
1.757 and 1.267-Approximation Algorithms for the Networkand Re
tilinear Steiner Tree ProblemsMarek Karpinski� Alexander ZelikovskyyAbstra
tThe Steiner tree problem requires to �nd a shortest tree 
onne
ting a given set of terminalpoints in a metri
 spa
e. We suggest better and fast heuristi
s for the Steiner problem ingraphs and in re
tilinear plane with the re
ord worst-
ase performan
e ratios 1.648 and 1.267,respe
tively.1 Introdu
tionConsider a metri
 spa
e with a distan
e fun
tion d. For any set of terminal points S one 
an eÆ
iently�nd MST(S), a minimum spanning tree of S. Let mst(S; d) be the 
ost of this tree in metri
 d. ASteiner tree is a spanning tree of a superset of the terminal points (the extra points are 
alled Steinerpoints). It was already observed by Pierre Fermat that the 
ost of a Steiner tree of S may besmaller than mst(S; d). The Steiner tree problem asks for the Steiner minimum tree, that is, for theleast 
ost Steiner tree. However, �nding su
h a tree is NP-hard for almost all interesting metri
s,like Eu
lidean, re
tilinear, Hamming distan
e, shortest-path distan
e in a graph et
. Be
ause theseproblems have many appli
ations, they were subje
t of extensive resear
h [12℄.In the last two de
ades many approximation algorithms for �nding Steiner minimum trees ap-peared. The quality of an approximation algorithm is measured by its performan
e ratio: an upperbound of the ratio between the a
hieved length and the optimal length.The Network Steiner tree problem (NSP) asks for the Steiner minimum tree for a vertex subsetS � V of a graph G(V;E; d) with 
ost fun
tion d on edges E.In the re
tilinear metri
, the distan
e between two points is the sum of the di�eren
es of theirx� and y�
oordinates. The re
tilinear Steiner tree problem (RSP) got re
ently new importan
e inthe development of te
hniques for VLSI routing [13℄.The most obvious heuristi
 for the Steiner tree problem approximates a Steiner minimum tree ofS with MST(S). While in all metri
 spa
es the performan
e ratio of this heuristi
 is at most 2 [15℄(it 
an be implemented for NSP in time O(jEj+ jV j log jV j) [14℄), Hwang [10, 11℄ proved that thisheuristi
 in the re
tilinear plane has the performan
e ratio exa
tly 1.5 and 
an be implemented intime O(jSj log jSj).Zelikovsky [16, 18℄ and Berman/Ramaiyer [2℄ gave two better heuristi
s for NSP. Perfoman
eratios of these heuristi
s are 116 � 1:84 and 169 � 1:78 and their runtimes are O(jSj(jEj+jV j log jV j)+jV jjSj2) and O(� + jV j2jSj3:5), respe
tively. Here � means time 
omplexity of �nding of all pairsshortest paths.In the re
ent paper Berman et al [3℄ gave a more pre
ise (than in the �rst papers [17, 2℄ ) analysisof the performan
e ratio of these heuristi
s for RSP. They proved that their performan
e ratios areat most 1.3125 and 6148 � 1:271, respe
tively. The parametrized versions of these heuristi
s have aruntime O(n log2 n) [3, 7℄.Here we present a new heuristi
 whi
h adds a prelimenary phase to Berman/Ramaiyer's heuristi
.This heuristi
 de
reases the known performan
e ratios by 148 � 2% for NSP and a
hieves 1915 � 1:266for RSP. Moreover, this improvement 
an be a
hieved in the same order of runtime.�Department of Computer S
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In the next se
tion we provide a synopsis of Berman/Ramaiyer's approa
h In Se
tions 3 wedes
ribe our new heristi
 and derive some estimates for its performan
e ratios. Se
tions 4 and 5deals with the appli
