
1.757 and 1.267-Approximation Algorithms for the Networkand Retilinear Steiner Tree ProblemsMarek Karpinski� Alexander ZelikovskyyAbstratThe Steiner tree problem requires to �nd a shortest tree onneting a given set of terminalpoints in a metri spae. We suggest better and fast heuristis for the Steiner problem ingraphs and in retilinear plane with the reord worst-ase performane ratios 1.648 and 1.267,respetively.1 IntrodutionConsider a metri spae with a distane funtion d. For any set of terminal points S one an eÆiently�nd MST(S), a minimum spanning tree of S. Let mst(S; d) be the ost of this tree in metri d. ASteiner tree is a spanning tree of a superset of the terminal points (the extra points are alled Steinerpoints). It was already observed by Pierre Fermat that the ost of a Steiner tree of S may besmaller than mst(S; d). The Steiner tree problem asks for the Steiner minimum tree, that is, for theleast ost Steiner tree. However, �nding suh a tree is NP-hard for almost all interesting metris,like Eulidean, retilinear, Hamming distane, shortest-path distane in a graph et. Beause theseproblems have many appliations, they were subjet of extensive researh [12℄.In the last two deades many approximation algorithms for �nding Steiner minimum trees ap-peared. The quality of an approximation algorithm is measured by its performane ratio: an upperbound of the ratio between the ahieved length and the optimal length.The Network Steiner tree problem (NSP) asks for the Steiner minimum tree for a vertex subsetS � V of a graph G(V;E; d) with ost funtion d on edges E.In the retilinear metri, the distane between two points is the sum of the di�erenes of theirx� and y�oordinates. The retilinear Steiner tree problem (RSP) got reently new importane inthe development of tehniques for VLSI routing [13℄.The most obvious heuristi for the Steiner tree problem approximates a Steiner minimum tree ofS with MST(S). While in all metri spaes the performane ratio of this heuristi is at most 2 [15℄(it an be implemented for NSP in time O(jEj+ jV j log jV j) [14℄), Hwang [10, 11℄ proved that thisheuristi in the retilinear plane has the performane ratio exatly 1.5 and an be implemented intime O(jSj log jSj).Zelikovsky [16, 18℄ and Berman/Ramaiyer [2℄ gave two better heuristis for NSP. Perfomaneratios of these heuristis are 116 � 1:84 and 169 � 1:78 and their runtimes are O(jSj(jEj+jV j log jV j)+jV jjSj2) and O(� + jV j2jSj3:5), respetively. Here � means time omplexity of �nding of all pairsshortest paths.In the reent paper Berman et al [3℄ gave a more preise (than in the �rst papers [17, 2℄ ) analysisof the performane ratio of these heuristis for RSP. They proved that their performane ratios areat most 1.3125 and 6148 � 1:271, respetively. The parametrized versions of these heuristis have aruntime O(n log2 n) [3, 7℄.Here we present a new heuristi whih adds a prelimenary phase to Berman/Ramaiyer's heuristi.This heuristi dereases the known performane ratios by 148 � 2% for NSP and ahieves 1915 � 1:266for RSP. Moreover, this improvement an be ahieved in the same order of runtime.�Department of Computer Siene, Universit�at Bonn, R�omerstra�e 164, 53117 Bonn, Germany, e-mail:marek�s.uni-bonn.de. Researh partially supported by the International Computer Siene Institute, Berkeley, Cal-ifornia, by the DFG Grant KA 67314, by the ESPRIT BR Grant 7097 and by ECUS030yInstitute of Mathematis, Akademiei 5, Kishinev, 277028, Moldova, email: 17azz�mathem.moldova.su. Researhpartially supported by Volkswagen Stiftung. Parts of this work were done in Max-Plank-Institut f�ur Informatik,Saarbr�uken, Germany 1



