Randomized Navigation to a Wall through Convex
Obstacles

Piotr Berman * Marek Karpinski T

Abstract

We consider the problem of navigating through an unknown envi-
roment in which the obstacles are convex, and each contains a circle of
diameter 1. The task is to reach a given straight line, in the distance
n from our original position. Our randomized algorithm has compet-
itive ratio n® 7%, and it uses tactile information only. This is the first
algorithm that offers any competitive ratio for the problem.

*Dept. of Computer Science and Engineering, The Pennsylvania State University,
berman@cse.psu.edu, partially supported by NSF Grant CRR-9114545
"Dept. of Computer Science, University of Bonn, marek@cs.uni-bonn.de, research

partially supported by DFG Grant KA673/4-1 and ESPRIT Grants 7097 and ECUS 030

1 Introduction

The research on navigation, i.e., motion planning, is motivated by the possi-
bility of using robots in some unknown enviroment, e.g. a surface of distanta
moon. In such circumstances, the robot’s operations should be highly au-
tonomous, as the communication is a subject of very high delays. In planning
such an operation, we may consider two alternatives. One is to invest first
some resources and make a map of all impassable obstacles. Another is to
make the robot to navigate among the obstacles that are learned as they
are encountered.

The choice between two alternatives clearly depends on the difference
between the cost of the robot reaching its objectives with and without the
map. This difference depends on the nature of the robot’s task, the shape of
the obstacles, and, quite crucially, on the quality of the navigating algorithm
that robot may use. Most commonly, the quality of a navigating algorithm
is measured by its competitive ratio, i.e., the ratio of the lengths of the
paths traversed by the robot without a map (using the algorithm) and with
a map (the shortest obstacle-free path from the starting point to the target)
respectively.

Navigation problems have four aspects: the target (a point, an infinite
line, etc.), the placement of the obstacles (can be unrestricted, within a rect-
angle that has the starting on perimeter and the target point in the center,
etc.), the shape of the obstacles (oriented rectangles, arbitrary rectangles,
arbitrary convex figures, arbitrary polygons, etc.), and, lastly, the informa-
tion available from the scene (visual or tactile). One can also formulate a
motion planning problem in a graph, as in [4].

The complexity parameter n is the distance between the starting point
and the target. To assure that there is a relationship between the complexity
parameter and the competitive ratio, we assume that every obstacle contains
a unit circle.

In several instances, tight bounds were derived for the attainable com-
petitive ratio. One example is the room problem: the target in the center
of a square containing all the obstacles, and the start at the perimeter. If
obstacles are oriented rectangles, the competitive ratio for deterministic al-
gorithms is ©(logn) (see [1]). If obstacles are convex, Blum et al. [3] show
the deterministic lower bound Q(n'/?) and randomized upper bound O(n'/?)
(both bounds assume that the robot receives the visual information).

In the wall problem, introduced by Papadimitriou and Yannakakis [7],
the target is an infinite straight line. If the obstacles are oriented rect-

angles, then the competitive ratio for deterministic algorithms is ©(n'/?)
(see [3]). Recently, [2], an randomized algorithm was found that is better
than the deterministic lower bound. If the obstacles are arbitrary convex
figures, no better lower bound is known, but no matching competitive ra-
tio was obtained. If the obstacles are arbitrary rectangles, one can apply
the deterministic algorithm of Lumelsky and Stepanov [6] to obtain com-
petitive ratio O(n). For arbitrary convex obstacles, NO upper bound on
deterministic competitive ratio is known.

In this paper, we provide a randomized algorithm for the last problem,
with a competitive ratio O(n®/4).

In practical terms, this competitive ratio is so high that in most cir-
cumstances we should rather invest in creating a map. We conjecture that
there should exists much better randomized strategies. For example, there
exists a simple algorithm that handles well the examples of scenes that are
maximally difficult for the our algorithm, but which is not analyzed as yet.
In general, for the case of arbitrary convex obstacles, there are more open
problems than solved. To mention just a few: to find ANY competitive ratio
for point to point navigation, to improve the lower bounds (currently, very
weak for randomized algorithms, the best, Q(loglogn) is provided by Karloff
et al. [5]), to improve the upper bound, to generalize to three dimensions.

2 Preliminaries

We assume that the robots moves on a plane, and that is always knows the
coordinates of its current position. The initial position of the robots is (0,0),
later we refer to this point as the source. The targetis the line {z = n}.

