> > dim stg (H’(wl) N Bw(r1)> =e—1>1.
On the other hand, II'(wy ) N7 (K;) = #(K; N II,—;(y1)), and, therefore,
dim stg (H’(wl) N F(ICZ‘)> < dim stg (ICi N Hn_i(y1)> <0,

(the latter inequality was proved above). The obtained contradiction shows that =(K;)
does not contain a ball B,(r1) for any 0 < r € R.

We claim that for any ball By, (r2) C Br(.)(r) defined over Rj such that 0 < r; € R,
the intersection By, (r2) N Ox(K;) # (). Assume the contrary. Then either By,(ry) C m(K;)
or By,(r2) N7(K;) = 0. The inclusion By, (r2) C #(K;) is impossible as was shown above.
If By, (r2) N w(Ki) = 0, then sto(yz) ¢ sto(w(K;)), the latter contradicts the inclusions
Bito(ys)(12/2) C Brz)(r) C sto(m(K;)) of the sets in the space R®. This proves the claim.

Observe that dim(@(ﬂ'(lCi))) < e — 1. Applying Lemma 5.1 from [RV 94], we get
dim stg (8(77(/@))) <e—1.

On the other hand we shall now prove that stg (8(77(/Cz))> D By (r). This contra-
diction would complete the proof of the reduction of the lemma to the case 1 = 0. Indeed,

12



let ys € Br(:)(r). Observe that the set {|ly — ys|> : y € O(x(K;))} is semialgebraic.
Hence, this set is a finite union of points and intervals (cf. the proof of Lemma 2). Let
w be the minimal among these points and the endpoints of these intervals. Suppose that
ys ¢ sto (8(77(/@‘))), i.e., there does not exist y € 9(w(K;)) such that sto(y) = ys. Thus,
w > r3 for a suitable 0 < rs € R. It follows that By, (r3) N d(x(K;)) = 0. This contradicts
to the proved above claim.

Now let ¢ = 0. Suppose that the statement of the lemma is wrong and dim(Ky) =
s > 1. There is a linear projection ¢ : RY — Rj3 onto one of the coordinates such
that ¢(Ko) D [ny,m3] for some ny, ny € R, ni < n3. Since sto(4(Ko)) D [ny,m3] and
»(Ko) C Rs, being a semialgebraic set, consists of a finite union of intervals and points,
there exist 1, n2 € R, n1 < 2 such that ¢(Ko) D [771,772](R3).

Our nearest purpose is to prove the existence of a semialgebraic curve C’ C Kg such
that the mapping ¢ : C’ — [y, 12]®8) is bijective.

For any point u € [r,72]®#) take the unique point v, € Ko such that ¢(v,) = u
according to the following rule (which is, in fact, quite flexible).

A projection w1 (¢~ (u)) of 71 (u) onto the coordinate X, being a semialgebraic set,
is a union of a finite number of points and intervals (with or without endpoints). Let g1, p12
be the endpoints of the left-most interval.

Consider four cases. In the first case p1, g2 € Rs, then put g = (u1 + p2)/2. In the
second case the interval is given either by inequality X < py or by inequality X < ps, we
put p = pgy — 1. In the third case the interval is either {X > p1} or {X > py}, we put
=1 + 1. In the last case the interval coincides with the whole Rg3, we put p = 0.

Note that © € m1(¢~!(u)). We fix the first coordinate of the point v, under construc-
tion equal to p.

Consider the projection m2(¢~1(u) N {X; = u}) onto the axis X,. Continuing in the
similar way, after n steps we obtain a point v, = (g,...) € ¢~ (u).

We define the semialgebraic curve C’ to be the set of all the obtained points v, for
u € [7717772](R3)'

The curve C' has only a finite number of singular points (this is well-known for al-
gebraic curves over R, for arbitrary real closed fields we use the transfer principle). The
curve C' with deleted singular points is a finite union of smooth connected semialge-
braic curves. Take one of these curves C such that ¢(C) D (3. 14]®8) for appropriate
ns <M1, M3, M4 € R

Since €' C Ko, Theorem 1 from Ch. 9 in [Th 77] implies that for any point w €
C its curvature k(w) is greater or equal to the minimum of principal curvatures of the
hypersurface {f = &3} at this point w, hence k(w) > &' (according to Definition).