In the next setion we provide a synopsis of Berman/Ramaiyer's approah In Setions 3 wedesribe our new heristi and derive some estimates for its performane ratios. Setions 4 and 5deals with the appliations of this heuristi to NSP and RSP, respetively.2 Berman/ Ramaiyer's HeuristiA Steiner tree T of a set of terminals S is full if every internal node of T is a Steiner point, i.e., nota terminal. If T is not full, it an be deomposed into full Steiner trees for subsets of terminals thatoverlap only at leaves. Suh subtrees are alled full Steiner omponents of T [9℄. A full Steiner treewith k terminals is named k-tree.The method desribed here an be applied with an arbitrary metri d. Without loss of generality,we may assume that the metri d on the set of terminals S is the shortest-path distane for theweighted edges D onneting S. This way, MST(D) is the minimum spanning tree of the graph< S;D >, we denote this tree with MST(D), and its ost with mst(D). If we inrease the setof edges D by some extra edges, say forming a set E, the shortest-path distane may derease;MST(D [E) is the minimum spanning tree for the modi�ed metri.Let z be a set of k terminals (k-tuple). Let T (z) be the minimum k-tree with the terminal set z,d(z) is the ost of T (z) and Z(z) is a spanning tree of z onsisting of some suÆiently short edges,i.e. MST(D [Z(z)) ontains Z(z).At �rst, assume that Z(z) = Z0(z) onsists of zero-ost edges. If we deide to use T (z) as apart of that tree, the remaining part an be omputed optimally as MST(D[Z0(z)), from whih weremove zero-ost edges of Z0(z). The improvement of the tree ost due to this deision is the gainof z, denoted g(z;D). It is easy to see that g(z;D) = mst(D)-mst(D [Z0(z))-d(z).We denote by tr = maxfmst(D [E) : g(z;D [E) � 0 for any z � S, jzj � rg. In other words,tr denote the the maximum possible MST-ost if any k-tuple, k � r has a nonpositive gain. Lett2 be the length of MST(D) and s = t1 be the length of optimal Steiner tree. It was proved thatt3 � 53s [16℄, t4 � 32s [1℄ and tr ! s while r!1 [6℄ for arbitrary metris. For the retilinear metri,tr � 2k2k�1 for r � 3, moreover, t2 + t4 � 52s and 3t2 + 4t3 � 9s [3℄.Before we desribe Berman/Ramaiyer's heuristi (BRk) [2℄, we have to look loser at the wayhow to obtain MST(D[Z(z)) fromM = MST(D). Say that Z(z) = fe1; :::; eig. When e1 is inserted,the longest edge e01 in the path joining the ends of e1 with ost 01 is removed from M . Then we dothe same with e2 and so on.The idea of BR is to make the initial hoies (performed in the Evaluation Phase) tentative, andto hek later (in the Seletion Phase) for better alternatives.Evaluation Phase. Initially,M = MST(D)and b2 denotes its ost. For every triple z onsidered,�nd g = g(z;M ). If g � 0, z is simply disarded. Otherwise we do the following for every edge eof some spanning tree Z(z): �nd e0 and 0, make the ost of e equal to  � g, replae in M edge e0with e, put e in a set Bnew and e0 in Bold . One this spanning tree of z is proessed, we plae thetuple < z;Bnew; Bold > on a Stak (for the future inspetion in the seond phase). Repeat this whilethere are triples with positive gain. For later analysis, we de�ne b3 to be the ost of M at this point,ontinue the proess with quadruples and get b4 as the ost of M , and so on till all k-tuples beingproessed.Seletion Phase. We initialize D = M . Then we repeatedly pop < z;Bnew; Bold > from theStak, and insert Bold to D. If Bnew �MST(D), then the orrespondig minimum i-tree T (z) isplaed in a List, otherwise we remove all edges of Bnew from D.All i-trees, i = 3; :::; k, from List with the rest of MST-edges form the output Steiner tree ofBRk. Its length is at most b2 � kXi=3 bi�1 � bii� 1 = k�1Xi=2 bii(i � 1) + bkk � 1 :It is easy to see that bi � ti, i = 2; 3; :::. Therefore, BRk has the following upper bound on theoutput ost: t2 � kXi=3 ti�1 � tii � 1 = k�1Xi=2 tii(i � 1) + tkk � 1 : (1)2



