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Abstract

We present an algorithm to compute the connected components of a graph in parallel time
COllog |V| loglog|V]) on a CREW-FPRAM with a linear number of processors. This closes the
gap to the best known (and trivial) lower bound of Q(log|V|) frem previously @(log? |V]) to
Olog log |VD.

1 Introduction

One of the basic problems in graph theory is to decide whether a given undirected graph &
is connected and to compute its maximally connected subgraphs, the so called connected
components of G. More formally, given a graph G = (V, E) with n vertices and m edges
we want to compute a function A : V' — V such that A(v) = Au) if and only if u and v
lie in the same connected component of G. The function A can be modeled by a directed
graph €' = (V, E') with edge set £’ = {{v, A(v))| v € V}, a so called pointer graph.
There exists a simple linear time sequential algorithm for this problem (see [Ta 72]),
the depth-first search. Unfortunately depth-first search seems hard to parallelize. Reif
proved in [Re 85] that it is P-hard to compute the lexicographically first depth-first search
tree. Although a randomized NC-algorithm was given in [AAK 90], no deterministic NC-
algorithm is known for this problem.

All parallel algorithms for computing the connected components follow more or less the
approach of Hirschberg ([Hi 76],(HCS 79]) that can be described as follows:

“For all vertices of G in parallel some edge from its edge list is chosen. This gives a
pointer graph consisting of a disjoint union V' of pseudo trees. Vertices lying in one
pseudo tree are identified to belong to the same connected component of G. Finally a
new graph G' with vertex set V' is created. Two vertices in G are connected if there
is an edge between the corresponding trees in G. Then this procedure is iterated with
the graph G'. The iteration stops with a graph G" having no edges. The vertices of G"
respresent the connected components of the input graph G.”

The parallel algorithm of [HCS 79] works for the CREW-PRAM and — under the as-
sumption of unit cost (which we will keep throughout the paper) — has a running time
of Oflog? n) with n? processors (here the input was assumed to be the adjacency matrix
of G). The number of processors was reduced to n?/log® n using Brent’s theorem {c.f,
[Br 74]) by Chin et. al. ([CLC 82]). For the CRCW-PRAM the best known algorithm
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works in time Oflogn) ([SV 82]) with an optimal number of (n + m)/logn processors
([CV 86)], [Ga 86]). The running times of all these algorithm differ by a factor of logn
from the best known (and trivial) lower bounds of Q(log =) for the CREW-PRAM and
1(1) for the CRCW-PRAM.

Johnson and Metaxas [JM 91] gave the first algorithm of time complexity o{log®n) for
the CREW-PRAM. Their algorithm, that runs in time @(log!®n) with a linear number
of processors, was a breakthrough, since former it was widely believed that no algorithm
of time complexity o(log?n) would exist (c.f. [KR 90]).

In this paper we develop their algorithm further. Familarity with the paper of Johnson
and Metaxas is therefore useful as we will only sketch the necessary algorithmic tech-
niques already contained in there. We will concentrate on the new idea that allows a
refinement of the growth control scheduling of Johnson & Metaxas. The central im-
provement is the observation that to guarantee the growth of a “small” component by a
“small” factor only a “small” part of the edge list of the vertex representing that compo-
nent has to be considered. This allows an arbitrary deep and efficient nesting of layers
of computation. In this light we get a uniform description of a sequence of algorithms;
the first algorithm of this sequence is a variant of the algorithm of [HCS 79], the second
is the one described in [JM 91]. The £-th algorithm of this sequence has a parallel run-
ning time of O(flog n(log n)'/¢), thus the loglog n-th algorithm with a running time of
Oflog nlog log n) is the best algorithm of this sequence.

Many algorithms for other graph theoretic problems including Euler tours [AV 84]
[AIS 84], ear decompostion [MSV 86], biconnectivity, rely on a connectivity algorithm,
so their parallel time complexity also decreases correspondingly. Moreover, the new tech-
nique might be directly applicable in other cases as well.