ations of this heuristi
 to NSP and RSP, respe
tively.2 Berman/ Ramaiyer's Heuristi
A Steiner tree T of a set of terminals S is full if every internal node of T is a Steiner point, i.e., nota terminal. If T is not full, it 
an be de
omposed into full Steiner trees for subsets of terminals thatoverlap only at leaves. Su
h subtrees are 
alled full Steiner 
omponents of T [9℄. A full Steiner treewith k terminals is named k-tree.The method des
ribed here 
an be applied with an arbitrary metri
 d. Without loss of generality,we may assume that the metri
 d on the set of terminals S is the shortest-path distan
e for theweighted edges D 
onne
ting S. This way, MST(D) is the minimum spanning tree of the graph< S;D >, we denote this tree with MST(D), and its 
ost with mst(D). If we in
rease the setof edges D by some extra edges, say forming a set E, the shortest-path distan
e may de
rease;MST(D [E) is the minimum spanning tree for the modi�ed metri
.Let z be a set of k terminals (k-tuple). Let T (z) be the minimum k-tree with the terminal set z,d(z) is the 
ost of T (z) and Z(z) is a spanning tree of z 
onsisting of some suÆ
iently short edges,i.e. MST(D [Z(z)) 
ontains Z(z).At �rst, assume that Z(z) = Z0(z) 
onsists of zero-
ost edges. If we de
ide to use T (z) as apart of that tree, the remaining part 
an be 
omputed optimally as MST(D[Z0(z)), from whi
h weremove zero-
ost edges of Z0(z). The improvement of the tree 
ost due to this de
ision is the gainof z, denoted g(z;D). It is easy to see that g(z;D) = mst(D)-mst(D [Z0(z))-d(z).We denote by tr = maxfmst(D [E) : g(z;D [E) � 0 for any z � S, jzj � rg. In other words,tr denote the the maximum possible MST-
ost if any k-tuple, k � r has a nonpositive gain. Lett2 be the length of MST(D) and s = t1 be the length of optimal Steiner tree. It was proved thatt3 � 53s [16℄, t4 � 32s [1℄ and tr ! s while r!1 [6℄ for arbitrary metri
s. For the re
tilinear metri
,tr � 2k2k�1 for r � 3, moreover, t2 + t4 � 52s and 3t2 + 4t3 � 9s [3℄.Before we des
ribe Berman/Ramaiyer's heuristi
 (BRk) [2℄, we have to look 
loser at the wayhow to obtain MST(D[Z(z)) fromM = MST(D). Say that Z(z) = fe1; :::; eig. When e1 is inserted,the longest edge e01 in the path joining the ends of e1 with 
ost 
01 is removed from M . Then we dothe same with e2 and so on.The idea of BR is to make the initial 
hoi
es (performed in the Evaluation Phase) tentative, andto 
he
k later (in the Sele
tion Phase) for better alternatives.Evaluation Phase. Initially,M = MST(D)and b2 denotes its 
ost. For every triple z 
onsidered,�nd g = g(z;M ). If g � 0, z is simply dis
arded. Otherwise we do the following for every edge eof some spanning tree Z(z): �nd e0 and 
0, make the 
ost of e equal to 
 � g, repla
e in M edge e0with e, put e in a set Bnew and e0 in Bold . On
e this spanning tree of z is pro
essed, we pla
e thetuple < z;Bnew; Bold > on a Sta
k (for the future inspe
tion in the se
ond phase). Repeat this whilethere are triples with positive gain. For later analysis, we de�ne b3 to be the 
ost of M at this point,
ontinue the pro
ess with quadruples and get b4 as the 
ost of M , and so on till all k-tuples beingpro
essed.Sele
tion Phase. We initialize D = M . Then we repeatedly pop < z;Bnew; Bold > from theSta
k, and insert Bold to D. If Bnew �MST(D), then the 
orrespondig minimum i-tree T (z) ispla