3 Combined algorithmBerman/Ramaiyer's heuristi tries to �nd tuples of terminals with the largest possible total gain.But every time it aepts a k-tree, it also aepts all its Steiner points. This may inrease the ost ofthe heapest solution ahievable at the urrent step. The main idea of our heuristi is to minimizethis possible inrease.Let � be a k-tree and V (� ) be its Steiner point set. A forest � 0 � � is alled spanning if for anyv 2 V (� ), there is a path in � 0 onneting v with S. The ost of the minimum spanning forest in �is alled a loss of � and denoted by l(� ). The value g0(� ) = g(� )� l(� ) will be alled a relative gainof � . A relative gain of a k-tuple z is the maximum relative gain of a k-tree on terminals of z.Below we desribe a ombined algorithm CA(l,k), whih uses the notion introdued. It onsistsof two appliations of Berman/Ramayer algorithm with papameters l and k.At �rst we apply the algorithm BRl but for the relative gain funtion instead of the usual gainfuntion. (We denote this algorithm BRl�). Atually, we use only the evaluation and seletionphases of BRl. As an output we obtain a List of seleted i-trees, i = 3; :::; l. Then we extend theinitial terminal set S adding all Steiner points of i-trees from List. Now we apply usual BRk to themodi�ed terminal set S0.It is easy to see that the minimum spanning forest for any k-tree an be found exatly by thegreedy algorithm. So �nding the k-trees of maximum gain or maximum relative gain for a k-tuplehas the same time omplexity. Moreover, any k-tuple with positive relative gain has a positive usualgain. This impliesRemark 1 The ombined algorithm C(l,k) an be implemented in the same order of runtime asBRm, where m = maxfl; kg.In the rest of the paper we derive performane ratios laimed for the ombined algorithm.Let tk and t0k denote the output Mst-ost of the evaluation phase of BRk applied to the terminalset S and S0, respetively. Note that the bound (1) for BRk an be represented in the following way:t2 � kXi=3 ti�1 � tii � 1 = t22 + k�1Xi=3 ti(i� 1)i + tkk � 1 = k�1Xi=3 t2 + ti(i � 1)i + t2 + tkk � 1 (2)Denote by G and L the total gain and loss of all trees of List, respetively. Also, G0 = G � L.Note, that t02 = t2 �G, t0i � ti + L and, therefore, t02 + t0i � t2 + ti �G0. Let tl2 = t2 �G0. Thus, (2)implies the following performane ratio for the ombined algorithm:k�1Xi=3 tl2 + ti(i � 1)i + tl2 + tkk � 1 = tl22 + k�1Xi=3 ti(i � 1)i + tkk � 1 : (3)Note, that the bound (3) for the ombined algorithm beats the bound (2) for usual BRk by thevalue G0=2. Sine G0 might be zero, we will estimate the value tl2 diretly.Denote by ti the output Mst-ost of the evaluation phase of BRi�, e.g. t2 = t2. Then, similarlyto the usual BRl, we obtain tl2 � t2 � lXi=3 ti�1 � tii� 1The last inequality shows that we need to bound ti. Note that a relative gain of any triple annotbe positive, i.e. t3 = t2 = t2. Moreover,t42 � t2 � t2 � t43 = 23 t2 + 13t4; (4)sine 3G0 = t2 � t4 for this ase.To bound the values of ti; i � 4, we use the following property of the output MST of the evaluationphase of BRi�:(i) for any i-tuple � , g(� ) � l(� ). 3



Theorem 1 Let tk be the MST-length for an instane of the Steiner tree problem suh that g(� ) �l(� ) for any k-tree � . Then tk � 32 tkProof. Let Ti be a full omponent of an optimal k-restrited Steiner tree T and Ti span a subsetSi of the whole terminal set S. We transform suh a omponent to the form of the omplete binarytree by repliating ertain verties, so that opies of the same vertex are onneted with zero-ostedges.The loss of Ti an be bounded in the following way. For any inner vertex of Ti, hoose the shorteredge among two edges going to its two hildren. It is easy to see, that the forest F obtained spansall inner verties of Ti. d(F ) is at most half of d(Ti), sine F ontains exatly half of all edges of Tiand Ti � F ontains longer edges. This means, that l(Ti) � 12d(Ti).Now, mst(Si)�d(Ti) = g(Ti) � l(Ti) � 12d(Ti) and mst(Si) � 32d(Ti). Therefore, tk = mst(S) �Pmst(Si) �P 32d(Ti) = 32d(T ) = 32tk. }.The next setion shows how to use the last bounds to obtain 1:648+ �-approximation algorithmfor STP in graphs. Unfortunately, this algorithm has an impratial runtime for � < 0:2.Of ourse, tight bounds for ti depend on metri spae. The setions 4 and 5 deal with the asesof the Steiner tree problem in graphs and retilinear metri. We will prove that the tight bounds