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1 IntroductionThe research on navigation, i.e., motion planning, is motivated by the possi-bility of using robots in some unknown enviroment, e.g. a surface of distantamoon. In such circumstances, the robot's operations should be highly au-tonomous, as the communication is a subject of very high delays. In planningsuch an operation, we may consider two alternatives. One is to invest �rstsome resources and make a map of all impassable obstacles. Another is tomake the robot to navigate among the obstacles that are learned as theyare encountered.The choice between two alternatives clearly depends on the di�erencebetween the cost of the robot reaching its objectives with and without themap. This di�erence depends on the nature of the robot's task, the shape ofthe obstacles, and, quite crucially, on the quality of the navigating algorithmthat robot may use. Most commonly, the quality of a navigating algorithmis measured by its competitive ratio, i.e., the ratio of the lengths of thepaths traversed by the robot without a map (using the algorithm) and witha map (the shortest obstacle-free path from the starting point to the target)respectively.Navigation problems have four aspects: the target (a point, an in�niteline, etc.), the placement of the obstacles (can be unrestricted, within a rect-angle that has the starting on perimeter and the target point in the center,etc.), the shape of the obstacles (oriented rectangles, arbitrary rectangles,arbitrary convex �gures, arbitrary polygons, etc.), and, lastly, the informa-tion available from the scene (visual or tactile). One can also formulate amotion planning problem in a graph, as in [4].The complexity parameter n is the distance between the starting pointand the target. To assure that there is a relationship between the complexityparameter and the competitive ratio, we assume that every obstacle containsa unit circle.In several instances, tight bounds were derived for the attainable com-petitive ratio. One example is the room problem: the target in the centerof a square containing all the obstacles, and the start at the perimeter. Ifobstacles are oriented rectangles, the competitive ratio for deterministic al-gorithms is �(logn) (see [1]). If obstacles are convex, Blum et al. [3] showthe deterministic lower bound 
(n1=2) and randomized upper bound O(n1=2)(both bounds assume that the robot receives the visual information).In the wall problem, introduced by Papadimitriou and Yannakakis [7],the target is an in�nite straight line. If the obstacles are oriented rect-1



angles, then the competitive ratio for deterministic algorithms is �(n1=2)(see [3]). Recently, [2], an randomized algorithm was found that is betterthan the deterministic lower bound. If the obstacles are arbitrary convex�gures, no better lower bound is known, but no matching competitive ra-tio was obtained. If the obstacles are arbitrary rectangles, one can applythe deterministic algorithm of Lumelsky and Stepanov [6] to obtain com-petitive ratio O(n). For arbitrary convex obstacles, NO upper bound ondeterministic competitive ratio is known.In this paper, we provide a randomized algorithm for the last problem,with a competitive ratio O(n3=4).In practical terms, this competitive ratio is so high that in most cir-cumstances we should rather invest in creating a map. We conjecture thatthere should exists much better randomized strategies. For example, thereexists a simple algorithm that handles well the examples of scenes that aremaximally di�cult for the our algorithm, but which is not analyzed as yet.In general, for the case of arbitrary convex obstacles, there are more openproblems than solved. To mention just a few: to �nd ANY competitive ratiofor point to point navigation, to improve the lower bounds (currently, veryweak for randomized algorithms, the best, 
(log logn) is provided by Karlo�et al. [5]), to improve the upper bound, to generalize to three dimensions.2 PreliminariesWe assume that the robots moves on a plane, and that is always knows thecoordinates of its current position. The initial position of the robots is (0,0),later we refer to this point as the source. The targetis the line fx = ng.To better present our algorithm, we will show it in four versions. Thesimplest forms an obvious solution for the case of oriented rectangles, withcompetitive ratio n1=2. The second will solve the case of arbitrary rectangu-lar obstacles, with competitive ratio n3=4. The third will handle arbitraryconvex obstacles, provided that they are \short"; the fourth will solve thegeneral case.All our algorithms will have the following structure:set(m; l);repeatrand.set(r);for phase.no := 1 to m do 2