Consider the Gauss map G : €' — 8"~ ! where "1 is (n — 1)-sphere and for a point
w € C the image G(w) is the normalized vector tangent to C' at w.

Let us prove the following statement.

For any reals 6, [ and any smooth semialgebraic curve C with the projection on a
certain coordinate axis greater than [ and with the curvature at each point greater than
8, there exists a hyperplane A such that the semialgebraic set A N &"~1 N G(C) has the
dimension zero and contains at least |l8/7| points. To prove this statement for a curve
C defined over R observe that the length (with multiplicities) of the image G(C) C S™~!
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equals to

[ k=i

(cf. Ch. 10 in [Th 77]). Observe that the length of a curve C; C §"~! equals to the average
(with respect to the uniform Borel measure) number of points of intersection C; NS" "1 NA
over all hyperplanes A, multiplied by w. This implies the statement for the semialgebraic
curves C defined over R. For curves C defined over an arbitrary real closed field this
statement follows from the transfer principle (applied for fixed 6 and ).

Applying the statement to the curve C' with [ = ny — n3 and fixed arbitrary real 6
(taking into the account that for any point w € C the curvature k(w) > &, > 6), we
conclude that there exists a vector (p1,..., pn) such that C contains at least |(6/7| points

wy with the tangent vector ¢, to C at wy satisfying the linear equation ty, - (p1,. .., pn) =
0, and there is a finite number of such points.
One can formulate the condition ¢4, - (p1,...,pn) = 0 on a point w; € C as a formula

of the first-order theory of real closed fields (for a fixed ). Therefore, there is only a fixed
finite number (depending on C') of such points wy, but since one can take an arbitrary 6,
we get a contradiction.

This implies that dim(Kp) < 0 and completes the proof of the lemma.

4. Facets of P and Whitney stratification of K,

Recall that K;, as any semialgebraic set, admits a Whitney stratification (see, e.g.,
[GM 88]). Namely, I{; can be represented as a disjoint union I; = U]‘ S; of a finite number
of semialgebraic sets, called strata, which are smooth manifolds and such that:

(1) (frontier condition) S;, Necl(S;,) # 0 if and only if S, C ¢l(S;,) (this defines a partial
order S;, < S, on the strata);

(2) (Whitney condition A) Let S;, C ¢l(S;,) and a sequence of points y,, € S, tends to
a point y € S;, when m — oo. Assume that the sequence of tangent planes T,  to 5;, at
points y,, tends to a certain plane T'. Then T, C T where T, is a tangent plane to 5;, at

Y.

Lemma 7. Let for an i-face P; of P the dimension dim(K; N P;) = i. Assume that S} is

a connected component of a stratum S; of K; such that dim(cl(S}) NIK; N Pi> =1. Then
St C P;.
j

Proof. If dim(S;) = ¢ then S} C P; because S} C K; C cl(W) (see the definition of
K; in Section 3) and c/(W) C P, taking into the account that S is a connected smooth
semialgebraic set.

Now let ¢ = dim S; > ¢ + 1. We can assume without loss of generality that S; is
one of the maximal strata (with respect to the partial order <), otherwise take a maximal
stratum containing S; in its closure.

There is a stratum S; such that dim(S; N cl(S}) N IK; N P;) =i. The property (1) of
Whitney stratification implies that S; C ¢l(.S;). Take a connected component S of .S; for
which dim(S] N cl(S}) N K; N P;) =4 Then dim(S]) = 1, i.e., dim(S;) = ¢ because 5] is
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smooth and S; C P, hence S; C P; arguing as above. Let a point y € S;Ncl(S;)NK; N P;
be such that for a suitable 0 < r € R we have

(By(r) N PZ) C (Sl/ N CZ(S;) NK;N Pi)7

then T (S]) = P;.

There exists a converging sequence ¥, —m—oco ¥, Ym € S} such that the sequence of
e-dimensional tangent planes T, (S}) converges when m — oo to a certain e-dimensional
plane 7. Due to (2) (Whitney condition A), P; C 7.