fort4 are 158 and 75 for NSP and RSP, respetively. These bounds lead to the pratial approximationalgorithms with the performane guarantee 1.757 and 1.267 for NSP and RSP, respetively.4 The Steiner Trees in GraphsTheorem 2 Given an instane of the Steiner tree problem in graphs, if for any 4-tree � , g(� ) �l(� ), then the minimum spanning tree ost is at most 15=8 of the minimal Steiner tree ost.Proof. We may prove Theorem for eah full Steiner omponent separately. We transform suh aomponent to the form of the omplete binary tree by repliating ertain verties, so that opies ofthe same vertex are onneted with zero-ost edges. Note that all terminals are leaves of this tree.Let k be the depth of this tree. We label its verties with words from B� = f� 2 B� : j�j � kg,where B = f0; 1g. Let � be the root and � have hildren �0, �1. The set of terminals with theommon anhestor � is denoted by � also.Some more denotations: Let s = s(�) denote the ost of the Steiner minimal tree, t = t(�) be theost of MST for the whole terminal set, si(�) =Pj�j=i;b2B d(��; ��b), H = H(�) = s0(�) + s1(�),P (�) denote the ost of the heapest path from � to S.An average path ost is de�ned to be�P = �P (�) = Pk�1i=1 2k�isi(�)2k = k�1Xi=1 2�isi(�)This ost has the following two obvious properties:�P (�) � P (�) (5)2 �P (�) = s0(�) + �P (�0) + �P (�1): (6)Sine �P � H4 , the following inequality is slightly stronger than Theorem.t � 2s � 2 �P � s �H8 (7)We will prove (7) by indution on k. Indeed, for k � 2, (7) is trivially true. Let (7) be true forall trees of depth at most k. We will prove it for a tree of depth k + 1 (Fig. 1).Further assume that s1(0) � s1(1).Now we partition s(�) into �ve subtrees:s(�) = X�2A s(�) +D;4
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Figure 1: A full omponentwhere � 2 A = f000; 001; 01;1g and D = s0(�) + s0(0) + s0(00) (thik lines on Fig. 1).These �ve parts orrespond to some spanning tree:t(�) � X�2A t(�) + t0; (8)where t0 is the ost of three heapest edges onneting four MST for the sets � 2 A. By indution,inequality (7) holds for every � 2 A:t(�) � 2s(�)� 2 �P (�)� s(�)�H(�)8 (9)Substituting (9) into (8) we obtaint(�) � 2(s�D)� 2X�2A �P (�)�X�2A s(�) �H(�)8 + t0and, therefore,t(�) � (2s � 2 �P � s �H8 ) � t0 + 2 �P + s �H8 � 2D � 2X�2A �P (�)�X�2A s(�) �H(�)8 :To prove (7) it is suÆient to show that the RHS of the last inequality is nonpositive, whih isequivalent to the following inequality18  s �H �X�2A(s(�) �H(�))! � 2D + 2X�2A �P (�)� (t0 + 2 �P ) (10)Claim 1 The RHS of (10) is at least �P (0)� d(0; 00).Proof. Consider an arbitrary 4-tree q with Steiner points 0 and 00 and four terminals ahievablefrom 000, 001, 01 and 1, respetively. Note, that t0 � t(q), where t(q) = d(q) + g(q) is the ostof three orresponding longest edges on paths onneting treminals of q. Let terminals of q be thenearest to the orresponding verties of A. Sine g(q) � l(q) � d(0; 00) + P (00), we obtaint0 � D +X�2AP (�) + d(0; 00) + P (00)5
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(i) (ii)Figure 2: Two types of a full omponentNow Claim an be proved straitforward using the properties (5) and (6) of the average path ost:2D + 2X�2A �P (�)� (t0 + 2 �P ) �2D + 2X�2A �P (�)� (D +X�2AP (�) + d(0; 00) + P (00) + s0(�) + �P (0) + �P (1)) �s0(0) + s0(00) + �P (000) + �P (001) + �P (01)� P (00)� �P (0)� d(0; 00) � �P (0)� d(0; 00) }The LHS of (10) equals to18(D +X�2AH(�)�H) = 18(s1(1) + s0(01) + s1(01) + s0(00) + s1(00) + s2(00))By Claim and our assumption of s0(00) + s0(01) = s1(0) � s1(1), (10) follows from the followinginequality 18(2s0(01) + s1(01) + 2s0(00) + s1(00) + s2(00)) � �P (0)� d(0; 00) (11)Similarly, the orresponding partition of the Steiner minimal tree indued by the 4-tree withSteiner points 0 and 01 implies that it is suÆient to prove18(2s0(00) + s1(00) + 2s0(01) + s1(01) + s2(01)) � �P (0)� d(0; 01) (12)Thus to prove (7) we may show that one of the inequalities (11) or (12) is true. This follows fromthe fat that their sum is true. Indeed, summing (11) and (12) we obtain18(4s0(00) + 2s1(00) + s2(00) + 4s0(01) + 2s1(01) + s2(01)) � 2 �P (0)� s0(0) = �P (00) + �P (01);whih trivially follows from the de�nition of the average path ost. }Theorem 1, bounds (3) and (4) implyTheorem 3 The output ost of CA(4,k) is bounded with the value whih is smaller than the bound(2) for BRk by T2 � T 46 = 148s;where T2 and T 4 are the upper bounds for t2 and t4, s is the ost of the optimal Steiner tree.}The bounds for t3 and t4 implyCorollary 1 The performane ratio of CA(4,4) is at most 253144 � 1:757. }6



