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Introduction

In the paper an algorithm is described for the computation of the dimension of
an affine algebraic variety over a zero characteristic ground field. The variety is
given as a set of zeros of a family of polynomials of the degree less than d in n
variables. The working time of the algorithm is polynomial in the size of input and
d™. This paper continues [3] where the case of projective varieties was considered
by the autor. The problem of the computation of the dimension has attracted
the attention of specialists for approximately ten years. In [4] an algorithm is
suggested for decomposing an algebraic variety into the irreducible components
with the complexity polynomial in d™’. This algorithm has the best known bound
for the complexity of the computation of the dimension in the case of arbitrary
characteristic. In [7] a well parallelizable arithmetical network is constructed for
the computation of the dimension in non—uniform polynomial sequential time in
the size of input and d”. In [7] the problem also is stated to find an algorithm with
a bitwise complexity d(™). The result of the present paper solves this problem for
varieties over fields of zero characteristic. In the case of non—zero characteristic the

problem is still open.

The case of projective varieties can be easily reduced to the affine one. So the

result of the present paper is also the generalisation of [3]. Although the affine case
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is more difficult the technics required is developed in [3]. Namely, the results of
real algebraic geometry are essentually used. We consider an algebraically closed
field of zero characteristic as the extension of degree 2 of a real ordered field. The
required property can be formulated over this real ordered field. After that we can
apply the “tranfer principle”, see [1], and reduce everything to the case of the field
of real numbers. For this field we have the developed theory. The result from [11]

is crucial which in its turn is based on the result of [10], see below section 2.

Note that the probabilistic algorithm for the computation of the dimension is
simple in every characteristic. For every s one takes in random an hyperplane
H; of the dimension s, adds to the initial family of polynomials linear ones which
determine H; and finds whether the set of zeros of this new family is finite. This
can be done in time polynomial in d”. The dimension will be equal to n — s; where

51 1s the maximal s for which this set of zeros is finite.

Now we give the precise statements. Let k = Q(t1, ..., %, 0) be the field where
t1, ...,1; are algebraically independent over the field Q@ and @ is algebraic over
Q(ty, ... ,t;) with the minimal polynomial F' € Q[ty, ... ,t;, 7] and leading coef-
ficient lez F of F is equal to 1. Let polynomials fo, ..., fin € k[Xy, ..., X,] be

given. Consider the closed algebraic set or which is the same in this paper the

algebraic variety

V=A(z1,...,2n) ¢ filxr,...,2p) =0V0< i <m} C A" (k).

This is a set of all common zeros of polynomials fy, ..., fn 1n A" (127), where k is an
algebraic closure of k. The dimension dimV of V is defined to be the maximum of

dimensions of all irreducible components of V.

We shall represent each polynomial f = f; in the form
1 L .
F=— 3 D> . P XP X
40 4 i 0<j<degF

where ag, a;,, i,; € Z[t1,. ... ], gcdilywin’j(ao, @iy, i) = 1. Define the length
I(a) of an integer a by the formula (a) = min{s € Z : |a| < 2°7'}. The length
of coefficients {(f) of the polynomial f is defined to be the maximum of length of

coefficients from Z of polynomials ag, a;,,... ;. ; and the degree

degta(f) =  max .{deth(GO)adegta(ail,...,in,j)}a

21, 9tn,]

where 1 < o <[. In the similar way deg, [ and [(F) are defined.

We shall suppose that we have the following bounds

degXD,...,Xn(fi) < da degta (fl) < d2’ l(fl) <M,
degZ(F) < dl, degta(F) < dl, Z(F) < M1 .

The size L(f) of the polynomial f is defined to be the product of {(f) to the number

of all the coefficients from Z of f in the dense representation. We have

L) < ((d:”) dy + 1)d\ M



Similarly L(F) < dl1+1M1. Below if there is no special mention about it we set [ to
be fix.

THEOREM 1. The dimension dimV of the variety V of common zeros of
polynomials fy, ..., f;n In the projective space A" (];7) over k can be computed within
the time polynomial in d”, dy, ds, M, M;.

REMARK 1. The working time of the algorithm from the theorem is es-
sentialy the same as by solving system of polynomial equations with a finite set of

solutions in projective space. So it can be formulated also in the case when [ is not

fixed, see [4].

1 Preliminary results

In [3] we developed the tecnics for constructing a real structure on the constant
field. Namely, let [ is not fixed now. Let k1 = Q(t1, ... ,)[n] be some algebraic
extension of k, where the element 1 has minimal polynomial ¢ € Q[ty, ... ,1;, 7],
lezo =1, l(¢) < M3y and deg, ¢, degy ¢ < D for all . Our aim is to construct

a real structure on k.

