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0 IntroductionThe most commonly used activation function in various neural networks applications is thesigmoid �(y) = 1=1+e�y (cf. [HKP91]). In Maass's 1993 lecture notes [M93], Open Problem10 (see also [GJ93] and [MS93]) asks:Is the VC-dimension of analog neural nets with the sigmoid activation function �(y) =1=1+ e�y bounded by a polynomial in the number of programmable parameters? (In [MS93]the �niteness of VC Dimension of sigmoidal neural networks has been established for the�rst time.)In this paper we give an a�rmative answer, with a quadratic polynomial in a number ofprogramable parameters. We believe that the bound can be improved to the subquadraticone in the number of programmable parameters using a variant of our method. The detailsare given in Sections 2{3. The result is a special case of a much more general result aboutbounds for VC dimension in o-minimal theories.The paper was inspired by the work of Goldberg and Jerrum [GJ93], who could deal withpolynomial activation functions. A reference in [GJ93], to Warren's paper [W68], was ofparticular importance. Some other applications of our method will appear in the full versionof this paper.1 Model-theoretic PreliminariesThe principles behind this paper are of great generality. We do not seek here maximumgenerality, but restrict ourselves to work over the �eld of real numbers. (The general readeris also referred to [MS93] and [GJ93] for the de�nitions concerning Vapnik-Chervonenkis(VC) dimension.)We work with structure M which are enrichments of the real �eld R by certain totalC1 (in�nitely di�erentiable) functions. Our underlying �rst-order language L has primitives+;�; �; <; 0; 1 (with the usual interpretation on R), together with various n-ary functionsymbols f . Each f has a �xed interpretation by a C1 function �f : Rn ! R, therebydetermining an L-structure M . Obviously, if � (v1; � � � ; vm) is an L-term with free variablesv1; � � � ; vm; � de�nes an m-ary C1 function (also denoted ��) from Rm to R. L-formulas�(v1; � � � ; vk) de�ne subsets of Rk, and L-formulas �(v1; � � �vk; y1; � � � ; y`) together with~� = (�1; � � � ; �`) in R` de�ne subsets of Rk, namely�~� = f�x 2 Rk :M j= �(�x; ~�)g:For �(�v; ~y) as above, let f�~� : ~� 2 R`g = C�:C� is a de�nable family of de�nable sets. In this paper we will give good bounds for the VCdimension of C�, for many natural �.The following notion has in the last decade become central in the model theory of analysis[L92].De�nition. M is o-minimal if for every formula �(v1; y1; � � �y`) and every ~� 2 M `, �~� is a�nite union of intervals with endpoints in M [ f�1g.Notes:(a) "Interval" should be understood in all possible senses.(b) It is not important that M lives on R or has C1- primitives.2



(c) It follows, nontrivially, that the number of connected components of �~� above is boundedindependent of ~�.For our purposes we need two substantial results about o-minimality:Theorem 1. If M is an o-minimal expansion of R, then for any �(v1; � � � ; vk;y1; � � � ; y`), and any ~�; �~� has only �nitely many connected components, and there is abound B(�) independent of ~�.Theorem 2. If M is an o-minimal structure then for every �(�v; ~y), C� has �nite V C-dimension.For Theorem 1, see [D92], and [KPS86] for Theorem 2, see [L92]. Note that although thelatter has constructive aspects, the use of Ramsey's theorem precludes realistic estimates forV C dimension of C�.2 The Main Result2.1 Let M be a structure as above with enrichments of the real �eld R, with C1 primitives,and o-minimal. �(v1; � � � ; vk; y1; � � � ; y`) is now assumed to be a quanti�er-free formula. Thus� is a Boolean combination of atomic formulas, which can be of two forms:� (�v; ~y) > 0;or � (�v; ~y) = 0where � is a term.Now list as �1; � � � ; �h the terms as above occurring in �. (One can delete repetitions). Ifwe �x �� 2 Rk; ~� 2 R` we get a sequenceh�1(��; ~�); � � � ; �h(��; ~�iof reals, inducing a sequence of signs +, 0, -, viasgn �i = + if �i(��; ~�) > 0= 0 if �i(��; ~�) = 0= � if �1(��; ~�) < 0:Call this sequence �(��; ~�). Consider �rst, for �xed ��, the ~� such that �(��; ~� consists onlyof + and - 's. Then as ~� varies one gets only �nitely many �(��; ~�), with a bound for thenumber being given by the number of connected components ofR` n [i�hf~y : �i(��; ~y) = 0g:[By Theorem 1, this number is �nite, and has a bound independent of ��].To handle general �(��; ~�) one uses a variational argument (Corollary 2.1 in [GJ93]) whichis everywhere dense in what follows. Add a new variable ", and replace h�i(�x; ~y)ii�h by3