ed in a List, otherwise we remove all edges of Bnew from D.All i-trees, i = 3; :::; k, from List with the rest of MST-edges form the output Steiner tree ofBRk. Its length is at most b2 � kXi=3 bi�1 � bii� 1 = k�1Xi=2 bii(i � 1) + bkk � 1 :It is easy to see that bi � ti, i = 2; 3; :::. Therefore, BRk has the following upper bound on theoutput 
ost: t2 � kXi=3 ti�1 � tii � 1 = k�1Xi=2 tii(i � 1) + tkk � 1 : (1)2



3 Combined algorithmBerman/Ramaiyer's heuristi
 tries to �nd tuples of terminals with the largest possible total gain.But every time it a

epts a k-tree, it also a

epts all its Steiner points. This may in
rease the 
ost ofthe 
heapest solution a
hievable at the 
urrent step. The main idea of our heuristi
 is to minimizethis possible in
rease.Let � be a k-tree and V (� ) be its Steiner point set. A forest � 0 � � is 
alled spanning if for anyv 2 V (� ), there is a path in � 0 
onne
ting v with S. The 
ost of the minimum spanning forest in �is 
alled a loss of � and denoted by l(� ). The value g0(� ) = g(� )� l(� ) will be 
alled a relative gainof � . A relative gain of a k-tuple z is the maximum relative gain of a k-tree on terminals of z.Below we des
ribe a 
ombined algorithm CA(l,k), whi
h uses the notion introdu
ed. It 
onsistsof two appli
ations of Berman/Ramayer algorithm with papameters l and k.At �rst we apply the algorithm BRl but for the relative gain fun
tion instead of the usual gainfun
tion. (We denote this algorithm BRl�). A
tually, we use only the evaluation and sele
tionphases of BRl. As an output we obtain a List of sele
ted i-trees, i = 3; :::; l. Then we extend theinitial terminal set S adding all Steiner points of i-trees from List. Now we apply usual BRk to themodi�ed terminal set S0.It is easy to see that the minimum spanning forest for any k-tree 
an be found exa
tly by thegreedy algorithm. So �nding the k-trees of maximum gain or maximum relative gain for a k-tuplehas the same time 
omplexity. Moreover, any k-tuple with positive relative gain has a positive usualgain. This impliesRemark 1 The 
ombined algorithm C(l,k) 
an be implemented in the same order of runtime asBRm, where m = maxfl; kg.In the rest of the paper we derive performan
e ratios 
laimed for the 
ombined algorithm.Let tk and t0k denote the output Mst-
ost of the evaluation phase of BRk applied to the terminalset S and S0, respe
tively. Note that the bound (1) for BRk 
an be represented in the following way:t2 � kXi=3 ti�1 � tii � 1 = t22 + k�1Xi=3 ti(i� 1)i + tkk � 1 = k�1Xi=3 t2 + ti(i � 1)i + t2 + tkk � 1 (2)Denote by G and L the total gain and loss of all trees of List, respe
tively. Also, G0 = G � L.Note, that t02 = t2 �G, t0i � ti + L and, therefore, t02 + t0i � t2 + ti �G0. Let tl2 = t2 �G0. Thus, (2)implies the following performan
e ratio for the 
ombined algorithm:k�1Xi=3 tl2 + ti(i � 1)i + tl2 + tkk � 1 = tl22 + k�1Xi=3 ti(i � 1)i + tkk � 1 : (3)Note, that the bound (3) for the 
ombined algorithm beats the bound (2) for usual BRk by thevalue G0=2. Sin
e G0 might be zero, we will estimate the value tl2 dire
tly.Denote by ti the output Mst-
ost of the evaluation phase of BRi�, e.g. t2 = t2. Then, similarlyto the usual BRl, we obtain tl2 � t2 � lXi=3 ti�1 � tii� 1The last inequality shows that we need to bound ti. Note that a relative gain of any triple 
annotbe positive, i.e. t3 = t2 = t2. Moreover,t42 � t2 � t2 � t43 = 23 t2 + 13t4; (4)sin
e 3G0 = t2 � t4 for this 
ase.To bound the values of ti; i � 4, we use the following property of the output MST of the evaluationphase of BRi�:(i) for any i-tuple � , g(� ) � l(� ). 3