The real structure of k; is defined to be an embedding k1 C ka(v/—1), where ko is
a real ordered field, see [1].

Compute the discriminant

0# A =Resz(p,¢y) € Qlty, ..., 4]
Choose z1, ...,z € Q such that A(ty, ...,%) # 0. The polynomial
T=¢(za,...,a,7) € Q[7] is separable, since A(zy, ..., z) # 0.

Let € Q[Z] and 7] be an arbitrary root of . We constructed in [3]

(i) an irreducible polynomial ¥ € Q[Z], lcz¥ = 1, which has a real root &,
(ii) polynomials Ry, I; € Q[Z] with deg, Ry,deg, I, < deg, ¥, such that for a
chosen root 7 of % we have 7 = Ry (€) + /=1 I, (€) in the field Q[&,/—1].
Besides that, £ = 77 if 7 is real and Q[€, v/—1] =Q[7, 7,] where 7, is conjugated to
77 1f 77 1s not real.
More precisely, let 3, =%/(Z —7) € Q[7][7] and
A=0[gmv-1]= QN2 2]/@. 2{ + 1)

be a separable Q—algebra, where

7, = Z mod (@y, Z; + 1), V=1= 21 mod (7, Z7 + 1).



Let vy = $(7+7), 2 = ﬁ(ﬁ —,); 1,72 € A. Construct an element
T = Uy + ¢Uy which is a primitive element of the separable algebra Q[7;, 7] over
Q. One can find the minimal integer ¢ such that 1 < ¢ < 2D?. Find the minimal
polynomial ® € Q[Z], lcz® = 1, of the element ¥ over @ and polynomials Ro, Is €
Q[Z]; deg Ra,deg I> < deg ®, such that Ry(7) = vy, [2(7) = vs.

Factor & = Hj ®; into the product of ireducible polynomials ®; € Q[Z],lcz®; =
L. Set Q[¢;, V=11 = Q[Z, Z1]/(®;, Z7 + 1), where §; = Z mod (®;, Z] +1), V-1 =
71 mod (®;, Z% +1). Find v such that @, has a real root Ev for which Rz(gv) +
V=11 (EW) =7. The existence of v follows immediately from the construction and
the fact that 7 is not a real root of p. Finilly, set ¥ = &, £ = ¢, and Ry, [; to be
the residues from the division of Ry and I» by ..

In the case when 7 is real take € =7, W = 3, Ry = Z, I; = 0. So in any case
we can construct &, W, Ry, I; for which (i) and (ii) hold.

Denote u; = ¢; — 2z;, 1 < ¢ < [. By Hensel’s lemma the element 5 can be

represented as a series

n=rno+ > Dir ottt it € QU ua, - wl,
(i1, ... i1)>(0, ... ,0)

where no = 7, iy, .4, € Q[7] C Q[&,+v/—=1]. Therefore, 1y = 77(()1) + \/—177(()2),

Niy, iy = 77511) o \/—1772(12,),,,,2»,, where 77(()1),néz),ngll,),,,,il,nf) ., €Q[¢]

gy Yooy

Define elements

! 1 i1 1

R D D SO
(i1, ...,81)>(0,...,0)

77(2) — 77(()2) =+ Z 772(127) ,iluil . U?l )
(i1, ... ,51)>(0,...,0)

Suppose that 7 is not real. Then we have 5 = 5 + /=I5, The element
i =M — /=I5 is a root of the polynomial ¢ = ¢/(Z —n) € Q[n)[Z] C
Q[E \Y —1][[111, s aul]][Z]a since RS Q[tla B atlaZ]'

Set ¢ = M) 4+ ep®) where ¢ is the same as for v = vy 4 cvs, see above. We
constructed in [3] the minimal polynomial ¥ € Q[t4, ..., 4, Z] of the element &
and found R, T € Q(ty, ... ,4)[7], degy R,deg, I < deg, ¥, such that n*) = R(¢),
7 = I(€). Son = R(&)++/—1I(£). Besides that, the polynomial ¥(z1, ... , 2, Z)
is separable and divides ®. So by Hensel’s lemma the element ¢ can be represented
as a series

E=¢% + Z iy, ol (1)
(i1, i1)>(0,...,0)
where & = &, &, i, € Q[€]. From (1) and the equalities n = M 4+ /=1p® =
R(&) + /—11(€) we infer that



Iffisreal set W =, ¢ =np =931 ¥ =0, R=2,1=0 and all the formulated

above statements are satisfied.