To better present our algorithm, we will show it in four versions. The
simplest forms an obvious solution for the case of oriented rectangles, with
competitive ratio n!/2. The second will solve the case of arbitrary rectangu-
lar obstacles, with competitive ratio /4. The third will handle arbitrary
convex obstacles, provided that they are “short”; the fourth will solve the
general case.

All our algorithms will have the following structure:

set(m, {);
repeat
rand.set(r);
for phase.no := 1 to m do

for attack.no:= —(m —1) to m -1 do
lower := line {y = (i — 1){};
upper := line {y = (¢ + 1){};
central := line {y = il};
attack(attack.no);
[:=2xl
forever

When we discuss an algorithm with this structure, we refer to a single
execution of the repeat loop as stage(!), referring to the value of [during
this execution (before it is reset at the end). In a stage we execute m phases,
each consisting of 2m — 1 attacks. We assume that the robot interrupts the
execution of the algorithm as soon as it reaches the target. In randomized
algorithms, we will also enforce a cost limit for each stage, if the robot
traverses the distance equal to the limit while executing a stage, it interrupts
this stage and starts the subsequent one.

3 Oriented rectangles

Now we present an algorithm that handles oriented rectangles, i.e. the rect-
angles with sides parallel to the axes. Then we will analyze this algorithm
in a way that can be generalized in the subsequent sections.

Initially, in set(m, (), the robot sets m = [n'/?] and [= m. In rand.set
the robot does nothing (because this algorithm is deterministic). In attack(7)
the robot moves toward the target as much as possible, but within the
“corridor” bounded by lower and upper lines. At all times the robot
moves according to the following rule: if possible, move directly toward the
target (directly = parallel to z axis), if such motion is blocked byan obstacle,
follow the algorithm.

attack(?):
repeat
move to central
if the adjacent obstacle extends from lower to upper then
exit
else
follow the obstacle around its nearer end back to central

forever

To show that the resulting algorithm leads the robot to the targetwith
competitive ratio O(m) it suffices to prove the following two properties:

e In stage(/) the robot traverses O(m?l).

e If the robot does not reach the targetbefore the end of stage(/), then
the length of the shortest obstacle-free path from the sourceto the
targetis larger than ml.

To prove the first property, notice first that we need to estimate only
the length of those moves of the robot that are parallel to y axis; the sum of
movements parallel to axis is bounded by n. A stage consists of m phases;
the length of the first move of a phase (to central line of the first attack,
i.e. to line {y = —(m — 1)l}, is less than 2ml, hence the total cost of such
first moves is less than 2m?2l. In a stage, (2m — 1)m attacks are performed,
the first move of an attack (except the first attack of a phase, which was
already counted) has length {m, the last has length 2, the total cost of such
moves is 3[(2m — 1)m < 6m?l. Any other move in an attack has length 2{
and brings the robot closer to the targetby at least 1, hence there are at
most n such moves, with the total cost n2/ = 2m?l. Summarizing, the total
distance traversed by the robot is below 10m?/.

We prove the second property in a way that we will be able to general-
ize later. Consider only those obstacles that were stopping the attacks of
stage(l). Note first that if some two attacks from two different phases are
stopped on the same obstacle, then this obstacle extends from {y = —ml} to
{y = ml}; such an obstacle alone forces the shortest path from the sourceto
the targetto be longer than ml. Thus later we may assume that this does
not happen.

Let as define the corridor of obstacles A and B as the set of points
(21,y1) such that

o (z1,y1) € AU B, and
e (20,y1) € A and (22,y1) € B for some g < 21 < 23.

Corridors of a phase are formed by pairs of obstacles that stop consecutive
attacks (note though that some consecutive attacks are stopped by the same
obstacle). The union of the obstacles and corridors of a phase forms a

connected polygon, which we may call a phase barrier, that extends from
{y = —ml} to {y = ml}. If a path from the sourceto the targetof length
at most ml exists, it must be contained in the strip bounded by these two
lines. After removing the phase barriers from this strip, it will be split into
m + 1 connected components, the leftmost containing the sourceand the
rightmost containing the the target. Therefore any path must traverse at
least one corridor in each of the m phase barriers; as each corridor has the
length of at least [, we can conclude that the length of such a path is at
least ml.