Lemma 6 implies that T, m(S}) is not transversal to II,,_; (taking into the account
that vy, is a smooth point of K; because S; is a maximal stratum). Therefore, e/, =
dim(Tym(S}) NIT,—i(ym)) > e —i+ 1. Some subsequence 7T, - (S;) NI —(Ym, ) of planes
converges when ¢ — 0o to a certain ¢’-dimensional plane y C II,,_;(y), where ¢’ = e;nq >
e — 1+ 1 for any large enough gq.

Choose a basis a,. .., a; of i-plane P;(0) and a basis by, ..., b. of x(0). Then vectors
ai,...,a;,by,... be are linearly independent due to transversality of P; and II,_;. For
large enough qg, for any ¢ > qo there exist vectors

R A C A1 e (Ty,., (S))(0)

situated sufficiently close to vectors ay,...,a;,by,...,ber, respectively, so that the vectors

agq), . ,agq),bgq), o ,bgj) are also linearly independent. Hence dim(Tqu (S5) > € +1i>

e + 1. This leads to a contradiction with the equality dim(S;) = e and proves the lemma.
Denote g = fr,+1 - fr. Choose 0 < 1 € R satisfying the following properties:

(a) p is less than the absolute values of all critical values of the restrictions of ¢ on
i-facets P; (note that Sard’s theorem implies the finiteness of the number of all critical
values, moreover they all belong to R due to Lemma 4);

(b) for any P; such that dim(J; N P;) = ¢ the dimension
dim({g = p} N cl(S;)NK;N P)<i-—2

for every connected component S} of a stratum S; such that S} is not contained in P;.
Observe that due to Lemma 7 there exists at most finite number of p violating this con-
dition because dim(cl(S%) N K; N P;) <4 — 1, together with (a) this justifies the existence
of the required p.

Denote K! = K; N{g = u}.

Lemma 8.
K =sto(KiN{lg — pl <e1}).

Proof. First prove the inclusion C.
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Denote by F the real closure of the field R(ez,¢3). Since K; is defined over F we have
K= (KN F")(R?’). Apply Lemma 2 to the fields R C F C Rj3 taking the set K; N F™ as
V. Then sto(K; NF™) = sto(K;) = K.

Let # € K. It follows that there exists a point y € K; N F™ such that sto(y) = .
Hence sto(g(y)) = g(sto(y)) = g(x) = p. Then (g(y) — ) € F is infinitesimal relative to
R. Taking into the account the representation of ¢(y) — p as a Puiseux series in 3 with
the coeflicients being, in their turn, Puiseux series in &3 (see Section 2), we deduce that
lg(y) — | < e1. Thus y € K; N {|g — | < e1}, which proves the inclusion C.

To prove the inclusion D take a point @ € sto(K;N{|g— | < e1}). Then, in particular,
x € sto(K;) = K;. There exists a point y € K; N{|g — p| < &1} such that sto(y) = «. Then
p=sto(g(y)) = g(sto(y)) = g(x). The lemma is proved.

Lemma 9. Let for an i-face P; of P the dimension dim(W N P;) = i. The following
equality of the varieties holds:

I{l/mPl:{g:/’L}m{fkl‘Fl >07"'7 k >0}mP1
and, moreover, this variety is a nonempty smooth compact hypersurface in P;. Besides,

dim(cl(K!\ P)N KN P) <i—2.

Proof. First we prove the inclusion
(K;NP)D{g=p}N{fry41>0,...,fr >0} N P
We have
{fo,41>0,. . fxe>0NP={f=0,fr,41>0,..., fk >0} NP, =WnNFH
since dim(W N P;) =i. By Lemma 5,
{f=0,ft;41>0,....fr >0} NF) C(K;NEF;).

Intersecting both sides with the variety {¢ = u}, we obtain the D inclusion.

To prove the inclusion C observe that f; is nonnegative everywhere on K; for each
k1 +1<j <Fk because K; C cl(W) (see Section 3).