Now define an order of a real field on the field ko = Q(t4, ... ,#;)[£]. Consider the
embedding ko C Q[€]((u1, ... ,w)) = k3 which is determined by (1).
ko will be induced by the order on the field of formal power series Q[€]((uy, ... u))

The order on

or equivalently on the ring of formal power series Q[ &][[u1, - .., w]]. The monomials
u't u;" in the field ks are linearly ordered in the following way: ulf e u;" >
u{1~~~u{’ iff there exists w such that i1 = ji, ... ,0w_1 = Jw_1 and iy < Ju.

An element o € Q[&][[u1, ... ,w]] is positive iff the coefficient from Q[£] in the

maximal monomial of & with a non—zero coeflicient is positive. The order on Q[£] C

R is induced by the order in RR. This order on ks is an order of a real field, see [2].
We have [3] the following lemmas.

LEMMA 1. For the field k; an embedding of fields over Q(ty, ... ,#;) can be

constructed

ki =Q(ty, ... )] C Qty, ..., 1)[€, V=11,

where ¢ is an algebraic element over Q(¢1, ..., %) with minimal polynomial ¥ €
Qlt1, ..., 4, Z], lez¥ =1 and

n=R(&)+V-1I()

with R(Z),1(7) € i@[tl, o, 4)[Z], Ay = Resz (¥, U%) is the discriminant of ¥;
degy R,deg,I < deg, W < Di; deg, W, deg, R, deg, I <P(Dy);(¥),I(R),I(I)<
(M2 +1)P(Dy) for some polynomial P and all «. For Q(¢q, ..., #)[&] the order of a
real ordered field is constructed. The working time of constructing ¥, R, I and the
order on Q(ty, ... ,#)[¢] is polynomial in D} and M.

LEMMA 2. Letw € Q(ty, ..., t)[¢], w = %ZOSdeeg‘l’ ;&7 where ¢ ¢; €
Zlty, ... ], deg, c,deg, ¢; < D, l(c),l(¢c;) < Mz for all a,j. Then one can
ascertain whether w > 0 within time polynomial in D}, D', My, Mj.

LEMMA 3. There exists a polynomial P such that changing in the con-
struction described elements z; for arbitrary elements z7 € @ with |z — 27| <
2-PD)(M2+4l) ] < <[ we can choose 77* instead of 77 so that we get &* instead
of ¢ such that R* = R, I* =, ¥* = V¥.

Remind that the field Q(¢y, ... ,#) has the order induced by the linear order on
monomials u{l . u{’ described above. Denote by Q(ty, ..., %) the real closure of

the field Q(¢q, ..., #;) with this fixed order.

LEMMA 4. The construction of this section gives all the possible real
structures of the field Q(ty, ... ,%)[n] when Q(¢1, ..., %) is the real ordered field
with the fixed order decribed above. More exactly, for every embedding 3 :

Qy, ..., ) = Q(t;—.\_./.,tl)[\/—l] there exist an embedding

Br: Qty, .. t)[n]l = Qty, .., 4)[E,V-1]



from Lemma 1 and an embedding

——

Ba:r Qta, ..., t)[E] = Qlty, ..., 1)
of real ordered fields which induces the embedding
ty, ..., )[V=1]

such that 8 = 5} o 81 (all embeddings over Q (¢4, ..., %)).

Byt Qty, ... t)[E,V—1] = Q(

Now let K = Q(ty, ... ,%)[€] be real ordered field and €1 > €9 > g3 > g4 > 0
be infinitely small values ralatively to the field K such that 5 is an infinitely small
value ralatively to the field K(e1), €3 is an infinitely small value ralatively to the
field K (e, €2) and 4 is an infinitely small value ralatively to the field K (g1, €2, €3).
Set Ky = K(e1, €2, €4). Denote by K, the real closure of the field Ky, see [1]. So
K= Kl(\/—_l) for the algebraic closure K, of the field K.

If § =6, + /=16, € K;;61,0, € K, define |o] = \/m € K. We define the
element § € K to be infinitely small (respectively infinitely great) relatively to
the field K if |62 € K1 is infinitely small (respectively infinitely great) relatively
to the real closure K of the field K.

Let g1, ..., 95 € Ki(v—=1)[Xo, ..., Xn] and @; = v + vV—12 € K1(v/—1),

Yi, zi € K1, i =1, ... n. Consider the system of equations and an inequality
f1=9g2=...=¢s =0, Z | Xi — 2] < e3 (2)
0<i<n

with coefficients from the field K (v/—1).