Theorem 1 Let tk be the MST-length for an instan
e of the Steiner tree problem su
h that g(� ) �l(� ) for any k-tree � . Then tk � 32 tkProof. Let Ti be a full 
omponent of an optimal k-restri
ted Steiner tree T and Ti span a subsetSi of the whole terminal set S. We transform su
h a 
omponent to the form of the 
omplete binarytree by repli
ating 
ertain verti
es, so that 
opies of the same vertex are 
onne
ted with zero-
ostedges.The loss of Ti 
an be bounded in the following way. For any inner vertex of Ti, 
hoose the shorteredge among two edges going to its two 
hildren. It is easy to see, that the forest F obtained spansall inner verti
es of Ti. d(F ) is at most half of d(Ti), sin
e F 
ontains exa
tly half of all edges of Tiand Ti � F 
ontains longer edges. This means, that l(Ti) � 12d(Ti).Now, mst(Si)�d(Ti) = g(Ti) � l(Ti) � 12d(Ti) and mst(Si) � 32d(Ti). Therefore, tk = mst(S) �Pmst(Si) �P 32d(Ti) = 32d(T ) = 32tk. }.The next se
tion shows how to use the last bounds to obtain 1:648+ �-approximation algorithmfor STP in graphs. Unfortunately, this algorithm has an impra
ti
al runtime for � < 0:2.Of 
ourse, tight bounds for ti depend on metri
 spa
e. The se
tions 4 and 5 deal with the 
asesof the Steiner tree problem in graphs and re
tilinear metri
. We will prove that the tight bounds fort4 are 158 and 75 for NSP and RSP, respe
tively. These bounds lead to the pra
ti
al approximationalgorithms with the performan
e guarantee 1.757 and 1.267 for NSP and RSP, respe
tively.4 The Steiner Trees in GraphsTheorem 2 Given an instan
e of the Steiner tree problem in graphs, if for any 4-tree � , g(� ) �l(� ), then the minimum spanning tree 
ost is at most 15=8 of the minimal Steiner tree 
ost.Proof. We may prove Theorem for ea
h full Steiner 
omponent separately. We transform su
h a
omponent to the form of the 
omplete binary tree by repli
ating 
ertain verti
es, so that 
opies ofthe same vertex are 
onne
ted with zero-
ost edges. Note that all terminals are leaves of this tree.Let k be the depth of this tree. We label its verti
es with words from B� = f� 2 B� : j�j � kg,where B = f0; 1g. Let � be the root and � have 
hildren �0, �1. The set of terminals with the
ommon an
hestor � is denoted by � also.Some more denotations: Let s = s(�) denote the 
ost of the Steiner minimal tree, t = t(�) be the
ost of MST for the whole terminal set, si(�) =Pj�j=i;b2B d(��; ��b), H = H(�) = s0(�) + s1(�),P (�) denote the 
ost of the 
heapest path from � to S.An average path 
ost is de�ned to be�P = �P (�) = Pk�1i=1 2k�isi(�)2k = k�1Xi=1 2�isi(�)This 
ost has the following two obvious properties:�P (�) � P (�) (5)2 �P (�) = s0(�) + �P (�0) + �P (�1): (6)Sin
e �P � H4 , the following inequality is slightly stronger than Theorem.t � 2s � 2 �P � s �H8 (7)We will prove (7) by indu
tion on k. Indeed, for k � 2, (7) is trivially true. Let (7) be true forall trees of depth at most k. We will prove it for a tree of depth k + 1 (Fig. 1).Further assume that s1(0) � s1(1).Now we partition s(�) into �ve subtrees:s(�) = X�2A s(�) +D;4
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Figure 1: A full 
omponentwhere � 2 A = f000; 001; 01;1g and D = s0(�) + s0(0) + s0(00) (thi
k lines on Fig. 1).These �ve parts 
orrespond to some spanning tree:t(�) � X�2A t(�) + t0; (8)where t0 is the 
ost of three 
heapest edges 
onne
ting four MST for the sets � 2 A. By indu