h�1(�x; ~y) + "; �1(�x; ~y)� ";�2(�x; ~y) + "; � � � ;�";�h(�x; ~y) + "; �h(�x; ~y)� "iSo we have replaced an h-tuple of terms in k+` variables by a (2h)- tuple of terms in k+`+1variables. In this way we get new sign sequences ��(��; ~�; "). The basic lemma is:Lemma 3. For �xed �� the number of �(��; ~�) is bounded by the number of ��(��; ~�; ")consisting only of + and �.Let �(��; ~�1); � � � ; �(��; ~�r) be the distinct �(��; ~�): Choose " > 0 but < all j �j(��; ~�i) j(j � h; i � r) which are non zero. Then ��(��; ~�i; ") has no zeros, and clearly ��(��; ~�i; ") 6=��(��; ~�j; ") if �(��; ~�i) 6= �(��; ~�j): 2Note: The essential point for future reference is that the number �(��; ~�) is bounded bythe number of connected components ofR`+1 n [i�h(f(~y; ") : �i(��; ~y) = "g[f(~y; ") : �i(��; ~y) = �"g);and this has a bound independent of ��.2.2Now we run through the argument of [GJ93]. Let �(v1; � � � ; vk; y1; � � � ; y`) be quanti�er-free with terms �i(�v; ~y); i � s.Let f��1; � � � ; ��vg be distinct elements of Rk such that f��1; � � � ��vg is shattered by C�.Then exactly as in [GJ93] one sees:2v � the number of sequences of signs f+, -, 0g obtainable fromh�1(��1; ~y); �1(��2; ~y); � � � ; �1(��v; ~y); �2(��1; ~y); � � �� � ��1(��v; ~y); � � � ; �s(��1; ~y); � � � ; �s(��v; ~y)i:Note that the latter sequence has length vs.Then by the argument in 2.1, 2v � number of connected components ofR`+1 n [i�sj�vf(~y; ") : �i(~�j ; ~y)� "g: (�)Our strategy is to use o-minimality to get a decent estimate for the right hand side.2.3 We proceed axiomatically. We assume we have �xed a bound �(�;m) for integers m andsequences � = h�iii�r of terms�i(v1; � � � ; vk; y1; � � � ; y`) ; i � rfor the number of connected components of[j�mf~y : �f(j)(��j; ~y) = 0g4



as ��j varies through (Rk)m, and f is a function from [O;m] to [O; r].Classical example. � a polynomial of ~y degree � d. Then �(�;m) can be taken as 2:(2d)`.This is due to Milnor [M64]. For m = 1 one has the bound 2:d`, and the general casereduces to this by replacing � by Pj�m �(��j; ~y)2:We shall see later the exponential analogue. In an o-minimal theory, � of course exists.We show in 2.4 how the right hand side of (*) may be estimated in terms of �. The ideacomes from Warren's 1968 paper [W68], and we now use the C1 property of M for the �rsttime.2.4 We assume given terms �1(�v; ~y); � � � ; �n(�v; ~y) and ��1; � � � ; ��n 2 Rk:We consider the de�nitionf�y : î�n�i(��i; ~y) = 0g in R`;and say it is nonsingular if either it de�nes �, or at each point (y1; � � � ; y`) in the aboveintersection the Jacobian matrix ���� @@yj �i(��i; ~y)���� i � nj � `has rank n.Of course in the latter situation the implicit function theorem applies if ` > n, and wehave a C1 manifold of dimension ` � n. If ` = n, o-minimality gives a bound, dependingonly on �1; � � � ; �n, for the cardinality of the set de�ned.When ` > n, there are variables ym1 ; � � � ; ym`�n such that locally all other yi are given asFi(ym1 ; � � � ; ym`�n ) where Fi is a de�nable (from the ��i)C1 function.We want to take a naive, presentation-sensitive, notion of submanifold, or, better, locally
at submanifold. We assume a presentation as above, with ym1; � � � ; ym`�n speci�ed, andsuppose that we add some new equations �n+1 = 0; � � � ; �n+u = 0 giving a manifold ofdimension `� (n+ u) with a subset of fym1 ; � � �ym`�ng as its basis.This gives notion of locally 
at. Thus M1 !M2 is locally like the canonical R`�(n+u) !R`�n which puts 0's on all but �rst ` � (n + u) entries.We will be able to use Warren's Theorem 1 exactly as he does. For convenience we repeatit: Theorem 4. Let M be a connected topological n-manifold, and let M1; � � � ;Mn beconnected (n� 1)-manifolds embedded in M so that:(1) The Mi are topologically closed and locally 
at in M ;(2) The intersection of any given j of the Mi; 1 � j � n, is either empty or is an (n � j)manifold locally 
at in the intersection of any (j � 1) of the Mi, and(3) any intersection of more than n of the Mi is empty.Let bj be the number of connected components among all intersections of any j of theMi with M .Then M � [ni=1Mi has � �bj connected components.Regular Con�gurations. If we are given a sequence �i(��i; ~y)1 � i � n; of terms in parameters,we say they form a regular sequence if every formal intersection of a subset is nonsingular inthe sense explained earlier. In that case, if one takes as M1; � � � ;Mb the connected compo-nents of the f~y : �i(��i; ~y) = 0g, the hypotheses of Theorem 2 are satis�ed, with M = R`.5