We have the following result similar to that which was proved in sections 2 and

3 of [3].

THEOREM 2. One can construct a new order of the real field on KX which
induces the new real structure on Kl(\/—_l) and K; and find a solution z* =
(zh, ..., 2%) € A"HL(K)) of system (2) relatively to this real structure of K (y/—1)
or ascertain that system (2) has no solutions in A"**(K;). More precisely, one can
construct an irreducible over Ky polynomial P, g € K;[Z] (in the denotations of [3]
section 3) which has the root 7, g and elements xaaﬁ . ,xfhaﬁ € K1[Na,3, V—1]

such that the solution z* is given by the isomorphism over the field K3
K| D Ki[xf, ...« ]

~ [(1 [$0,a,ﬁ, ey $n,a,ﬁ] = [(1 [7]057@, \/—1] (3)

under which 7 —— #; o s for all i. The working time of this algorithm is polynomial
in the time which is required for solving systems of polynomial equations with finite
number of solutions in P” with the same size of input as system (2) has. Similarly
the estimations for degrees and sizes of coefficients of zy o 5, P s are analogous to
ones for output of the algorithm for solving systems of polynomial equations with

finite number of solutions in P™ with the same size of input as system (2) has.



In [3] in section 3 the similar result was proved for the system

hi=...=hs=h-eLi™ =0, Y |Xi—zjl*<e (4)
1<i<n

Here there are only two infinitely small values ¢; and ¢, and system has the special
form in P". But the proof of Theorem 1 remains just the same as it was in [3]
in section 3. Tt is based on the result from [11] which reduces the initial system
to the case of systems of polynomial equations with finite number of solutions in
P™ when systems are considered over IR. In the general case we apply the “transfer
principle” and the Newton polygons method, see sections 2 and 3 of [3]. The required
estimations of coefficients in the Newton polygons method when one consider in the
proof fraction—power series in g; are obtained in [5], see also [6]. The algorithm for

solving systems of polynomial equations with finite number of solutions in P” is
described in [4], see also [9].

REMARK 2. We change the real structure in section 3 of [3] to avoid consid-
ering arbitrary multiple—fractional series in ¢1, ... ,{;. We use only simple Hensel’s
lemma for constructing real structures in section 1 of [3]. If one get appropriate
estimations for coefficients of arbitrary multiple—fractional series similar to the es-
timations which were obtained in [5] for the Newton polygons method then one
will not need to change the real structure. The required estimations for coefficients
of arbitrary multiple—fractional series can be obtained but it 1s a quite different

subject.

REMARK 3. Note that if g, ..., gs € K(ea)(vV=1)[Xo, ..., Xn] and z; €
[((64)(\/—1), 1=1,...,n, then K3 C [((63,64) and Paﬁ S [((63,64 [Z]

2 Description of the algorithm for the computa-

tion of the dimension in the affine space

(1) Denote by ¢; € K[Xq, ..., X,] the homogenization of f;, i.e.
g = Xo Bl fi(X1/ X0, ., Xn/ Xo)

for 0 < ¢ < m. We shall suppose without loss of generality that deg(g;) =
degx,  x,(g9:) =d—1.If it is not so, we can change each g; for the family
{fin_ deg(g:)+d-1 }OSjSH .

Using induction by s > 1 we shall construct polynomials Ay, ... hs and

linear forms Lgp . Lgf) in Xy, ..., X, with integer coefficients of the size

O(nlogd) such that

hi= > Xijgj Aij €L
0<j<m

for all ¢, 7. Besides that, the following property will be fulfilled. Let

W={hy =...=hy =0} C P"(k)



(2)
(3)

(4)

(5)

(6)

(7)

(8)

be the variety of all common zeros of polynomials Ay, ..., hs in ]P)”(E) and
W’ be the union of all the components W; of W such that W; N A” (k) # Q.
Then

wn{Ll), = .. =1 =0yn{X, =0} = @,

In particular each component Wy of W has the dimension equal to n — s in

this case.
The construction for the base s = 0 is easy. One can take LZ(»O) =X;, 1> 1.

Now let » > s > 0 and suppose that hq, ... ,hs,Lgl, ,Lgf) are con-

structed. Denote for brevity L;s) = L;, s+ 1< j < n. Using the algorithm
from [4], see also [9], we shall find all the points {x;}1<j<n of the set

Vi=WnA" (k)N {Legy1=...=L, =0} =W N{Lgy1=...= L, =0}
. Find a linear form L, with integer coefficients, such that Ly(xz;) # 0 for all
I1<j<N.