The paper is organized as follows, Section 2 contains a precise definition of the problem
and some definitions and notations used throughout the paper. Section 3 describes the
elementary steps of parallel algorithms for the connectivity problem and shows how to
implement them efliciently. Before describing the general algorithm in Section 5, we
first describe the simpler third algorithm from the sequence in Section 4. From the
proof of correctness of this algorithm the correctness of all algorithms of the sequence is
immediately clear.

2 Notations and definitions

Given an undirected graph G = (V, E), the task of computing the connected components
of G can be formalized to produce a directed graph C = (V, E') in which each vertex has
outdegree exactly one (the set of edges can thus be interpreted as a function A: V' — V)
with the property that A(u) = A{v) if and only if u and v belong to the same connected
component of G. In the following we freely switch between A and C.

The input graph G is assumed to be given in edge list representation in the following
way: The edge lists are doubly linked lists and each edge e = (u,v) appearing in the edge
list of u has a pointer to its {win edge (v, u) appearing in the edge list of v. The digraph
€ (resp. the function A) is represented by one pointer for each vertex and initially each
vertex points to itself. Vertices in the image of A are called aciive; non-active vertices are
called passive. In the beginning all vertices are active. An active vertex with empty edge
list is called finished. It represents a whole connected component of the input graph G
which we also call finished in this context,



b)
Figure 1: a) pseudo tree, b) rooted tree, ¢) rooted star

In the course of the algorithm the graphs G' and € are modified. To allow an efficient
modification of the graph G we reinterpret the data structure of G in dependence of A in
that passive vertices have no neighbours in G independent of their edge list. Note that
the properties “active” and “passive” are not evaluated in the algorithm and are solely
introduced for a better and clearer description of the algorithm. With this reinterpretation
one can pass elficiently the edge list of some vertex to another vertex by simply changing
a few pointers. Indeed, even all vertices can do this simultaneously such that large edge
lists are constructed.

The general approach of parallel algorithms is to generate a sequence of pointer graphs
C'; with the property that if Ag,(u) = Ag,(v) then u and v belong to the same connected
component. Furthermore, if Ag,(u) = Ag;(v) then Ag,(u) = Ag,(v) for all j > i. Even-
tually, the sequence converges to the output graph €' where all vertices in a connected
component have the same A-value.

In general a pointer graph C' is a pseudo forest, i.e. a collection of disjoint pseudo trees.
A pseudo tree is a connected graph containing exactly one cycle (or self loop). The graphs
; generated by the algorithms have the additional property that the cycle is directed
and that all edges are directed towards the cycle.

If the cycle is a self loop, the pseudo tree is called a rooted tree and the (unique) vertex
v with A(v) = v is called the root. If additionally all vertices have their edges directly to
the root (Vu : A{u) = v}, the tree is called a rooted star (see Figure 1).

In this terminclogy the cutput graph C' is a “galaxy," a collection of stars.

Given a pseudo forest ' we call the (connected) subgraphs of G that are induced by
the connected components of C' the {'-components of G. Edges between vertices of the
same C-component are called internal, the edges between two C-components are paraflel
to each other. One (arbitrary) edge from a set of parallel edges is a useful edge. All



non-useful edges are redundant and are of no help anymore for the further computation
of the connected components.

The diameter of a (directed) graph G is the length of a longest (directed) simple path in
G.

3 The building blocks

In the design of parallel algorithms for the connectivity problem three general substeps
can be distinguished.

3.1 The hooking step

In the hooking step the pointer graph C is changed as follows: the root v of a pseudo
tree (which has A(v) = v) selects an vertex u guaranteed to be in the same connected
component as v and hooks to it, i.e., it sets A(v) = u. Furthermore, the graph & is
changed: the edge list of v is inserted into the edge list of v. This substep of the hooking
step is also called edge-plugging step.

Johnson & Metaxas propose the following way to accomplish this step efficiently: in
parallel each vertex checks whether it is a root and, if this is the case, selects the first
edge (say to vertex u) of its edge list and hooks to it. To avoid write conflicts the edge
list is inserted after the twin edge in the edge list of u. These manipulations can be done
in constant time since only a constant number of pointers have to be reset. The resulting
pointer graph is a pseudo forest in which the cycles of the pseudo trees may be arbitrarily
large.