tion,inequality (7) holds for every � 2 A:t(�) � 2s(�)� 2 �P (�)� s(�)�H(�)8 (9)Substituting (9) into (8) we obtaint(�) � 2(s�D)� 2X�2A �P (�)�X�2A s(�) �H(�)8 + t0and, therefore,t(�) � (2s � 2 �P � s �H8 ) � t0 + 2 �P + s �H8 � 2D � 2X�2A �P (�)�X�2A s(�) �H(�)8 :To prove (7) it is suÆ
ient to show that the RHS of the last inequality is nonpositive, whi
h isequivalent to the following inequality18  s �H �X�2A(s(�) �H(�))! � 2D + 2X�2A �P (�)� (t0 + 2 �P ) (10)Claim 1 The RHS of (10) is at least �P (0)� d(0; 00).Proof. Consider an arbitrary 4-tree q with Steiner points 0 and 00 and four terminals a
hievablefrom 000, 001, 01 and 1, respe
tively. Note, that t0 � t(q), where t(q) = d(q) + g(q) is the 
ostof three 
orresponding longest edges on paths 
onne
ting treminals of q. Let terminals of q be thenearest to the 
orresponding verti
es of A. Sin
e g(q) � l(q) � d(0; 00) + P (00), we obtaint0 � D +X�2AP (�) + d(0; 00) + P (00)5
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(i) (ii)Figure 2: Two types of a full 
omponentNow Claim 
an be proved straitforward using the properties (5) and (6) of the average path 
ost:2D + 2X�2A �P (�)� (t0 + 2 �P ) �2D + 2X�2A �P (�)� (D +X�2AP (�) + d(0; 00) + P (00) + s0(�) + �P (0) + �P (1)) �s0(0) + s0(00) + �P (000) + �P (001) + �P (01)� P (00)� �P (0)� d(0; 00) � �P (0)� d(0; 00) }The LHS of (10) equals to18(D +X�2AH(�)�H) = 18(s1(1) + s0(01) + s1(01) + s0(00) + s1(00) + s2(00))By Claim and our assumption of s0(00) + s0(01) = s1(0) � s1(1), (10) follows from the followinginequality 18(2s0(01) + s1(01) + 2s0(00) + s1(00) + s2(00)) � �P (0)� d(0; 00) (11)Similarly, the 
orresponding partition of the Steiner minimal tree indu
ed by the 4-tree withSteiner points 0 and 01 implies that it is suÆ
ient to prove18(2s0(00) + s1(00) + 2s0(01) + s1(01) + s2(01)) � �P (0)� d(0; 01) (12)Thus to prove (7) we may show that one of the inequalities (11) or (12) is true. This follows fromthe fa
t that their sum is true. Indeed, summing (11) and (12) we obtain18(4s0(00) + 2s1(00) + s2(00) + 4s0(01) + 2s1(01) + s2(01)) � 2 �P (0)� s0(0) = �P (00) + �P (01);whi
h trivially follows from the de�nition of the average path 
ost. }Theorem 1, bounds (3) and (4) implyTheorem 3 The output 
ost of CA(4,k) is bounded with the value whi
h is smaller than the bound(2) for BRk by T2 � T 46 = 148s;where T2 and T 4 are the upper bounds for t2 and t4, s is the 
ost of the optimal Steiner tree.}The bounds for t3 and t4 implyCorollary 1 The performan
e ratio of CA(4,4) is at most 253144 � 1:757. }6



5 Approximating Re
tilinear Steiner TreesHwang [10℄ proved that there is a Steiner minimum tree where every full 
omponent has one of theshapes shown in Fig. 2. It was suggested in [3℄ some partition of a full 
omponent into so 
alledSteiner segments. Below we brei
y des
ribe this useful te
hnique.Let a1; : : : ; ak and b0 = 0; b1; : : : ; bk be the lengths of horizontal and verti
al lines of a full Steiner
omponent F with terminals s0; : : : ; sk. The horizontal lines form its spine. Moreover, in 
ase (i)bk < bk�2 holds. In 
ase (ii) assume that bk = 0. Consider the sequen
es b0; b1; b3; : : : ; b2i+1; : : : andb0; b2; : : : ; b2i; : : : . Let bh(0) = b0; bh(1); : : : ; bh(p+1) = bk (13)be the sequen
e of lo
al minima of these sequen
es, i.e. bh(j)�2 � bh(j) < bh(j)+2. If h(p) = k � 1,we ex
lude the member bh(p) from (13). For the 
ase of h(j + 1) = h(j) + 1, (j = 1; : : : ; p� 1), weex
lude arbitrarily either bh(j+1) or bh(j). So, we get h(j+1)�h(j) � 3. The elements of the re�nedsequen