Consider #; = (x;0 : ... : zj») € P?(k). Remind that in output of the
algorithm from [4] for every j we have an isomorphism of fields over &
;0 Lin
k== 22 ) ~ k[
(xj,a’ ’ l‘j,a) )

where ¢;(7;) =0, ¢; € k[Z] is an irreducible polynomial, z; , # 0. Construct
for every j a primitive element n; = 6+c7; of the field k(7;) over Q(t4, ... , 1),
¢ € Z, with minimal polynomial ®; € Q[t1, ..., %, Z] over Q(t1, ... ,t).
We can suppose that lez®; = 1 changing if it is not so, n; for (lez®;)n;.
Since z; € A" (k) c P*(k) we can set o = 0 and zj0 = 1. Denote T; =
(l‘j,o, R xj,n) € Art! (E)

Consider the set of polynomials {Y yc;c,, ¢'gi : 1 <ec<m(d—1)"+1,c¢€
7Z} = H. We shall enumerate the elements of H. Let h € H.

Find all j for which h(z;) = 0. Let, say, h(z;) = 0 when 1 < j < N’ and
h(z;) # 0 when N < j < N. If N' = 0 then we set hyy1 = h, ng_-l_ll_gl =
Lsyi14; for every i > 1 and go to the step s+ 1. If N/ > 0 we shall enumerate

all the points ;, 1 <j < N'.

For the considered 1 < j < N’ construct for the field Q(t4, ..., #)[n;] a real
structure by section 1, i.e. construct &;, ¥;, R;, I; for n; analogousto &, ¥, R, [

for 5.

Let ¢ and e5 be algebraically independent infinitely small values for the field
K =Qf(t1, ..., t)[€], 0 < €9 < €1, and e5 is infinitely small value relatively
to the field K (e, ). The field Ky = K(e1,£2) is a real ordered field.

Let T; = (250, ..., %jn) € A”‘H(E) with #;5 = 1 in accordance with
paragraph (4). Consider the system of equations with coefficients from the

field K, (v/=T)

hi=..=hy=h-eli=0 > |Xi—z"<e (5)
0<i<n



(9)

(10)

(11)

(12)

Apply Theorem 2 to system (5) (here there are only two infinitely small values
£1, and €3). We construct a new order of the real field on K which induces
new real structures on K;(v/—1) and K. If system (5) has any solution
relatively to this new real structures we get a solution z7 = (l‘;o, Ce TG )€
A"HL(Ky). This solution is given in the form (3). If system (5) has no

solutions we ascertain this fact.

Suppose that we found 1 < j < N’ for which system (5) has no solutions.

Then we go to the consideration of the next element h € H.

Let for the considered index j system (5) have a solution which z7 = (27, ...,
i, )€ An*L (K) which is found in paragraph (9). By paragraph (9) we have
ri, € Ky Ne,p,V—1] = Ko.
By (5) we have Y .., |l‘j7i—l‘;yi|2 < ¢1. Remind that Z; = (250, ..., 2j5) €
AL (k) see paragraph (4).
Find \; € K5 such that (Li—/\iLo)(l‘;) =0, s+1 <i<n. Set L} = L;—A; Lo.

Consider the system

hlz...:hs:L's_H:...:L;l:O (6)
with coefficient from the field K5 .

We need the following four lemmas.

LEMMA 5. The polynomial h is equal identically to zero on each irre-
ducible component Wi of the variety W = {hy = ... = hy, = 0} C P"(k),
such that #; € Wi if and only if there exist no solutions of system (5) over

the algebraic closure K; of K.
PROOF. 1t coincides with the proof of Lemma 9 in [3].

LEMMA 6. Let W; be a component of the variety W = {h; = ... =
hy = 0} C P"(Ky) such that z; = (zjo @ ... 1 zjp) € Wi for some
1<j < Nandletéd; € K1, s+ 1 < i < n, be infinitely small values
relatively to the field K.

Then there exists zj, ...,z € Ki such that 2/ = (2}, : ... : z/) € Wy,
(Li—6;Lo)(¢') =0 and oy —z;0, ..., &, — x;, are infinitely small relatively

to the field K.
PROOF. 1t coincides with the proof of Lemma 10 in [3].
LEMMA 7. Suppose that the polynomial A is equal identically to zero

on some component W of the variety W = {h; = ... = hy = 0} C P"(K),
such that z; € W, and there exists z7, see paragraph (9). Then there exist
two different solutions &’ = (zf, ..., ) and " = (&f, ..., z}) of system (5)

such that x;; — z/ and z;; — = are infinitely small relatively to the field K
for all 0 < ¢ < n.