On the other hand, f; is nonzero everywhere on K] for k4 + 1 < j < k since
fri+1 - fe = p. Thus, K! C {fr,+1 > 0,..., fr > 0} which proves C inclusion.

Now let us prove that K!N P; is a nonempty smooth hypersurface in P;. Observe that
K! N P; is bounded because P is compact, besides ! N P; is closed since its closure

I&’gﬂcl(PZ‘): /&’gﬂﬁi C{fkl_H >0,..., /% >0}ﬂ?i:Wﬂﬁi:WﬂPZ‘CPZ‘.

Since dim({ fx,+1 > 0,..., fx > 0}NP;) = 1, each connected component of the set { fr, 41 >
0,..., fr > 0}NP; contains a connected component of the smooth hypersurface {g = u}NP;
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(in P;) due to Morse theory (see [Hi 76]) and in view of (a). Moreover, each connected
component of the hypersurface {g = u} N P; either lies completely in the set {fg, 411 >
0,...,fx >0} N P; or does not intersect this set.

Finally, the inequality

dim(cl(K;\ P)NK/NP) <i—2
immediately follows from (b). The lemma is proved.
The next section is dedicated to the proof of the following lemma.

Lemma 10. The number of i-faces P; of P such that K! N P; is a nonempty compact
smooth hypersurface in P; and

dim(cl(K!\ P)NK[NP;) <i—2,

does not exceed (nkd)o(").

Theorem 2 immediately follows from Lemmas 9 and 10.

5. Extremal points of a linear function on K!

Take a linear form L = v X7 + -+ + v, X,, with generic coefficients ~1,...,v, € R.
Fix P; satisfying the conditions of Lemma 10 and denote by L) the restriction of L on

P;. Then L) attains its maximal value, say Gépi), on the compact set K/ N P;. Since
L(P) is a generic linear form on P; as well, the following two properties are fulfilled:

(i) L") attains the value Gépi) at a unique point v € K N P; (cf. [Hi 76]);

(i1) the point v does not belong to c/(K]\ P;) (cf. the conditions of Lemma 10).

Indeed, the semialgebric set of linear forms on P; for which the properties (i), (ii) fail,
has the dimension less than the dimension of the set of all linear forms on P;, thus for the
generic form L the properties (i), (ii) are valid.

Denote by V a connected component of K] N P; which contains v. The property (ii)
implies that there exists 0 < r € R such that B,(r) N K/ = B,(r) N V. Thus, L attains a
local isolated maximum on K at the point v by the property (i). Hence, there exists an
element 0 < ((P) € R such that the values of L on the set dB,(r/2) N K! are less than
oL — P,

Lemma 11. The linear form L attains its maximal value 87%) on the set
(K N{lg — pl <e1}) N Bu(r/2)

(say, at a point w) and the values of L on the set
cd(KiN{lg — p <er}) NOBy(r/2)
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are less than sto(G(P")) — (P Moreover, sto(G(P")) = Gépi) and sto(w) =v € P;.

Proof. Due to Lemma 8 and the Remark after Lemma 3 from Section 2, we have:
stocl (K N {lg — p| < e1}) = K.

By the transfer principle, L attains its maximum 67) on the closed bounded set cl(K; N
{lg — 1| < e1}) N el(B,(r/2)) at some point w. Then sto(#F)) = Gépi) and sto(w) = v
(due to (i)).

Since

sto(cl(Ki N {|lg — p| <e1}) NOB,(r/2)) C K. NIB,(r/2)

we obtain the second statement of the lemma from the defining property of (). Lemma
is proved.

Lemma 11 states that L attains a local maximum on the set ¢/(K; N{|g —p| < e1}) at
a point w such that sto(w) € P;. In order to estimate the number of such local maximum
values of L we shall now construct a smooth hypersurface which is infinitely close to
cd(Ki N{lg — p| < e1}). After that it will be sufficient to bound the number of local
maxima of L on this smooth hypersurface.