e (13) are 
alled hooks. Further we assume that a full Steiner tree nontrivially 
ontains atleast 4 terminals (k � 4). A Steiner segment K is a part of a full Steiner 
omponent bounded by twosequential hook terminals. So two neighbouring Steiner segments have a 
ommon hook. K 
ontainsthe two furthest terminals below and above the spine 
alled top and bottom, respe
tively.Now we present the main result of this se
tion.Theorem 4 Given an instan
e of the Steiner tree problem in re
tilinear plane, if for any 4-tree � ,g(� ) � l(� ), then the minimum spanning tree 
ost is at most 7=5 of the minimal Steiner tree 
ost.Proof. Further assume that some terminals are 
onne
ted with short edges su
h that g(� ) � l(� )for any 4-tree � . It is suÆ
ient to prove Theorem for a full Steiner 
omponent F with a terminal setSet. Let F = [ki=0Ki be a partition of F into Steiner segments. Then d(F ) =Pki=0 d(Ki)�Pk�1i=1 hi,where hi are hooks. Consider some Steiner segment K = Ki of F with terminal set S = Si, hookshl = hi and hr = hi+1 and the length s = d(K). Similarly to Se
tion 4, denote the MST-length fora terminal set X by t(X). We intend to prove thatt(S) � s � 25s� 710(hl + hr) (14)This inequality yields Theorem, sin
e thent(Set) � kXi=0 t(Si) � 75 kXi=0 d(Ki)� 710 k�1Xi=0(hi + hi+1) �75( kXi=0 d(Ki) � k�1Xi=1 hi) = 75d(F )Let top of K be to the left of its bottom. We partition S into three parts S = L[C[R, where Lis the set of terminals from the left hook till the �rst before top, C 
ontains all terminals from thethe �rst before top till the next after bottom and R 
ontains ones from the next after bottom tillthe right hook. Similarly, we partition F into three 
orresponding partss = left + 
enter + right;where 
enter 
ontains all edges spanning C, and left and right 
onsists of the rest of the Steinersegment to the left and right of 
enter (Fig. 3). Denote by vl and vr the lengths of two verti
allines whi
h bound 
enter from the left and the right. Note that K should 
ontain 
enter, but leftand right might be empty.We have two 
ases depending on the size of 
enter.Case 1. Let bottom be the next to top (Fig. 4). It was noti
ed in [3℄ thatLemma 1 There are two trees (Fig. 4(i)) Top (dashed lines) and Bot (dotteded lines) spanningterminals of K with a total lengthd(Top) + d(Bot) = 3s� 2(hl + hr) �Rest;Rest sums the lengths of the thin drawn Steiner tree lines.7
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(i) (ii)Figure 4: top besides bottom: the whole segment (i) and its 
enter (ii)Lemma 1 says that t � 32s � Rest2 � (hl + hr): It is easy to see that (14) holds if Rest is bigenough, i.e. Rest � s5 � 35 (hl + hr). So further assume thatRest � s5 � 35(hl + hr): (15)We may span R and L with the alternative 
hains (Fig. 3), therefore,t(L) + t(R) � left + right +Rest � x; (16)where x is the horisontal edge length of Rest.Let q be the quadruple with terminals from C (Fig. 4 (ii)). Theorem assumes that g(q) =t(C) � 
enter is at most l(q). But the loss of q is at most x plus the length of the shortest amongfour dotted lines (we may shift the 
entral edge up or down till dashed lines). Therefore,t(C) � 
enter � l(q) � x+ 
enter � (2vl + 2vr + x)4 � x+ s � Rest� (hl + hr)4 (17)Thus, we 
an prove (14) using (15), (16), (17):t(S) � s = (t(C)� 
enter) + (t(L) � left + t(R)� right) � x+ s �Rest � (hl + hr)4 +Rest � x �8