PROOF. 1t coincides with the proof of Lemma 11 in [3].



The next lemma is a generalization of Lemma 6. Remind that in paragraph
(1) the variety W' was defined. Let K’ be an arbitrary extension of K with a

real structure and K’ an extension of K’ by finite number of infinitely small

values.

LEMMA 8. Let D; € K'[ Xy, ...,X,], s+ 1< i< n, be linear forms
in Xy, ...,X, and D; € K"[Xo, ..., Xn],s+ 1 < i < n, linear forms in
Xo, ..., X, all the coefficints of which are infinitely small values relatively to

the field K'.

(a) Let zy, =Y, ... z// € K be such that 2" = (zff : 2/ : ... : 2!y e W',
D;—D;)(2") = 0, s+1 < i < n, ¥ is not infinitely great relatively to the

i g
field K’ for every 0 < ¢ < n and x;’o # 0 is not infinitely small relatively

to the field K’ for some 0 < i5 < n. Then there exist z}), 2/, ... ,z/, € K’
such that ' = (2 : 2} + ... 2,) e W', Di(2')=0and &} — 2}, ,s+
1 <7 < n are infinitely small values relatively to the field K.

(b) Let W N{Dsy1 =...= D, =0} N{Xy =0} = @ in P*(K’). Then
W/ O {Dsy1 — Dyy1=...= D — D, =0} N {Xp =0} = O in P*(E").

(c) Let W' N{Dsy1 =...= D, = 0} be a finite set in P*(K’). Then there
exist only a finite number of 2"/ = (zff : 2/ . ... : )y € W' in P*(K”)
such that (D; — 52)(36”) =0.

(d) Let W N {Dsy1 = ... = D, = 0} be a finite set in P?(K’) and
zh, xh, ...z, € K’ be such that ' = (z, : &} : ... : 2/) € W'N
{Ds31 = ... = D, = 0}. Then there exist =, =/, ...,z € K such
that o = (xf = =y ... &y € W in P*(K"), (D;i — 52)(36”) =0
and ! — z}, ;s + 1 < i < n are infinitely small values relatively to the
field K'.

PROOF.

(a) Let z € K” be an element which is not infinitely great relatively to the
field K’. Then,see e.g. [1], the standart part st(z) € K’ is defined. It
coincides with the free term in the expansion of z in multiple fraction-
power series in algebraically independent infinitely small values over K/,
see e.g. [1]. So z —st(z) is infinitely small value relatively to the field
K’. Therefore, the point st(z) = (st(zf) : st(z}) : ... : st(z!)) €
WN{Dsy1 = ... = D, =0} is the required element 2’ € P"(K’).

(b) Suppose contrary that there exist =/, #//, ... 2/ € K” such that " =
(g c 2 .2y eW N{Xe =0} and (D; = D;)(2")=0,s+1<
i < n. Show that we can assume without loss of generality that every x/
is not infinitely great relatively to the field K’ for 0 < i < n and xi #0
is not infinitely small relatively to the field K’ for some 0 < ig < n.
Indeed, let |27 | be maximal of all ||, s+ 1 < i < n. Then changing «"
for «"” /|a!| we get new &’ with the required property. Now the assertion

of (b) follows from (c).

10



(c)

Choose a linear form Dy € K'[ X, ..., X, ] such that for every 2’ €
W' N {Dsy1 = ... = D, = 0} in P*(K’) we have Do(z') # 0. The
projection p : W/ — P (Xg : ... Xp)—> (Do : Dsg1 ¢ Dsya ¢

: D), is defined everywhere and, therefore finite, see [9]. Show that
the projectin p : W/ — P*" = (Xg : ... : Xp) — (Do @ Dgp1 —
135+1 t Doyo — 55+2 .. Dy — ﬁn) is also defined everywhere. Let
z=(z0: ... : 2,) € P?(K"). We can assume without loss of generality,

see (b), that every z; is not infinitely great relatively to the field K’ for

0 <i<nand =z #0is not infinitely small relatively to the field K’ for

some 0 < ig < n. Therefore, st(z) € P?(K’) is defined, see (a). There

exists s + 1 < i < n or i = 0 for which D;(st(z)) # 0 since p is defined

everywhere. Then (D; — 52)(,2) # 0. Thus, p is also defined everywhere
1

and finite. So, there exist only a finite number of «” = (2f : 2f : ... :
!y € W in P*( K”) such that (D; — 52)(36”) =0,s4+ 1< i< nsince

each such 2’ is an element of the finite set p=1((1 : 0 : ... : 0)). Here
7! denotes the inverse image of j.