Let us summarize.

Observation 1 {[JM 91]) Given a pair of graphs (G,C) as described above one ecan
compute with n processors in parallel time (1) a pair of graphs (G',C') such that if
Mc(v) = v and (v,u) € E(G) is the first edge in the edge list of G then Age(v) = u,
otherwise Agi(v) = Ac(v). The edge list of G is changed such that in G' we have

Ngr{u] = Nglu) U Nge(v).

In the following we denote by “hock()" the procedure that executes the hooking step as
described in the above observation.

Let us remark that in [HCS 79] instead of the first edge in the edge list the edge to
the vertex with the smallest number is selected. This costs O(logn) time but has the
advantage that each so created pseudo tree has a cycle of length at most two.

Note that through the execution of a hooking step C-components can only grow in their
sizes.

3.2 The contracting step

If the psendo trees are rooted pseudo trees, the standard pointer doubling technique can
reduce a psendo tree with diameter at most d to a rooted star in time Oflog d). This also
holds with minor modifications for pseudo trees with a cycle of length at most a constant.
To cope with general pseudo trees, Johnson & Metaxas have defined a set of rules, the
so called cycle reducing rules, which can be used to transform an arbitrary pseudo tree
with diameter d to a rooted star in time Olog d):



Observation 2 ([JM 91]) Given a pseudo forest C' and an integer s one can compule
in parallel time O(s) with n processors a pseudo forest C' with the same connected com-
ponents such that all pseudo trees of size at most 2° are rooted stars in C'.

We will name the procedure that implements Observation 2 “contract(s}". s is a
parameter for the length of the step.

Note that during the hooking step the edpe list may be splitted in two circular edge lists.
This can be repaired in constant time if one vertex has become the root of the pseudo
tree. For details see [JM 91].

3.3 Redundancy removal step

In this step edges that have become redundant during the computation are removed from
the praph G. Edges may have become redundant for two reasons:

1. there are edges between two vertices known to be in the same connected component,
i.e., vertices with the same A-value,

2, there are duplicate parallel edges between two pseudo trees, i.e., if there are two
edges e = (u,v) and €' = (o', v") with A(u) = A(n') # AMv) = A(v") then one of the
edges can be removed.

To test the redundancy of an edge each edge e = (u, v} is replaced by the edge (A(u), A(v)).
Internal edges of C-components corresponding to rooted stars are thus replaced by self
loops of the root and can be identified immediately.

3.3.1 The removal of internal edges

In rooted stars, internal edges (i.e. self loops of the root) can easily be removed using the
pointer doubling technique on the (linked) edge lists. With s successive pointer doubling
steps one can exclude intervals of internal edges of length up to 2* from the edge list.
Since rooted stars of size at most 2* have at most 2°* internal edges we conclude with
the following

Observation 3 ([JM 91]) Given a pair of graphs G, C and an integer s, one can com-
pute in time Os) with n+m processors a graph G' with all self loops of vertices in rooted
stars (w.r.t. C) of size < 2° removed.

The procedure “internal(s)” implements the above observation. Again, s is the length
of the step.

3.3.2 The removal of parallel edges

To remove duplicate edges [JM 91] proceed as follows: the whole edge lists are sorted
so that duplicate edges are placed in adjacent cells in the sorted lists. Again using the
pointer doubling technique all duplicate edges are removed. This step uses ({log n) time.
This is an overhead!

What are the purposes of the redundancy removal step? The obvious reason is to get
a useful edge in the hooking step. This is accomplished by deleting all internal edges.
small components that have to hook often must have an efficient access to many useful
edges. Therefore the edge list has to be purged of redundant parallel edges. Since a
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Figure 2: One case of Lemnma 4

small C-component has only a few number of edges to some other small C-compaonent,
the first part of the edge list either contains many different useful edges or edges to large
C-components. The following lemma makes this clear.

Lemma 4 Let v be the root of a rooted star of size < t with ne internal edges. Then the
edge list of v has less than 1*1' entries or the first t*t' eniries of the edge list contain al
least t' different useful edges or one edge to a vertex lying in a C-component of size at
least 1.