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b bFigure 5: 2 terminals between top and bottoms4 + 34Rest � hl + hr4 � s4 + 34( s5 � 3hl + hr5 ) � hl + hr4 = 25s � 710(hl + hr)Case 2. Let two terminals lie between top and bottom. Now 
enter 
ontains two quadruplesq1 and q2 with 
entral edges x1 and x2 (Fig. 5). We 
onstru
t 5 spanning trees for the set C.Three trees 
ontain some 
onne
tion of the quadruple q1 and pairs of edges spanning the last twoterminals: thi
k dotted, dashed, and solid lines, respe
tively. Theorem assumes that the 
onne
tionof the quadruple q1 
annot be longer the length of q1 (Steiner edges in the dark region) plus the lossof q1. Denote by light the length of Steiner edges out of the dark region. ThenT1� 
enter � d(q1) + l(q1) + light + a+ h3� 
enter = l(q1) + a+ h3 � x1 + 
+ a+ h3T2� 
enter � l(q1) + h2 + d � h1 + b+ h2 + dT3� 
enter � l(q1) + 2a+ x2 � x1 + b+ 2a+ x2The last pair of trees is symmetri
 to T1 and T2T4� 
enter � l(q2) + b+ h1 � x2 + d+ b+ h1T5� 
enter � l(q2) + h2 + 
 � h3 + a+ h2 + 
Summing all inequalities we obtain5t(C)� 5
enter � 2
enter � 6(vl + vr) (18)If there are more terminals between top and bottom then 
enter 
ontains several quadruples qi.Three ne
essary spanning trees 
ontain 
onne
tions of odd qudruples and two 
ontain 
onne
tionsof even quadruples. Similarly, we obtain (18) using the Theorem assumption that su
h 
onne
tionsare no longer than d(qi) + l(qi).To prove (14), we will show that5(t(L) + t(R)) � 5(left + right) � 2(left + right) � 4(hl + hr) + 6(vl + vr);whi
h means for the right side of the Steiner segment5t(R) � 5right � 2right � 4hr + 6vr (19)If vr is the right hook (vr = hr), then (19) is trivial, sin
e t(R) = right = 0.If the hook is the next after vr (Fig. 6(i)), then we use the solid line �ve times and two timesrepla
e the edge of T1 and T2 (the thi
k dashed line) with the dotted line. In the latter 
ase we repla
evr and hr with f , the horizontal edge length. Thus, we obtain 5t(R) � 5right � 5vr + 2f � 2hr �2right� 4hr + 6vr. 9



vr

hr

(ii)(i)

f

vr

hrFigure 6: The short (i) and the long (ii) rightFor a nontrivial R we use the following 5 trees (Fig. 6(ii)) whi
h 
ontain:(1) thi
k solid and dotted lines. It doubles vr and Steiner tree lines 
rossed by its dotted lines.(2-3) thi
k solid and dashed lines or the thin dashed line if the hook is above the spine (2 times). Itdoubles the Steiner tree lines 
rossed by its edges and saves the hook hr.(4-5) the alternative 
hain (Fig. 3) (2 times). It doubles all verti
al lines ex
ept vr and hr.Thus, these trees double right� hr at most two times, vr only on
e, and save hr two times. }Theorem 4, bounds (3) and (4), inequalities 3t2+4t3 � 9s, t2+t4 � 52s imply that the performan
eguarantee of the algorithm CA(4,4) 
an be bounded with the following value23 t2 + 13t4 + t36 + t2 + t43 � 34 t2 + 14 t4 + t36 + t2 + t43 =3t2 + 4t324 + t2 + t43 + t424 � 38s + 56s + 7120s = 1915sTheorem 5 The performan
e guarantee of CA(4,4) is at most 1915 � 1:2667: }6 Open problemsThe main open question remaining for the Network Steiner Tree Problem is to 
ompute the exa
tvalue of a 
onstant 
 whi
h separates polynomial approximability from nonapproximability (NP -hardness) of this problem. Su
h a 
onstant 
 must exist sin
e NSP is SNP -
omplete [4℄. We
onje
ture that 
 lies somewhere below 1.7 for that problem. Note that we do not know at the momentwhether RSP is also SNP -
omplete, and therefore it 
ould have a polynomial time approximations
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