for attack.no := �(m� 1) to m� 1 dolower := line fy = (i� 1)lg;upper := line fy = (i+ 1)lg;central := line fy = ilg;attack( attack.no );l := 2 � lforeverWhen we discuss an algorithm with this structure, we refer to a singleexecution of the repeat loop as stage(l), referring to the value of l duringthis execution (before it is reset at the end). In a stage we execute m phases,each consisting of 2m� 1 attacks. We assume that the robot interrupts theexecution of the algorithm as soon as it reaches the target. In randomizedalgorithms, we will also enforce a cost limit for each stage, if the robottraverses the distance equal to the limit while executing a stage, it interruptsthis stage and starts the subsequent one.3 Oriented rectanglesNow we present an algorithm that handles oriented rectangles, i.e. the rect-angles with sides parallel to the axes. Then we will analyze this algorithmin a way that can be generalized in the subsequent sections.Initially, in set(m; l), the robot sets m = dn1=2e and l = m. In rand.setthe robot does nothing (because this algorithm is deterministic). In attack(i)the robot moves toward the target as much as possible, but within the\corridor" bounded by lower and upper lines. At all times the robotmoves according to the following rule: if possible, move directly toward thetarget(directly = parallel to x axis), if such motion is blocked byan obstacle,follow the algorithm.attack(i):repeatmove to centralif the adjacent obstacle extends from lower to upper thenexitelsefollow the obstacle around its nearer end back to central3



foreverTo show that the resulting algorithm leads the robot to the targetwithcompetitive ratio O(m) it su�ces to prove the following two properties:� In stage(l) the robot traverses O(m2l).� If the robot does not reach the targetbefore the end of stage(l), thenthe length of the shortest obstacle-free path from the sourceto thetargetis larger than ml.To prove the �rst property, notice �rst that we need to estimate onlythe length of those moves of the robot that are parallel to y axis; the sum ofmovements parallel to x axis is bounded by n. A stage consists of m phases;the length of the �rst move of a phase (to central line of the �rst attack,i.e. to line fy = �(m � 1)lg, is less than 2ml, hence the total cost of such�rst moves is less than 2m2l. In a stage, (2m� 1)m attacks are performed,the �rst move of an attack (except the �rst attack of a phase, which wasalready counted) has length lm, the last has length 2l, the total cost of suchmoves is 3l(2m� 1)m < 6m2l. Any other move in an attack has length 2land brings the robot closer to the targetby at least 1, hence there are atmost n such moves, with the total cost n2l = 2m2l. Summarizing, the totaldistance traversed by the robot is below 10m2l.We prove the second property in a way that we will be able to general-ize later. Consider only those obstacles that were stopping the attacks ofstage(l). Note �rst that if some two attacks from two di�erent phases arestopped on the same obstacle, then this obstacle extends from fy = �mlg tofy = mlg; such an obstacle alone forces the shortest path from the sourcetothe targetto be longer than ml. Thus later we may assume that this doesnot happen.Let as de�ne the corridor of obstacles A and B as the set of points(x1; y1) such that� (x1; y1) 62 A [B, and� (x0; y1) 2 A and (x2; y1) 2 B for some x0 < x1 < x2.Corridors of a phase are formed by pairs of obstacles that stop consecutiveattacks (note though that some consecutive attacks are stopped by the sameobstacle). The union of the obstacles and corridors of a phase forms a4