5 Approximating Retilinear Steiner TreesHwang [10℄ proved that there is a Steiner minimum tree where every full omponent has one of theshapes shown in Fig. 2. It was suggested in [3℄ some partition of a full omponent into so alledSteiner segments. Below we breiy desribe this useful tehnique.Let a1; : : : ; ak and b0 = 0; b1; : : : ; bk be the lengths of horizontal and vertial lines of a full Steineromponent F with terminals s0; : : : ; sk. The horizontal lines form its spine. Moreover, in ase (i)bk < bk�2 holds. In ase (ii) assume that bk = 0. Consider the sequenes b0; b1; b3; : : : ; b2i+1; : : : andb0; b2; : : : ; b2i; : : : . Let bh(0) = b0; bh(1); : : : ; bh(p+1) = bk (13)be the sequene of loal minima of these sequenes, i.e. bh(j)�2 � bh(j) < bh(j)+2. If h(p) = k � 1,we exlude the member bh(p) from (13). For the ase of h(j + 1) = h(j) + 1, (j = 1; : : : ; p� 1), weexlude arbitrarily either bh(j+1) or bh(j). So, we get h(j+1)�h(j) � 3. The elements of the re�nedsequene (13) are alled hooks. Further we assume that a full Steiner tree nontrivially ontains atleast 4 terminals (k � 4). A Steiner segment K is a part of a full Steiner omponent bounded by twosequential hook terminals. So two neighbouring Steiner segments have a ommon hook. K ontainsthe two furthest terminals below and above the spine alled top and bottom, respetively.Now we present the main result of this setion.Theorem 4 Given an instane of the Steiner tree problem in retilinear plane, if for any 4-tree � ,g(� ) � l(� ), then the minimum spanning tree ost is at most 7=5 of the minimal Steiner tree ost.Proof. Further assume that some terminals are onneted with short edges suh that g(� ) � l(� )for any 4-tree � . It is suÆient to prove Theorem for a full Steiner omponent F with a terminal setSet. Let F = [ki=0Ki be a partition of F into Steiner segments. Then d(F ) =Pki=0 d(Ki)�Pk�1i=1 hi,where hi are hooks. Consider some Steiner segment K = Ki of F with terminal set S = Si, hookshl = hi and hr = hi+1 and the length s = d(K). Similarly to Setion 4, denote the MST-length fora terminal set X by t(X). We intend to prove thatt(S) � s � 25s� 710(hl + hr) (14)This inequality yields Theorem, sine thent(Set) � kXi=0 t(Si) � 75 kXi=0 d(Ki)� 710 k�1Xi=0(hi + hi+1) �75( kXi=0 d(Ki) � k�1Xi=1 hi) = 75d(F )Let top of K be to the left of its bottom. We partition S into three parts S = L[C[R, where Lis the set of terminals from the left hook till the �rst before top, C ontains all terminals from thethe �rst before top till the next after bottom and R ontains ones from the next after bottom tillthe right hook. Similarly, we partition F into three orresponding partss = left + enter + right;where enter ontains all edges spanning C, and left and right onsists of the rest of the Steinersegment to the left and right of enter (Fig. 3). Denote by vl and vr the lengths of two vertiallines whih bound enter from the left and the right. Note that K should ontain enter, but leftand right might be empty.We have two ases depending on the size of enter.Case 1. Let bottom be the next to top (Fig. 4). It was notied in [3℄ thatLemma 1 There are two trees (Fig. 4(i)) Top (dashed lines) and Bot (dotteded lines) spanningterminals of K with a total lengthd(Top) + d(Bot) = 3s� 2(hl + hr) �Rest;Rest sums the lengths of the thin drawn Steiner tree lines.7
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