4 Arbitrary rectangles

The previous algorithm does not work in the case of arbitrary rectangular
obstacles. The reason is the following: when the robot moves to starts a
subsequent attack, it may encounter an obstacle that can be followed either
toward the target, but away from the central line of the attack, or toward
the central line, but away from the target. The first choice could lead
it to the targetin a very ineficient manner, so the second choice may be
necessary. However, when the robot is may move away from the target, it
is difficult to estimate the number of moves in the attacks: the sum of the
x components of moves may be much larger than n, so we loose our upper
bound for these moves.

The solution to this dilemma is to choose a threshold angle that would
work according to the following intuition. Imagine that the robot is pulled
toward the targetby gravitation, and that obstacles are slippery. On suf-
ficiently steep obstacles (according to the threshold angle) the robot looses
its footing and slides toward the target.

With every choice of the threshold angle there exists an associated dan-
ger: the robot may enter an exceedingly long oscillation, alternatingly sliding
away from the central line of the current attack and climbing back toward
it. To minimize this danger, we will select that angle at random, thus as-
suring that, on the average, only a small proportion of the obstacles in the
scene has angles that are dangerously close to the threshold.

In set(m,[) the robot sets m = [n'/*] and [= m®. The limit on the
length of the path traversed in stage(l) is cm*l, where the constant ¢ will be
established later. In rand.set(r) the robot selects r, uniformly at random,
from the set {m?+1,m?+2,...,2m?}.

When the robot is in contact with an obstacle, it can sense the slope of
its surface. We formalize it as follows. If the line tangent to the obstacle is
parallel to the line {sy = lx}, we say that the robot’s feel [of the slope] is
[|s|]. If the tangent line is parallel to {y = 0}, the feel is defined as co. The
robot uses the feel of the slope in the following routine (where line of the
form {y =constant }):

stabilize(line):
repeat
if not adjacent to an obstacle then
move directly toward the target
else if feel > r then
follow the obstacle toward the target
else
follow the obstacle toward line
until you are at line and you are adjacent
to an obstacle and feel < r

Now we can formulate the new attack procedure:

attack(?):
repeat
stabilize(central);
if the adjacent obstacle extends from lower to upper then
exit
else
follow the obstacle around its nearer end back to central
forever

To analyze this algorithm, observe first that the obstacles that stop
the attacks form essentially the same pattern as in the previous algorithm.
Therefore we can conclude that when stage(/) is completed and the robot
does not reach the targetthen the shortest obstacle-free path from the
sourceto the targetis longer than ml. However, stage(/) is not always com-
pleted: sometimes it is interrupted, because the robot already traversed the
allowed distance of em*l. Nevertheless, as we prove below, the probability
of such interruption is lower than 1/4.

Before we proceed, we should notice that the above two claims imply
that the expected competitive ratio is O(m?®). Indeed, if the shortest path
from the sourceto the targethas length L, then the stages with [< L/m
traverse less than 2em*L/m = 2cm®L because of the interruptions; for the
subsequent stages we should notice the following: while the allowed cost
doubles, the probablity that the stage will be attempted at all (i.e. that the
robot have not reached the targetalready) goes down by the factor 4; hence
the [upper bound of the] contribution of such a stage to the expected path
length is half of that for the previous stage.

The proof that with probability at least 3/4 the robot completes stage({)
is divided into four propositions. Each statement should be conditioned
“during the execution of stage(l)”.

Proposition 1. Each obstacle is encountered by the robot at most once. If
both obstacle A and obstacle B are encountered, and A is above B (precisely:
the corridor of A and B is non-empty, see the previous section), then A is
encountered before B.

Sketch of proof. More or less obvious. However, if false, the subsequent
reasoning makes no sense.

Proposition 2. The motion of the robot is restricted to the trapezoid with
the following corners: (—2m?® £ml) and (n,4(m + 1)ml).

Sketch of proof. Assume that r was selected. Then the robot may move
away from the targetonly along obstacles with feel at most r, and toward
the central line of an attack; when it moves toward the central of the
first attack from (0,0), it changes the y coordinate by less than ml, and
consequently, it decreases the z coordinate by at most less than (r/{)ml =
rm < 2m?. Similarly, when the robot moves away from the lines {y = £ml},
it moves away from the central line of the current attack; in this case it
must “slide” along an obstacle with feel greater than r. Say that the slide
started at (—rm, ml); as the x coordinate increases by at most rm+m?, the y
coordinate decreases by at most (I/r)(rm+m?) = (14+m?/r)lm < (14+m)ml.
Proposition 3. With probability at least 3/4, the joint length of the ob-
stacles with feel r encountered by the robot is at most 6m?.