connected polygon, which we may call a phase barrier, that extends fromfy = �mlg to fy = mlg. If a path from the sourceto the targetof lengthat most ml exists, it must be contained in the strip bounded by these twolines. After removing the phase barriers from this strip, it will be split intom + 1 connected components, the leftmost containing the sourceand therightmost containing the the target. Therefore any path must traverse atleast one corridor in each of the m phase barriers; as each corridor has thelength of at least l, we can conclude that the length of such a path is atleast ml.4 Arbitrary rectanglesThe previous algorithm does not work in the case of arbitrary rectangularobstacles. The reason is the following: when the robot moves to starts asubsequent attack, it may encounter an obstacle that can be followed eithertoward the target, but away from the central line of the attack, or towardthe central line, but away from the target. The �rst choice could leadit to the targetin a very ine�cient manner, so the second choice may benecessary. However, when the robot is may move away from the target, itis di�cult to estimate the number of moves in the attacks: the sum of thex components of moves may be much larger than n, so we loose our upperbound for these moves.The solution to this dilemma is to choose a threshold angle that wouldwork according to the following intuition. Imagine that the robot is pulledtoward the targetby gravitation, and that obstacles are slippery. On suf-�ciently steep obstacles (according to the threshold angle) the robot loosesits footing and slides toward the target.With every choice of the threshold angle there exists an associated dan-ger: the robot may enter an exceedingly long oscillation, alternatingly slidingaway from the central line of the current attack and climbing back towardit. To minimize this danger, we will select that angle at random, thus as-suring that, on the average, only a small proportion of the obstacles in thescene has angles that are dangerously close to the threshold.In set(m; l) the robot sets m = dn1=4e and l = m3. The limit on thelength of the path traversed in stage(l) is cm4l, where the constant c will beestablished later. In rand.set(r) the robot selects r, uniformly at random,from the set fm2 + 1; m2+ 2; : : : ; 2m2g.5



When the robot is in contact with an obstacle, it can sense the slope ofits surface. We formalize it as follows. If the line tangent to the obstacle isparallel to the line fsy = lxg, we say that the robot's feel [of the slope] isdjsje. If the tangent line is parallel to fy = 0g, the feel is de�ned as1. Therobot uses the feel of the slope in the following routine (where line of theform fy =constant g):stabilize(line):repeatif not adjacent to an obstacle thenmove directly toward the targetelse if feel > r thenfollow the obstacle toward the targetelsefollow the obstacle toward lineuntil you are at line and you are adjacentto an obstacle and feel � rNow we can formulate the new attack procedure:attack(i):repeatstabilize(central );if the adjacent obstacle extends from lower to upper thenexitelsefollow the obstacle around its nearer end back to centralforeverTo analyze this algorithm, observe �rst that the obstacles that stopthe attacks form essentially the same pattern as in the previous algorithm.Therefore we can conclude that when stage(l) is completed and the robotdoes not reach the targetthen the shortest obstacle-free path from thesourceto the targetis longer thanml. However, stage(l) is not always com-pleted: sometimes it is interrupted, because the robot already traversed theallowed distance of cm4l. Nevertheless, as we prove below, the probabilityof such interruption is lower than 1/4.6



Before we proceed, we should notice that the above two claims implythat the expected competitive ratio is O(m3). Indeed, if the shortest pathfrom the sourceto the targethas length L, then the stages with l < L=mtraverse less than 2cm4L=m = 2cm3L because of the interruptions; for thesubsequent stages we should notice the following: while the allowed costdoubles, the probablity that the stage will be attempted at all (i.e. that therobot have not reached the targetalready) goes down by the factor 4; hencethe [upper bound of the] contribution of such a stage to the expected pathlength is half of that for the previous stage.The proof that with probability at least 3/4 the robot completes stage(l)is divided into four propositions. Each statement should be conditioned\during the execution of stage(l)".Proposition 1. Each obstacle is encountered by the robot at most once. Ifboth obstacle A and obstacle B are encountered, and A is aboveB (precisely:the corridor of A and B is non-empty, see the previous section), then A isencountered before B.Sketch of proof. More or less obvious. However, if false, the subsequentreasoning makes no sense.Proposition 2. The motion of the robot is restricted to the trapezoid withthe following corners: (�2m3;�ml) and (n;�(m+ 1)ml).Sketch of proof. Assume that r was selected. Then the robot may moveaway from the targetonly along obstacles with feel at most r, and towardthe central line of an attack; when it moves toward the central of the�rst attack from (0,0), it changes the y coordinate by less than ml, andconsequently, it decreases the x coordinate by at most less than (r=l)ml =rm � 2m3. Similarly, when the robot moves away from the lines fy = �mlg,it moves away from the central line of the current attack; in this case itmust \slide" along an obstacle with feel greater than r. Say that the slidestarted at (�rm;ml); as the x coordinate increases by at most rm+m4, the ycoordinate decreases by at most (l=r)(rm+m4) = (1+m3=r)lm � (1+m)ml.Proposition 3. With probability at least 3/4, the joint length of the ob-stacles with feel r encountered by the robot is at most 6m4l.Sketch of proof. First note that the joint length of the obstacles in thetrapesoid of Proposition 2 is bounded by its area, which is (1 + o(1)m5l <1:5m6l. Because we choose r out of m2 possibilities, the expected jointlength of obstaces with feel r is less than 1:5m4l. Thus the claim followsfrom the Chebyshev inequality: probability of exceeding the expected valuemore than 4 times is at most 1/4.Proposition 4. Assume that the joint length of obstacles with feel r en-7