Connectedness is clear, and local 
atness is direct. That the intersection of more than ` ofthe Mi is empty follows from regularity and a dimension count. The �niteness of componentsfollows from o-minimality, since each original component is de�nable ([D92], [KPS86]).And now we come to the crunch, which reduces all calculations, via small perturbations,to ones covered by Theorem 4. This corresponds to Warren's Lemmas 2.2, 2.3 and 2.4. Wehave to change his argument for 2.2, which appeals to complex projective geometry. We useinstead Sard's Theorem [M65].Lemma 5. Let �1(��1; ~y); � � � ; �m(��m; ~y) be as usual, and � (��; ~y) arbitrary. If the de�nitionV = \f~y : �i(��i; ~y) = 0gis regular, or de�nes the set R`, then for all but �nitely many real numbers � the de�nitionV \ f~y : � (��; ~y)� � = 0gis regular.Proof. If m > `; V = �, and there is nothing to prove.If m = `; V is �nite, and so choose � outside the range of � (��; ~y) on V .If m < `, or V = R`, we have the C1 map � (��; ~y) from V to R, and by Sard's Theoremand o-minimality the set of regular values of � is co�nite. Any regular value � works. 2The rest is almost formal.Lemma 6. (Same notation as Lemma 3).There exists � > 0 such that if 0 < " < � then every connected component ofE = R` � (V [ f~y : � (��; ~y) = 0g)contains a connected component of one of the setsE" = R` � (V [ f~y : � (��; ~y) = "g[ f~y : � (��; ~y) = �"g)Proof: E has �nitely many connected components, by o-minimality. Let them be C
(
 < 
o),and pick ~c
 2 C
Let � = min
<
o j � (��; ~c
) j> 0:C
 is contained in some component J of R` n V , and is the maximal connected set of points~y in J containing ~c
 and such thatsgn � (��; ~y) = sgn � (��; ~c
):If " < �, some component K of J [ f~y : j� (��; ~y)j > "g contains ~c
 . This is a component ofE" and is contained in C
 . 26



Lemma 7. Let �1; � � � ; �m be as usual. Then there are real numbers "1; � � � ; "m such thatthe collection �1 � "1; �1 + "1; �2 � "2; �2 + "2; :::form a regular con�guration, and such that every connected component ofE = R`n[f~y : �i(��i; ~y) = 0gcontains one of F = R`n[ ~y : �i(��i; ~y) = �"ig:Proof: By recursion on m.First choose � as in Lemma 6, with �2; � � � ; �m as the �'s, and �1 as the � . By Lemma5, for all but �nitely many �, f~y : �1 � � = 0g is regular. So choose 0 < "1 < � so bothf~y : �1 = "1g and f~y : �1 = �"1gare regular. (Of course their intersection is empty).Assume "1; � � � ; "r have been determined. Now choose � as in Lemma 6, with �r+1 as �and �i � "i; i = 1; � � � ; r and �r+2; � � � ; �n as the �'s.Choose "r+1 2 (0; �) so that the f~y : �i(��i; ~y) � "r+1 = 0gand f~y : �i(��i; ~y) + "r+1 = 0g; i � r + 1form a regular con�guration. This is possible by Lemma 5, because the number of intersec-tions to consider is �nite, and all preceding intersections are regular. 22.4 Recall the bound � from 2.3.Theorem 6. Let �1(��1; ~y); � � � ; �m(��m; ~y) be as usual. Then the number of connectedcomponents of R`n[f~y : �i(��i; ~y) = 0gis bounded by X̀j+0Cm;j � 2j � �(�+1 ; ��1 ; � � � ; �+m; ��m; j)where Cm;j is �mj � if j � m, and = 0 otherwise, and�+i (v1; � � � ; vk; w1; � � � ; wm; ~y)= �i(�v; ~y)� wiand 7