Proor: The number of edges between C-components of size at most ¢ is bounded by ¢2.
If none of the first %2’ edges in the edge list joins v to a C-component of size more than
t, then the first t*t' edges join v to at least 1’ different C-components and thus at least
t' edges are useful (see Figure 2). Otherwise some edge connects v with a C-component
with more than ¢ vertices. m
Let us call a C-component small if its size is bounded by 2* and large otherwise. By
sorting the first part of the edge list and removing duplicates one can obtain a list of
useful edges.

Observation 5 (iven g pair of graphs G,C and inlegers 8,8, such that all small C-
components of G are rooted slars and contain no internal edges, one can compute in time
s + 5') a graph G' such that:

a) the first 2° entries of the edge list of the roots of all small C-components in G are
disjoint, or

b} at least one of the edges joins the C'-component to a large C'-component, or

¢) the C-component has fewer than 2* neighbours and to each neighbour there is an edge
among the first 2° entries.

Similar to above, the procedure implied by Observation 5 is named “external(s,s'}".
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4 A first improvement: O(log™®n) parallel time

4.1 The first algorithm: Hirschberg et al.

The standard algorithm of [HCS 79) consists of one layer. In this layer a hooking step,
contracting and removal (as well internal as external) each of length log n are performed,
and thus all pseudo trees are contracted to rooted stars and all redundant edges are
removed. Therefore, after one execution of this layer at least half of the vertices, that
were aclive beflore the execution of the layer, have become passive or finished, and logn
iterations of this layer suffice to guarantee correctness.

4.2 The second algorithm: Johnson et al.

The algorithm of [JM 91] is built of two layers. The first (deeper) layer (denoted as a
“stage” in [JM 91]) consists of a hooking step, contracting and internal removal step of
length \/logn each. Here all pseudo trees of size at most 2VIo8™ 416 reduced to rooted
stars and all internal edges of these rooted stars are removed. The second layer (denoted
as a “phase” in [JM 91]) consists of +/Tog n iterations of the first layer and a contracting,
internal and external removal step of length logn afterwards. Thus like in [HCS 78] after
the execution of the second layer all redundant edges are removed, but the number of
active vertices drops to a fraction of 9-v/o8n  This holds since either the pseudo trees

created by the hooking steps consist of at least 9v1o8n vertices that were active before the
exccution of the second layer, or in each of the v/log n execution of the first layer they can
be reduced to rooted stars. In this case, the number of active vertices in these small trees
are at least halved by each execution of the first layer so that after /logn iterations of
the first layer the number of active vertices is reduced to the desired quantity. It follows
that +/Tog n iterations of the second layer guarantee correctness.

4.3 The third algorithm

Lemma 4 removes the drawback of the algorithm of Johnson and Metaxas that either
internal edges in small C-components can be removed with very low effort or everything
is cleaned up with high effort. Now we can get any intermediate level of order in the
edge lists of C'-components of corresponding intermediate size with corresponding
intermediate effort.

Let us describe how the three-layerd algorithm of the sequence which is given in Figure 3
works and show it correctness. Let s = ¢/Togn and call a C-component small if it contains
fewer than 2° active vertices, medium if it contains fewer than 2% active vertices and large
otherwise. The purpose of the first layer is to grow small components by a factor of 2.
It is easily verified that this can be done by a hooking step, contracting and internal
removal steps of length s. After the first layer all small components are contracted and
have no internal edges.

The purpose of the second layer is to grow medium C-components by a factor of 2°. This
is done by s iterations of the first layer and afterwards a contracting step of length 5%, an
internal removal step of length 5 and an external removal step with parameters s? and s.
As above, either the pseudo trees created during the hooking steps have size at least 2% or
they can grow by at least 2° during the s iterations of the first layer. All pseudo trees of
medium size are now contracted and all internal edges are removed. The execution of



for 1=1 to s do
for j=1 to 8 do
for k=1 to 5 do
hook()
contract(s)
internal(s)
od
contract(s?)
internal(s?)
external(s?, s)
od
contract(s?)
internal(s?)
axternal (s%, s%)
od

Figure 3: The third algorithm

the external removal step guarantees that for a next execution of the second
layer the first 2* edges of the edge list of a medium ecomponents are useful or
one of the edges is an edge to a large component. Thus in the next iteration of
the second layer a non useful edge is only encountered if the C-component has grown by
a factor of at least 2*. The execution of the external removal step therefore guarantees
the correctness of the next execution of the second layer.