countered by the robot is at most 6m4l. Then the robot traverses at most304ml.Sketch of proof. With a little loss of precision, we may assume that allthe movements of the robot are executed within stabilize and while goingaround obstacles in the attacks. Note that an execution of stabilize(central) that starts on central has the net e�ect of moving the robot toward thetarget(Proposition 1). Going around an obstacle has a similar e�ect. How-ever, when we start an attack, the robot performs a stabilize that changesits y coordinate. The sum of such changes per phase is 4ml, for the totalsum of 4m2l. The associated sum of decreases of x coordinate is at most(r=l)4m2l < 8m4. Therefore, the executions of stabilize that start and endat the same central line, as well as going around obstacles, move the robottoward the targetby at most 9m4. When the robot goes around an obsta-cle, it traverses at most 2l and gets closer to the targetby at least 1. Themovement in stabilize can be split into balanced zigzags of \toward" [thetarget] and \away" motions. If such a zigzag involves an obstacle with feelr, we cannot estimate its net progress, but the joint length of such zigzags isat most 12m4l. Otherwise, one part of the zigzag has feel it least r+1, whilethe other at most r� 1. One can see that two such motions, each of lengthl, move the robot closer toward the targetby at least 1. Hence the jointlength of such zigzags and \going around" is at most (9m4)(2l) = 18m4l.Together, we get 30m4l.5 Short obstaclesOne reason that the last algorithm does not solve the problem of generalconvext obstacles is the reasoning needed in the proof of Proposition 3.There we used the following observation: the joint length of the obstaclesinside the trapezoid bounding the robot's movements is limited by its area.This was true, because the obstacles were rectangles of width at least 1. Ifthey are, say, elongated right triangles with short edge 1 + ", then we needto double the joint length estimate. The real problem arises however withextremally long triangles that have only their ends in the trapezoid. Thejoint length of their portions included in the trapezoid is unbounded. Wedelay handling of this problem to the subsequent section, by assuming thatthe obstacles are contained in the trapezoid, in particular, they have lengthat most 2m2l. 8



Another reason could be that an obstacle does not have a unique feel.This is not a problem, however. First, it is important to estimate the lengthof surfaces with feel r, and of course each piece of the surface has its uniquefeel (with the exception of places without a tangent line, but these havemeasure 0). Secondly, once the robot decides on the direction to followbecause of the feel, the changes of the feel will not change the direction.This follows from convexity of the obstacles: if we follow an obstacle awayfrom the target because the slope (and, hence, the feel) is small, furtheraway it will be the same or smaller. When we follow an obstacle toward thetarget because the slope is high, along the way the slope can only increase.A more serious reason is that the following argument does not apply: ifduring an attack the robot goes around an obstacle, then it moves forward(closer toward the target) by at least 1. Now, it could merely walk aroundthe narrow tip of an elongated obstacle.Actually, in the latter case, we do not need to move forward by 1. Theonly needed condition is the following: if we go around an an end of anobstacle that is in the distance �l from the central line, we move forwardby at least �=2.Still, even this may turn to be false. Let us call such a case \smallforward". Recall that each obstacle contains a unit circle and is convex.Hence, if the robot experiences \small forward", it knows that the adjacentobstacle has length at least 2l. Such obstacles can be incorporated into thephase barrier, generalizing the concept used before. We apply this idea tochange the attack as follows:attack(i):C := 0;repeatstabilize(central );if the adjacent obstacle extends from lower to upper thenexitelsefollow the obstacle around its nearer end back to central ;if \small forward" thenadd the distance to the nearer end (iny-coordinate) to C; move to this end;reset central to the current y coordinateuntil C > l 9