��i (v1; � � �vk; w1; � � � ; wm; ~y) = �1(�v; ~y) +wi:Proof: By Lemma 5 it su�ces to bound the number of connected components ofR`n [ f~y : �i(��i; ~y) = �"igfor small ", in the case of a regular con�guration. So Warren's result, Theorem 4, applies.To calculate bj , observe that f~y : �i(��i; ~y) = "ig[f~y : �i(��i; ~y) = �"ig = �;and there are � �(�+1 ; � � � ; �+m; j) components for each j-intersection 6= �, giving��mj ���(�+1 ; � � � ; �+m; j)2jpossibilities. [We have �"1; � � � ;�"m to choose from, but never pick both �, giving ��mj �� �2jchoices].If j > `, regularity forces bj = 0. 2Corollary: If ��(�1; � � � ; �m) = supj�` �(�+1 ; � � � ; �+m; j);then the number of connected components of R`nSf~y : �i(��i; ~y) = 0g� �2me` �` � ��(�1; � � ��m):Proof. Warren essentially showed�r̀=02r ��mr �� � �2me` �` 2.2.5 Estimating V C � dim of C�We have � as before, with associated �1; � � � ; �s:Now by (*) and the Corollary to Theorem 6, we get2v � �2sve` �` supj�` �(�+1 ; � � � ; �+v ; j): (��)Note that we already started in * with �i�", and translating by extra "i changes nothing.The problem with (**) is that v occurs in the sup term. But this is quite illusory, sincethe �i+ for i � sv are substitution instances of �+i (�v; ~y); i � h:8



So 2v � �2sve` �` � supj�` �(�+1 ; � � ��+h ; j)and B(�)(= B) = supj�` �1(�+1 ; � � ��+h ; j) is independent of v.If v=` � 4se we get 2v � B � (4se)2`;so v � logB + 2` log(4se):If v=` > 4se, we get 2v < B � ( v̀ )2`so 2v=` < B1=`(v=`)2:Now 2v=2` > (v=`)2 if v=` > 16; so eitherv � 17`;or 2v=2` < B1=`;i.e. 2v < B2 ; i.e v < 2 logB:So in all cases, v < 2 logB + (17 log s)`where log is to base 2.Theorem 7. VC-dim(�) � [2 logB + (17 log s)`].Proof. Done. 22.6. An example involving exponentiation.We work with +, -, ., 0,1, <, ex, and appeal to Wilkie's work [W94], or [DMM94], for aproof of o-minimality. Let us suppose about � that its terms �i(�v; ~y)(i � s) are polynomialsof degree � d in �v; ~y and no more than q subterms exp(g(�v; ~y)), where g is linear.Khovanski [K91] has proved a basic result relating to this situation, namely:Theorem 8. Let Qi (i � m) be elements of R[y1; � � �y`; e�1 ; � � �e�q ], where the �i arelinear functions of y1; � � � ; y`. Suppose that the systemQ1 = � � � = Qm = 09



is regular, so de�ning a manifold M of dimension ` � m. Then if Qi has degree di (iny1; � � �y`; e�1; � � � ; e�q), k = `�m andS = �mi=1di + k + 1;M has no more than 2q(q�1)=2d1; � � � ; dmSk[(k + 1)S � k]qconnected components.Now note that in the proof of our main estimate we needed estimates only on number ofconnected components for regular con�gurations. So applying the above, in the notation of2.5 B � 2q(q�1)=2d`[(`+ 1)(d+ 1)]`+q:Then logB � q(q � 1)=2 + ` log d+ (` + q) log(` + 1)(d+ 1):So in this case V C-dimension of C�� q(q � 1)=2 + q log(` + 1)(d+ 1)+ `(log d+ 17 log s):2.7 Application to sparse formulas. Since Khovanski's [K91] one has known howto use Finiteness Theorems about exponentiation to give uniform estimates in problemsinvolving families of polynomials where there is an absolute bound to the number of nonzerocoe�cients occurring, but no bound on the degree of the polynomials. Using 2.6 we canreadily get uniform bounds in for V C � dimC� where � is a quanti�er-free formula of thelanguage of ordered �elds. �(�v; ~y) is, as usual, built from terms �i(�v; ~y) (i � s), and in thiscase the �i are polynomial. Let us assume about the �i only that they involve at most qmany ~y-monomials, as i varies.The strategy is to break the ~y-space R` into 3` pieces according to yi < 0; yi = 0; yi > 0.Having made a choice for each i, one changes to variables y1i , with y1i = log yi if yi > 0; y1i =log(�yi) if yi < 0, and y1i = yi if yi = 0. Then �(�v; ~y) transforms to �1(�v; ~y1), where �1involves terms polynomial in �v and linear in no more than q exponentials of linear functionsof the ~y1.To proceed, we have to inspect the main proof (2.4 ). The V C-dimension of C� is boundedby the number of connected components of a set in ~y-space. So clearly it is bounded by 3` � b,where b is a uniform bounded covering all the subcases when we have made a �xed changeof variable. But to the latter 2.6 applies, giving10