For a point y denote the coordinates of the gradient

grady(f(y) —e3) = (U1y.en s Un—g)

(cf. Definition). The set K;N{|g—p| < 1} of the points y = (y1,...,yn) can be represented
as a union of n — 1 semialgebraic sets of the form

U(iO):{f_53:07u?0>07p1>0,...,p3>0}CR§L7 1<ip<n-—1

for some algebraic functions pq,...,ps of the quadratic-irrational type introduced in Sec-
tion 1, i.e., rational functions (with coefficients from Rs) in y1,...,y, and in
/.2 [ 2 2 2 2 2
ui, 4Jui, + Uni (200 \/uio + ul, (o) 4t Uri (n—i) (3)
(see Lemma 1). Here m;, is a permutation of {1,2,...,n — i} such that m; (1) = ip (cf.
Section 1).
Denote

q=(e2 —(f —e3)?)(ui, —ea)(pr —€4) -~ (ps — €4).

Introduce semialgebraic sets

ué’o) = {e: > (f —53)27 u?o > &4, P1 > €455 Ps > € C RS

and

io _ _ iO R6 n
U0 = {g =g} 0 (U)F c Ry
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Lemma 12 (cf. Lemmas 1, 4 in [GV 92]).

sta(U0)) = el (U1)),

Proof. Let us first show that to prove the lemma it is sufficient to establish the equality
sts (U0)) = au. (4)
Indeed, due to Lemma 3a),
sta (AU ) C sty (cl(US™)) = el(UE),

thus, due to (4), st3(U0)) C cl(UC)),

On the other hand, ¢l(UU)) = J(U0)) because U0 C {f = £3} and thereby U
contains no internal points. Hence, Lemma 3b) implies that c/(U)) C stg(az/{élo)). It
follows from (4) that cl(U(0)) C st3(U(*)). This would prove the lemma, provided that
(4) holds.

Now we prove (4) starting with the inclusion C.

Let a point y € U and the standard part 2 = st5(y) be definable. Then ¢(z) = 0
and

e3> (f —e3)%uf, > ea,p1 > €4y, ps > 4

Suppose that = ¢ 8Uéi0). Therefore there exists 0 < ro € Rj such that either
B,(ro) C Uéio) or By(rg) N Uéio) = 0.

If By(ro) C Uéio) we get a contradiction with ¢(x) = 0.

If By(ro) ﬂ?x[éio) = () we conclude that the intersection B, (rg) N (Z/{éio))(Ra) = (). Since
y belongs to this intersection we again get a contradiction which proves tie inclusion C in
(4).

To prove the inclusion D in (4) take a point = € aué’b). Observe that ¢ is positive

everywhere on L{éio) and ¢ vanishes everywhere on 8Uéi0), in particular ¢(x) = 0.
Suppose that = ¢ st5(u(i0)). Then there exists 0 < rq1 € Ry such that B,(r1) NYlio) =
(0 (cf. the proof of Lemma 2). Consider the decomposition of the intersection

Bo(r) NU™® = Uu

into its connected components (which are also semialgebraic sets and there is a finite

number of them, see e.g. [GV 88]). Since x € ¢l(By(r1) N L{élo)) there is jo for which
x € cl(U,). All the values of the polynomial ¢ on Uj, form a connected semialgebraic
subset = C Rs. So, = is an interval (or a point) with endpoints &1, & € Ry, & < &o,
the set = could be either closed, either open, or semi-open. Observe that & > 0 because

Uj, C Uéio). On the other hand, {; = 0 since ¢(z) = 0 and = € cl(Uj,). Obviously,
€2 > 0. Due to the transfer principle, ¢ attains on the set Z/{](ORES) all the values from the
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interval (0, &, )®e). In particular, there exists a point y € Z/I](ORES) such that ¢(y) = 6. Then
y € By(r1) N 2(0) . The obtained contradiction completes the proof of the lemma.