There exists a linear form D € K'[ Xy, ..., X,] such that (D/Dy)(x}) #
(D/Dy)(x%) for every different z}, 4, € W N{D;41 = ... = D, = 0}
in P?(K’). Consider the projections p; : W/ —s PP=s+1 (X, ... :
Xn) — (Do @ Dsy1 @ Dsya + ... 2 Dy @ D)yand pp : W —
Pt (Xg oo Xp) — (Dot Depy — Doyt Dogo — Dy -

... Dy—Dy : D). Since p is finite (see the proof of (c)) there exists a
polynomial Ge K"[Zo, Zsx1, Zsya, - -, Zn, Z] such that gy (W') = {é =
0} in PP=*+1(K") and leyG = 1.

Show that each coefficient of G is not infinitely great relatively to the field

K’. Suppose contrary. Then there exists z, Tiyq, oo, € K’ such
that there exists a coefficient of the polynomial g1 = G'(xg, 2,4, ... , 2,
Z) € K"[Z] which is infinitely great relatively to the field K. So, z’ =
(xh © 2hyy o0 oxh) € PPTH(RY). Tl}f set of roots of g1 coincides
with (D/Dg)(p1~* (') since p1(W') = {G = 0}. For every z" = (xlf :
o2y € prm(a!) choose 2, g, € K" such that
2= (xf 2 o ... x)) and every #/ is not infinitely great relatively

to the field K’ for 0 < i < n for and zi' # 0 is not infinitely small
relatively to the field K’ for some 0 < iy < n, see the proof of (b).
So st(z") is defined and (D/Dg)(2") = (D/Dy)(st(z")) is not infinitely
great for every z”. This leads to the contradiction since now we get
that each root of g1 is not infinitely great relatively to the field K/ and
lezgr = 1. The assertion is proved.

Thus, the polynomial st(é) =G € K'[Zy, Zey1,Zsqa, ..., Zn, Z] is de-
fined (the coefficints of G are the standart parts of coefficints of é) We
have p; (W') C {G = 0} in P*~**+1(K’). Denote ¢ = G(1,0,0,...,0,2)
and § = é(l,0,0,...,O,Z). So g((D/Dg)(x")) = 0 for every 2’ €
W' N{Dsy1 =...= D, =0} in P*(K’) and §((D/Do)(x')) is infinitely

small value relatively to the field K7, Since lcz§ = 1 there exists a root

11



(13)

(14)

x of § such that x — (D/Dg)(2) is infinitely small value relatively to the
field K’. But x = (D/Dg)(2") for some " € W' in P" ( K”’) such that
(D; — ﬁz)(x”) =0 for s+ 1 < ¢ <n. We can choose, see the proof of
(b), xg, &1, ... & € K" such that " = (x5 : { : ... : z]/), each

zi', 0 <14 < nisnot infinitely great relatively to the field K/ and x;’ # 0

is not infinitely small relatively to the field K’ for some 0 < ¢y < n.

So by (a), st(z”) € W N{Dsy1 = ... = D, = 0} in P*(K’). Finally,
(D/Dg)(z") = (D/Dg)(st(z")) and therefore, ' = st(z). Lemma is
proved.

System (6) defines a closed set in P”(K5). By Lemma8 (d) system (6) has only
a finite number of solutions in A” (K5) = P*(K5)N{X, # 0} and W'n{L,,, =
o= LN {Xe =0} = O in P*(Ky).

Apply the algorithm from [4] and find all the solutions z, v € T' of system
(6) in A" (K3). Denote by Ny = #T the number of elements of T.

We need an auxiliary algorithm. In input of this algorithm linear forms
D; € K3[Xo,...,Xn],s+1<i<nin Xg,..., X, are given with deg.  Di,
deg,. D; < P(d?, dy,ds), 1(D;) < (My 4+ M2)P(d", dy,ds) for all 4, j. Besides

that, these forms satisfy to one of the following conditions

(a) N2I#W/Q{Ds+12...IDnIO}<+OO, W/Q{Ds+12...IDnI
0} N{Xo =0} =0 in PY(K,);
(b) #W/Q{Ds+1 =...=D, IO}<+OO, No I#W/Q{Ds+1 = ... =

Dy =0} N A™ ().

In output of the auxiliary algorithm we have linear forms M;41, ..., M, with
coefficients from Z and of the size I (M;) = O (nlogd),s+1 < i < n such that

if condition (a) is satisfied then Ny < #W'N{M;41=...= M, =0} < 400,
W N {Msy1=...= M, =0} N {Xo =0} = @ in P*(K,);

if condition (b) is satisfied then #W' N {M;11 = ... = M, = 0} < +oo,
No <#W N { Mgy =...= M, =0} N A" (K3).