Clearly, the new attack assures that the sum of distances traversedaround obstacles with \small forward" is at most 4l per attack, and lessthan 4m2l in the entire stage. This extra cost is negligible. We also have todouble the estimate of the joint length of the obstacles with feel r, (detail ofthis estimate in the next section), and half the estimate of the \e�ciency"of going around obstacles. Therefore we can prove that stage(l) can becompleted, with probability 3/4, by traversing O(m4l).What remains is to show that if stage(l) us completed and the target notreached, then no obstacle-free path from the source to the target exists.Now the phase barriers consist not only the obstacles that stopped attacks,but also all obstacles that were traversed with \small frward". Now to crossa barrier we have an option of either following a corridor of length at least l,or to go through a zigzag of short corridors; however our use of the counterC in the loop condition assures that the lengths of such short corridors mustadd to l.6 Arbitrary convex obstaclesNow we show how to modify the attack and the analysis to take care of thefact that there is no limit on the joint length of the fragments of obstaclesthat are inside the \reachable trapesoid". To address this problem, we need�rst to analyze for which obstacles we needed such an estimate.Our estimate on the length of path traversed along surfaces with feeldi�erent than r did not depend on their joint length; similarly we did notneed that argument for the obstacles encountered at the end of stabilizeprocedure. In the remaining case|obstacles encountered within stabilizeand with feel r|we can change the procedure without changing the analysisperformed so far. Our change is simple: when the robot encounters such anobstacle, it 
ips a fair coin, and chooses one of the two alternative directionsaccordingly (of course, it may happen that these two directions|toward thetarget and toward the central line|coinside).The �rst bene�t is that we handle very well the obstacles that cross thetarget: if we encouter such, with 50% chance we reach the target, thus theaverage path length travesed along such obstacles is at most m2l (twice themaximal lenght of a single traverse).Amound the remaining obstacles, those that do not cross the line fx =�m3g do not cause major problems, because the joint length of their surfaces10



that has feel in the range from m+1 to m is O(m4l) (a detailed proof willbe provided in the full version). Even simpler geometric argument appliesto the obstacles that cross neither fy = �m2lg nor fy = m2lg.If we encouter one of the remaining obstacles outside the strip jyj < mldo not cause problems either: either the robot follows such an obstaclesimultaneously toward the central and targetlines, which does not poseany problem in the analysis, or this is the last obstacle of the stage, as itwill end all the remaining attacks. If we encounter such an obstacle withinthe strip, but outside the current corridor of attack, we have 50% chance ofending the attack, while traversing less than 2ml; the joint length of suchtraverses in a stage is less than 4m3l.Thus we may conclude with the following theorem.Theorem. There exist a randomized navigation algorithm that allows therobot to reach a straight line in a distance n, separated by convex obstacles,each containing a unit circle, with competitive ratio O(n3=4).References[1] E. Bar-Eli, P. Berman, A. Fiat and P. Yan, On-line Navigation in aRoom, Journal of Algorithms 17, pp. 319-341, 1994.[2] P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Rosen, M. Saks, Random-nized Algorithm for Wall Problem,[3] A. Blum, P. Raghavan, and B. Schieber, Navigation in Unfamiliar Ter-rain, Proc. 23rd STOC, pp 494-504, May 1991.[4] A. Fiat, D.P. Foster, H.J. Karlo�, Y. Rabani, Y. Ravid and S. Vish-wanathan, Competitive algorithms for layered graph traversal, Proc.32nd FOCS, pp. 288-297, October 1991.[5] H. Karlo�, Y. Rabani, and Y. Ravid, Lower Bounds for Server Problemsand Motion Planning,[6] V.J. Lumelsky, A.A. Stepanov, Dynamic path planning for a mobileautomaton with limited information on the environment, IEEE Trans-actions on Automatic Control, AC-31:1058-1063, 1986. submitted to28th STOC, 1995. Proc. 23rd STOC, pp.278-288, May 1991.11
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