Lemma 13. For a certain 1 < 15 < n — ¢ the linear form L attains its maximal value
GEPi) on the set cl(U)) N B,(r/2) at a certain point wy, and the values of L on the
set cl(u“‘o)) N OB,(r/2) are less than sto(egpi)) — (P Moreover, stg(egpi)) = 0P and
Sto(wl) =0V E Pz

Proof. Since

Kin{lg—ul <=} = | U@

1<ip<n—i

there is 1 < ig < n — ¢ such that w € cl(U(iO)) (see Lemma 11). The linear form L attains

its maximum GEPi) on the bounded closed set cl(uﬁio)) Nel(By(r/2)) at a point wy. Using
Lemma 12 and the equaliy sts(U(©)) = sts(cl(U"))) (see the Remark in Section 2), we

get: stg(egpi)) = 0P Due to (1), sto(wy) = v.
The values of L on the set cl(U0)) N OB, (r/2) are less than Gépi) — (P due to the

similar statement in Lemma 11, taking into the account that
st (cl(U©) N OB, (r/2)) C dB,(r/2).
Lemma is proved.
Since w is a local maximum of L on the set ¢l/(U (")) we obtain the following corollary.

Corollary. The number of i-faces P; satisfying the conditions of Lemma 10 does not
exceed the number of all the values of local maxima of the linear form L on the set

U @t

1<ip<n—i

Lemma 14. ") is a smooth closed hypersurface.

Proof. First we prove that cl(U(")) = (o), Let a point = € cl(U)). Then
q(z) = 6,65 > (f(2) —e3)%,uf (2) > caspr(a) > easennpsla) > eu

Neither among the latter inequalities could convert into an equality because ¢(x) =
g6 # 0, hence = € Y0,
Observe that in the open semialgebraic set {uj > 0} all the square roots (3) are

positive. Therefore all algebraic functions pr, ..., ps occuring in U(©) are smooth, hence ¢
is smooth as well. Because of Lemma 4, ¢ is not a critical value of ¢ in the set {uf > 0}.
Then the implicit function theorem implies the lemma.

Finally, let us prove the following lemma.
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Lemma 15. The number of local maxima of L on U does not exceed (nkd)o(").

Proof. Because of Lemma 14, the number of local maxima of L on ¢4(0) does not exceed
the number of connected components of the semialgebraic set

_ .9 __ 94
~ox; T axy

M={0=q—c¢g 1<i<j<n}CRy§
(by the Lagrange multiplier theorem, see, e.g., Ch. 4 in [Th 77] and taking into the account

the transfer principle).
Replace each occurrence of the square root

up, F UL gt Ul

T (m)>

1 <m < n—1in g by a new variable Z,,. Denote the resulting rational function by
Q€ Rs[Xq1,....X0](Z1,...,Zn—;) (cf. Section 1).

Introduce the semialgebraic set

_ .99 ol
~ox;  axy

Zom >0, Z5, = uiy g o)+ g, gy LSm <n—i} CRET
Consider the linear projection
p R — RE, (X, X, Zhy e D) = (X0, X)),

Then p(M) = M. Hence the number of connected components of M is less or equal to
the number of connected components of M.

Observe that the degrees of rational functions occuring in M can be bounded from
above by (knd)o(l) due to Lemma 1 and Definition. Therefore, the number of connected

components of M does not exceed (knd)®™ by [Mi 64].
This completes the proof of the lemma.

Lemma 15 together with Corollary to Lemma 13 imply Lemma 10 and thereby The-
orems 2 and 1.

6. Lower bounds for concrete polyhedra

In this section we give an application of the lower bound from Theorem 1 to a concrete
class of polyhedra. We follow the construction of cyclic polyhedra (see [MS 71]), used in
the analysis of the simplex method.

Take any m > Q(n?) points in R" of the form (tj,t?, ...,t7) for pairwise distinct
t;, 1 <75 < m. Consider the convex hull of these points and denote by P, ,, C R" its
dual polyhedron [MS 71]. Then P, ,, has m faces of the highest dimension n — 1 and the

number of faces of all dimensions

L)
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(see [MS T1]).

Therefore, Theorem 1 implies that the complexity of testing membership to P, ., is
bounded by Q(log N) > Q(nlogm).

We would like to mention that Section 4 of [GKV 94] provides a weaker bound Q(log m)
even for algebraic computation trees.

7. Open problems

1. Is it possible to get rid of any lower bound assumption on N in Theorem 17

2. Is it possible to extend the result of Theorem 1 to algebraic computation trees?
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