The third layer is like the second layer in [JM 91]. Here, after s iterations of the second
layer all C'-components have at least 924 active vertices or are finished. All C-eomponents
are reduced to rooted stars and all redundant edges are removed. Thus s iterations of
the third layer again guarantee that all C-components have size > 2 = n and thus are
finished. With the observations of the previous section it is easy to see that the i-th layer
has a parallel running time of ¢(s*). Thus the described three-layered algorithm works
in time @{log"® n) with a linear number of processors.

5 An O(lognloglogn) algorithm

The above idea generalizes to many-layered algorithms of arbitrary depth. Let us consider
an {-layered algorithm and set 5 = (logn)’"'. The structure of the algorithm is best
described by a listing, see I'igure 4, where v is the number of the layer. Since £ might
be non-constant we have chosen to write it in a recursive form. The correctness of the
alporithm follows as above.

The purpose ot the 7-th layer is to guarantee a growth of at least 2" for all C-
components of size at most 2*. As above the correctness ot the r-th layer relies on
the fact that the v — 1-st layer can be consecutively executed as often as required by the
use of the external removal step of appropriate length as the last step in the r = 1-st layer,



Connected-Components (1)
for i=1 to § do
Layerad-Cemponents (1)
od

Layered-Components(r)

if (r = 1) then
haok{)
contract(s)
internal({s)

alsa
for t=1 to s do

Layered-Components(s,r— 1)

ad
contract{s")
internal(s")
external(s™. s

endif

ral}

Figure 4: Recursive formulation of the r-th layer of the general algorithm

The time complexity can be estimated as follows. Let T¢(n, r) denote the time complexity
of the r-th layer of the &layered algorithm of the sequence of connected component
algorithms and let Ty(n) = sT¢(n,£) be the time complexity of the [-layered algorithm.
Te(n,r) can be estimated as follows:

Teln,r) < sTe(n,r— 1)+ cs” forr> 2

and T¢(n,1) = cs where ¢ is some appropriately chosen constant. It is straight forward
to verify that
Te(n,r) = ers”

is a solution to the recurrence relation. In particular the time complexity of the {-layered
algorithm can be estimated by

Ti(n) = ctlogn(logn)’ .

Some calculation show that the optimal value for £ is loglog n. Therefore the time com-
plexity
Tioglognin) = 2¢loglognlogn

for the loglog n-th algorithm is the best of any algorithm of this family. We summarize
this analysis in the following theorem,

Theoem 68 The connected components of a graph can be compuled in lime
Oflog nloglogn) with a linear number of processors on a CREW-PRAM without write
conflicts. An algorithm with this complezity is qiven ezplicitely.



Let us remark that in the loglog n-th algorithm we have s = 2 and the sequence of the
lengths of the contracting and removal steps is

§=1(1,1,2,1,1,2,4,1,1,2,1,1,2:4,8,1,1,2,.. ).

This sequence is the same as the one used by Luby, Sinclair and Zuckerman for the
simulation of Las Vegas algorithms [LSZ 93]. Here they show that the above sequence
gives a simulation that is optimal up to a constant factor.

Open problems

Is there a superlogarithmic lower bound for the time complexity of computing the con-
nected component of an undirected graph on a CREW-PRAM?Y? 1 conjecture that a lower
bound of {}(lognloglogn) holds at least for the restricted class of “Hirschberg-type”
algorithms.

Much effort has gone in the design of processor optimal algorithms for the con-
nected component problems. Can optimal speed up be achieved with the time
bound lognloglogn), ie., can the number of processors he reduced to (n 4+
m)/{lognloglog n)?
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