Lower Bound for Randomized Linear Decision Tree Recognizing a Union of Hyperplanes in a Generic Position

Dima Grigoriev*

Marek Karpinski ${ }^{\dagger}$

Abstract

Let L be a union of hyperplanes with s vertices. We prove that the runtime of a probabilistic linear search tree recognizing membership to L is at least $\Omega(\log s)$, provided that L satisfies a certain condition which could be treated as a generic position. A more general statement, namely without the condition, was claimed by F. Meyer auf der Heide [1], but the proof contained a mistake.

[^0]
1 Families of hyperplanes in a generic position

Let $L=\bigcup_{1 \leq i \leq m} H_{i} \subset \mathbb{R}^{\ltimes}$ be a union of hyperplanes. We intend to define a version of what does it mean that L is in a generic position.

If $Q=\bigcap 1 \leq j \leq t H_{i_{j}}$ has the dimension $\operatorname{dim} Q=l$ we call $Q l$-face of L. Also 0 -faces we call vertices. If a hyperplane H contains some l-face for rather l then H contains many vertices of L. The generic position for L means, informally speaking, that this is the only reason for H to contain many vertices of L.

Definition. We say that L is in a generic position if for some $c_{1}>c_{2}>0, c_{3}>$ 0 and any hyperplane $H \subset \mathbb{R}^{\propto}$

1) L has $s \geq m^{c_{1} n}$ vertices,
2) each vertex belongs to exactly n hyperplanes of L,
3) the number of vertices v lying in H for which there is no l-face contained in H such that this l-face contains v, where $l \geq c_{3} n$, does not exceed $m^{c_{2} n}$.

One can show that if H_{1}, \ldots, H_{m} satisfy the property of algebraically independence, namely, that $m \cdot n$ coefficients $a_{i j}$ of all linear equations for H_{1}, \ldots, H_{m} (i.e. $H_{i}=\left\{\sum_{1 \leq j \leq n} a_{i j} X_{j}=1\right\}$) are algebraically independent over Q then L is in a generic position.

Moreover, one can prove in this case the following. Let Q_{1}, \ldots, Q_{t} be all maximal (in the sense of inclusion) faces of L containes in H, then $\sum_{1 \leq i \leq t} \operatorname{dim}\left(Q_{i}+1\right) \leq$ n. Thus, the number of vertices in the item considered in the item 3 of the definition does not exceed $n \cdot m^{c_{3} n}$ since any l-face cannot contain more than m^{l} vertices of L.

Let D be a probabilistic linear search algorithm (or briefly $\alpha-P L S A$) recognizing L with two-sided error $\alpha<1 / 2$ (one can find in [1], [2] the concepts used in the present paper).

Theorem. If L is in a generic position then the runtime of D is greater than $\Omega(n \log m)$.

Note that the similar result was claimed in [1] even without the condition 3) from the definition of a generic position, but the proof contained a mistake.

For a value of the random parameter $0 \leq \gamma \leq 1$ by D_{γ} we denote the corresponding $L S A$ (cf. [1]).

Recall that in [2] it is proved that one can obtain $\beta-P L S A$ recognizing the same language L as D for any cinstant $\beta>0$ increasing the runtime of D by at most a constant factor. We shall use this remark to make α as small as desired.

As in [1] one shows that for any vertex of L there exists $\epsilon>0$ such that each hyperplane occuring as a testing one in D which intersects the closed ball $B_{\epsilon}(v)$ of the radius ϵ and with the center in v, should pass through v.

Similar to [1] select from D all the testing hyperplanes passing through v. Then the obtained thereby D^{\prime} is $\alpha-P L S A$ recognizing the language $L \cap B_{\epsilon}(v)$, when being restricted on $B_{\epsilon}(v)$.

Making a suitable affine transformation, we can assume that v is the coordinate origin and besides, the hyperplanes from L passing through v, are just the coordinate hyperplanes $\left\{X_{1}=0\right\}, \ldots,\left\{X_{n}=0\right\}$.