b � e` � [2q(q�1)=2 � [2(`+ 1)]`+q;so in usual notation logB � ` log 3 + q(q � 1)=2+ (` + q) log 2(`+ 1);whence V C � dim C �� q(q � 1)=2 + q log 2(`+ 1)+ `(log 3 + log2(` + 1) + 17 log s):3 Application to sigmoidal neural networksWe de�ne (cf. [MS93]) a sigmoidal network architecture A. The data involves:a) A directed acyclic graph G, labelled by variables and polynomials as explained below:b) an integer `, the dimension of the space of weights, and the weight variables y1; � � � ; y` (`is the number of programmable parameters);c) if there are k input nodes (i.e. nodes of in-degree 0) these are labelled by variablesv1; � � � ; vk;d) there is exactly one output node (i.e. a node of out-degree zero);e) those nodes which are not input nodes are called computation nodes, and the mth suchNm is labelled by a variable zm, and a polynomialPm(vt1 ; � � � ; vt�; zu1; � � � ; zu
 ; y�1; � � �y��)where the y0s are a subset of the weight variables, the v0s correspond to the input nodesimmediately below m (i.e. connected to m) and the z0s correspond to the computation nodesimmediately below m.One now �xes an activation function � : R! R, in our case the function�(x) = 11 + e�x :Then A computes a function �A : Rk+` ! R:a) If N is a computation node, as above, labelled by zmfN (�v; ~y) = Pm(vt1 ; vt�; �(fN1 (�v; ~y); ::�(fN
 (�v; ~y)); y�1 ; � � �y��where Ni corresponds to ui; 1 � i � 
.Then �A is fNw , where Nw is the output node.Now, if we work in a language with +;�; �; 0; 1 and a symbol � for the activation function,then fA(�v; ~y) is given by a term � (�v; ~y), by transcribing naively the above recursion. Let�(�v; ~y) be 11



� (�v; ~y) > 0:Then (by de�nition) the V C-dimension of A is the V C-dimension of C�. By [L92] (whichappeals to Wilkie's [W94]) this dimension is �nite, since � is de�nable in +;�; �; 0; 1; ex.Given a sigmoidal network architecture A, we now apply our results to get a very goodestimate for V C � dim(A). We have simply to bound ��(�; j) for j � ` in order to get B.That is, we need to know a bound on the number of connected components of an intersectionof no more than j sets of the formf~y : � (��i; ~y) = "ig 1 � i � j:This estimate is given by working in a higher-dimensional space and using the Khovanskiestimate used earlier.We use the computation variables Zm, and others Ẑm in correspondence with those. WriteZw for the output variable. Now considerXm [(Zm � Pm(vt1;���;tp; ẐN1; � � � ẐN
 ; y�1���y�� ))2+ (1� Ẑm(1 + e�Zm ))2]= �(�v;��z; ~y):Notice that �(�v; ��z; ~y) = 0! Zw = � (�v; ~y) ; andZw = � (�v; ~y), (9��z:)�(�v; ��z:; ~y) = 0):Let m = the number of computation nodes. Then for �xed ��, the number of connectedcomponents in R`+2m of �(��;��z; ~y) = 0 is, by [K91],� 2m(m�1)=2(2d)`+2m[(` + 2m + 1) � (2d+ 1)]`+3mand this clearly gives a bound for the number for� (��; ~y) = ":But we need to handle � j; � (��i; ~y) = "i together. So we need now variablesvr;i; ZN;i; ẐN;i; ; i � j;thereby having us work in R`+2mj space, and obtaining an estimate2(mj)(mj�1)=2 � (2d)`+2mj[(`+ 2mj + 1)(2d+ 1)]`+3mjand since B can be chosen no larger than the supremum of these j � `, we get12
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