Sketch of proof. First note that the joint length of the obstacles in the
trapesoid of Proposition 2 is bounded by its area, which is (1 + o(1)m®°l <
1.5m®l. Because we choose r out of m? possibilities, the expected joint
length of obstaces with feel r is less than 1.5m*. Thus the claim follows
from the Chebyshev inequality: probability of exceeding the expected value
more than 4 times is at most 1/4.

Proposition 4. Assume that the joint length of obstacles with feel r en-

countered by the robot is at most 6m*l. Then the robot traverses at most
30*ml.

Sketch of proof. With a little loss of precision, we may assume that all
the movements of the robot are executed within stabilize and while going
around obstacles in the attacks. Note that an execution of stabilize(central
) that starts on central has the net effect of moving the robot toward the
target(Proposition 1). Going around an obstacle has a similar effect. How-
ever, when we start an attack, the robot performs a stabilize that changes
its y coordinate. The sum of such changes per phase is 4ml, for the total
sum of 4m?l. The associated sum of decreases of z coordinate is at most
(r/1)4m?l < 8m®. Therefore, the executions of stabilize that start and end
at the same central line, as well as going around obstacles, move the robot
toward the targetby at most 9m®*. When the robot goes around an obsta-
cle, it traverses at most 2/ and gets closer to the targetby at least 1. The
movement in stabilize can be split into balanced zigzags of “toward” [the
target] and “away” motions. If such a zigzag involves an obstacle with feel
r, we cannot estimate its net progress, but the joint length of such zigzags is
at most 12m?*l. Otherwise, one part of the zigzag has feel it least r 41, while
the other at most » — 1. One can see that two such motions, each of length
[, move the robot closer toward the targetby at least 1. Hence the joint
length of such zigzags and “going around” is at most (9m?*)(2{) = 18m*l.
Together, we get 30m*[.

5 Short obstacles

One reason that the last algorithm does not solve the problem of general
convext obstacles is the reasoning needed in the proof of Proposition 3.
There we used the following observation: the joint length of the obstacles
inside the trapezoid bounding the robot’s movements is limited by its area.
This was true, because the obstacles were rectangles of width at least 1. If
they are, say, elongated right triangles with short edge 1 4 ¢, then we need
to double the joint length estimate. The real problem arises however with
extremally long triangles that have only their ends in the trapezoid. The
joint length of their portions included in the trapezoid is unbounded. We
delay handling of this problem to the subsequent section, by assuming that
the obstacles are contained in the trapezoid, in particular, they have length
at most 2m?[.

Another reason could be that an obstacle does not have a unique feel.
This is not a problem, however. First, it is important to estimate the length
of surfaces with feel r, and of course each piece of the surface has its unique
feel (with the exception of places without a tangent line, but these have
measure 0). Secondly, once the robot decides on the direction to follow
because of the feel, the changes of the feel will not change the direction.
This follows from convexity of the obstacles: if we follow an obstacle away
from the target because the slope (and, hence, the feel) is small, further
away it will be the same or smaller. When we follow an obstacle toward the
target because the slope is high, along the way the slope can only increase.

A more serious reason is that the following argument does not apply: if
during an attack the robot goes around an obstacle, then it moves forward
(closer toward the target) by at least 1. Now, it could merely walk around
the narrow tip of an elongated obstacle.

Actually, in the latter case, we do not need to move forward by 1. The
only needed condition is the following: if we go around an an end of an
obstacle that is in the distance al from the central line, we move forward
by at least a/2.