For any $0 \leq \gamma \leq 1$ each leaf of D_{γ}^{\prime} provides a polyhedra V of the form

$$
\left\{L_{1}=0\right\} \cap \ldots \cap\left\{L_{q_{1}}=0\right\} \cap\left\{L_{q_{1}+1}>0\right\} \cap \ldots \cap\left\{L_{q}>0\right\}
$$

for some testing hyperplanes L_{1}, \ldots, L_{q}. Then $P=\left\{L_{1}=\ldots=L_{q}=0\right\}$ is the minimal (in the sense of inclusion) face of the closure of V. If $q_{1}=0$ then V is open. Polyhedra corresponding to all the leaves of D_{γ}^{\prime} form the partition \mathbb{R}^{α}.

For the time being we fix $0 \leq \gamma \leq 1$ and an open polyhedron V. Denote by $\Delta(V)$ the maximal dimension of the faces of L passing through v which are contained in P. Any such face of L has the form $\bigcap_{i \in I}\left\{X_{i}=0\right\}$ for a certain subset $I \subset\{1, \ldots, n\}$. Observe that if two faces $\bigcap_{i \in I}\left\{X_{i}=0\right\}$ and $\bigcap_{i \in J}\left\{X_{i}=0\right\}$ of L are contained in P then the face $\bigcap_{i \in I \cap J}\left\{X_{i}=0\right\}$ is contained in P as well. Thus, there is the unique maximal face of the form $\bigcap i \in I\left\{X_{i}=0\right\}$ contained in P and its dimension equals to $\Delta(V)$.

2 Estimating spherical measure of intersections of a polyhedron with the coordinate hyperplanes

For any set $W \subset \mathbb{R}^{\propto}$ consider its cone $C(W)$ with the vertex in the rorigin and by $\delta_{n}(W)=\mu_{n}\left(C(W) \cap B_{1}\right) / \mu_{n}\left(B_{1}\right)$ where μ_{n} is the usual Borel measure in \mathbb{R}^{\propto} and the ball $B_{1}=B_{1}(0)$ (we consider only measurable sets).

Take any line $h \in P$ passing through the origin (provided that $\operatorname{dim} P>0$ and such a line does exist) and let H be a hyperplane orthogonal to h and passing through the origin.

Lemma 1. $\delta_{n}(V)=\delta_{n-1}(V \cap H)$

Proof. Actually, a more general statement holds. For any subset $U \subset H$ for the direct product $U \times h \subset \mathbb{R}^{\ltimes}$ we have $\delta_{n}(U \times h)=\delta_{n-1}(U)$. To prove the latter statement one can consider a partition of $H \cap B_{1}=U_{0} \cup \ldots \cup U_{t}$ into "small" pieces where $U_{i}=\mathcal{R}_{i}\left(U_{0}\right), 1 \leq i \leq t$ for appropriate rotations \mathcal{R}_{i} of H. Extend every \mathcal{R}_{i} to the rotation $\overline{\mathcal{R}_{i}}$ of \mathbb{R}^{\aleph} by leaving h invariant. Then $1=\delta_{n}\left(B_{1}\right)=(t+1) \delta_{n}\left(U_{0} \times h\right)$ and $1=\delta_{n-1}\left(H \cap B_{1}\right)=(t+1) \delta_{n}\left(U_{0}\right)$. The standard arguing with approximation of U by a partitioning into "small" pieces completes the proof of the lemma.

Lemma 2. If $\alpha-P L S A D^{\prime}$ recognizes the language $L \cap B \epsilon(v)$ (where L is in a generic position), being restricted on $B_{\epsilon}(v)$, where v is a vertex of L, then with a probability $\geq p=1-\frac{2 \alpha}{c_{3}}$ (thus, we assume that $\alpha<{ }^{c_{3}} / 2$, see the remark in section 1), a certain leaf of D_{γ}^{\prime} provides an open polyhedron V with $\Delta(V) \leq c_{3} n$.