Still, even this may turn to be false. Let us call such a case “small
forward”. Recall that each obstacle contains a unit circle and is convex.
Hence, if the robot experiences “small forward”, it knows that the adjacent
obstacle has length at least 2{. Such obstacles can be incorporated into the
phase barrier, generalizing the concept used before. We apply this idea to
change the attack as follows:

attack(?):
C = 0;
repeat
stabilize(central);
if the adjacent obstacle extends from lower to upper then
exit
else
follow the obstacle around its nearer end back to central ;
if “small forward” then
add the distance to the nearer end (in
y-coordinate) to C'; move to this end;
reset central to the current y coordinate
until C' > [

Clearly, the new attack assures that the sum of distances traversed
around obstacles with “small forward” is at most 4/ per attack, and less
than 4m?[in the entire stage. This extra cost is negligible. We also have to
double the estimate of the joint length of the obstacles with feel r, (detail of
this estimate in the next section), and half the estimate of the “efficiency”
of going around obstacles. Therefore we can prove that stage(l) can be
completed, with probability 3/4, by traversing O (m*l).

What remains is to show that if stage(/) us completed and the target not
reached, then no obstacle-free path from the source to the target exists.
Now the phase barriers consist not only the obstacles that stopped attacks,
but also all obstacles that were traversed with “small frward”. Now to cross
a barrier we have an option of either following a corridor of length at least [,
or to go through a zigzag of short corridors; however our use of the counter
C in the loop condition assures that the lengths of such short corridors must

add to [.

6 Arbitrary convex obstacles

Now we show how to modify the attack and the analysis to take care of the
fact that there is no limit on the joint length of the fragments of obstacles
that are inside the “reachable trapesoid”. To address this problem, we need
first to analyze for which obstacles we needed such an estimate.

Our estimate on the length of path traversed along surfaces with feel
different than r did not depend on their joint length; similarly we did not
need that argument for the obstacles encountered at the end of stabilize
procedure. In the remaining case—obstacles encountered within stabilize
and with feel r—we can change the procedure without changing the analysis
performed so far. Our change is simple: when the robot encounters such an
obstacle, it flips a fair coin, and chooses one of the two alternative directions
accordingly (of course, it may happen that these two directions—toward the
target and toward the central line—coinside).

The first benefit is that we handle very well the obstacles that cross the
target: if we encouter such, with 50% chance we reach the target, thus the
average path length travesed along such obstacles is at most m?/ (twice the
maximal lenght of a single traverse).

Amound the remaining obstacles, those that do not cross the line {z =
—m?} do not cause major problems, because the joint length of their surfaces

10

that has feel in the range from m™1 to m is O(m*l) (a detailed proof will
be provided in the full version). Even simpler geometric argument applies
to the obstacles that cross neither {y = —m?2l} nor {y = m?(}.

If we encouter one of the remaining obstacles outside the strip |y| < ml
do not cause problems either: either the robot follows such an obstacle
simultaneously toward the central and targetlines, which does not pose
any problem in the analysis, or this is the last obstacle of the stage, as it
will end all the remaining attacks. If we encounter such an obstacle within
the strip, but outside the current corridor of attack, we have 50% chance of
ending the attack, while traversing less than 2ml; the joint length of such
traverses in a stage is less than 4m?l.

Thus we may conclude with the following theorem.

Theorem. There exist a randomized navigation algorithm that allows the
robot to reach a straight line in a distance n, separated by convex obstacles,
each containing a unit circle, with competitive ratio O(n/4).

References

[1] E. Bar-Eli, P. Berman, A. Fiat and P. Yan, On-line Navigation in a
Room, Journal of Algorithms 17, pp. 319-341, 1994.

[2] P.Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, M. Saks, Random-
nized Algorithm for Wall Problem,

[3] A.Blum, P. Raghavan, and B. Schieber, Navigation in Unfamiliar Ter-
rain, Proc. 23rd STOC, pp 494-504, May 1991.

[4] A. Fiat, D.P. Foster, H.J. Karloff, Y. Rabani, Y. Ravid and S. Vish-
wanathan, Competitive algorithms for layered graph traversal, Proc.
32nd FOCS, pp. 288-297, October 1991.

[5] H.Karloff, Y. Rabani, and Y. Ravid, Lower Bounds for Server Problems
and Motion Planning,

[6] V.J. Lumelsky, A.A. Stepanov, Dynamic path planning for a mobile
automaton with limited information on the environment, IEEE Trans-
actions on Automatic Control, AC-31:1058-1063, 1986. submitted to
28th STOC, 1995. Proc. 23rd STOC, pp.278-288, May 1991.

11

[7] C.H.Papadimitriou and M. Yannakakis. Shortest Paths Without a Map,
In Proc. 16th ICALP, pp 610-620, July 1989.

12