Proof. Suppose the contrary. Recall that we assume that v coincides with the origin and among the hyperplanes H_{1}, \ldots, H_{m} there are $\left\{X_{1}=0\right\}, \ldots,\left\{X_{n}=0\right\}$. Then $1=\sum \delta_{n}(V)$ where the summation ranges over all open polyhedra V provided by the leaves of D_{γ}^{\prime}. Assume that for a particular value of the random parameter $0 \leq \gamma \leq 1$ for all open V we have $\Delta(V)>c_{3} n$.

Let P be the minimal face of V, then $P \subset\left\{X_{i_{1}}=\ldots=X_{i_{l}}=0\right\}$ for some indices $1 \leq i_{1}, \ldots, i_{l} \leq n$ with $l<\left(1-c_{3}\right) n$. For any index $j \in\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{l}\right\}$ lemma 1 entails $\delta_{n-1}\left(V \cap\left\{X_{j}=0\right\}\right)=\delta_{n}(V)$. Therefore $\sum_{V} \sum_{1 \leq i \leq n} \delta_{n-1}(V \cap$ $\left.\left\{X_{i}=0\right\}\right)>c_{3} n$. By the supposition the expectation of the latter sum over the values of the random parameter $0 \leq \gamma \leq 1$ is greater than

$$
E\left(\sum_{V} \sum_{1 \leq i \leq n} \delta_{n-1}\left(V \cap\left\{X_{i}=0\right\}\right)\right)>(1-p) c_{3} n=2 \alpha n
$$

This contradicts to the definition of $\alpha-P L S A$ taking into account that for any point from $V \cap\left\{X_{i}=0\right\}$ the output of D_{γ}^{\prime} is the same as for the points, from its small neighbourhood, so D_{γ}^{\prime} does not distinguish them. The obtained contradiction proves the lemma.

3 Lower bound on the number of faces in $P L S A$

Now we complete the proof of the theorem, the arguing is similar to one in [1]. Applying lemma 2 to each vertex of L we conclude that there exists a value $0 \leq \gamma \leq 1$ of the random parameters such that for at least $p s$ vertices v of L there is an open polyhedron V provided by corresponding to a leaf of D_{γ} such that V hast a face P (which could be not a minimal face of P unlike the local situation in section 2) containing v and if some l-face of L is contained in P and contains v then $l \leq c_{3} n$. To every such vertex v let us correspond a face p (if there are several such faces then correspond any of them).

Since L is in a generic position (see the definition), any face P of D_{γ} could be corresponded to at most $m^{c_{2} n}$ vertices of L. Hence there are at least ${ }^{p s} / m^{c_{2} n}=$ $p m^{\left(c_{1}-c_{2}\right) n}$ faces of D_{γ}. But on the other hand, the number of faces in D_{γ} does not exceed $s^{2 T}$ (cf. [1]), therefore $2^{2 T} \geq p m^{\left(c_{1}-c_{2}\right) n}$, this completes the proof of the theorem.

References

[1] Meyer auf der Heide, F., Nondeterministic Versus Probabilistic Linear Search Algorithms, in Proc. IEEE Symp. Found. of Comput. Sci. (1985), pp. 65-73.
[2] Meyer auf der Heide, F., Simulating Probabilistic by Deterministic Algebraic Computation Trees, in Theor. Comput. Sci. 41 (1985), pp. 325-330.

[^0]: *Departments of Computer Science and Mathematics, Penn State University, University Park, PA 16802. Email: dima@cse.psu.edu.
 ${ }^{\dagger}$ Department of Computer Science, University of Bonn, 53117 Bonn, and International Computer Science Institute, Berkeley, California, Email: marek@cs.uni-bonn.de.