In the description of the auxiliary algorithm below we don’t suppose that we
are given the forms Lsy1, ..., L, but use only the definition of W’ i.e. suppose

only that iy ..., hy are given.

At first, show that we can change an arbitrary coefficient in forms D;41,..., Dy
for an integer coefficient with the required length such that the condition (a)
(respectively (b)) will be satisfied for new forms if the condition (a) (respec-
tively (b)) is satisfied.

Let Dsyq1 = ZO<i<n lig1,i X5, lspis € K, and we wish to change, say [;41,0,
for a coefficient from Z. At first change l;41,0 for an element ;1,9 — €3
where £3 is an infinitely small value relatively to the field Ky. Denote by
Dy = (lsq0 —€3) Xo + EOSiSn ly41: X; the form obtained. Consider the

system
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(15)

(16)

hi=..=hy=D.,, =Dyyo=...=D, =0. (7)

Denote by = the set of solutions of this system in A" (E) By Lemma 8 we
have #= = N3 > Ny but #= < 400 if (a) or (b) are satisfied and W'N{ D}, =
Dsio=...= Dy =0}N{Xo =0} = O (respectively #W'N{D; | = Doyo =
...= D, =0} < 400) in P?(K,) if (a) (respectively (b)) is satisfied.

Denote U' = W/ N {Ds42 = ... = D, = 0}. For every irreducible component
W' (it is a curve) of U’ there exists at most one value €* of €3 such that
Dy 11 |c=<+ is vanishing on W”. Further, for every irreducible component "
of UM {Xo = 0} there exists at most one value €* of e3 such that D}, [c,=.-
is vanishing on W' if (a) is satisfied. So, by the Bésout inequality, there
exists at most 2(d — 1)® different values £* € K5 of €3 such that the system

hlz...:hs:Dg+1|€3:€*:Ds+2:...:Dn:0. (8)

has infinitely many solutions in A™ (K») or W/ N {D\  l¢=t, = D2 = ... =
D, =0} N{Xo =0} # @ in P*(K,) if (a) is satisfied. Similarly there exists
at most (d — 1) different values ¢* € K5 of 3 such that W' N {D},; |s=¢, =
Dgys = ...= D, =0} is infinite in P"(K5) if (b) is satisfied.

LEMMA 9. There exist at most 2(d — 1)** different values ¢* € K of
g3 such that the number of solutions of system (8) in A” (K3) is less than Nj.

PROOF. There exists a linear form I = ¢; Xo + ... + ¢, X, with integer
coefficients ¢; such that the function L/X, has N3 different values on the set
of solutions of system (7) in A” (K3), i.e. #(L/X0)(E) = N3 and L is not
vanishing in each point of the finite set W' N{D,41 =...= D, }N{Xy =0}.
The projection p' : U — P? (Xg : ... : Xp) — (Xo : Dsy1 @ L),
is defined everywhere since L is not vanishing in each point of the finite set
W' N{Ds41 = ...= Dy} N {Xo = 0}. Therefore, p'(U’') C P?is a closed set
in the Zariski topology of dimension 1 and the projection p/ : U’ — p/(U”)
is finite. So p/(U') = {G(Xo, Dsy1,L) = 0} where G € K[Zy, 71,75 is
a separable polynomial of degree deg, , , G < deg U’ < (d —1)*. We
have G(1,e3,(L/X0)(x)) = 0 for every solution of system (7) in A" (Ks).
Therefore, deg,, G > N3. Denote by E* the set of solutions of system (8)
in A" (K3). Now we have (L/Xo)(Z*) = {x* : G(1,¢*,(L/Xo)(x*)) = 0}.
Denote R(Z1,Z2) = Resz,(G,GY) the discriminant of the polynomial G
relatively to Zs. So if R(1,£%) # 0 then Z* > (L/Xo)(E*) > degy, G > N3.
We have R # 0 since R is seprable. The degree deg,, R < 2(d—1)?*. Further,
R(1,7) # 0 since R is homogeneous as the discriminant of the homogeneous
polynomial G. The degree deg, R(1,7) < degz, R < 2(d — 1)?*. From here

the assertion of the lemma follows immediately.

In the proof of the following lemma we don’t suppose that we are given the
forms Lsy1,..., L, but use only the definition of W' i.e. suppose only that

hy ..., hs are given.
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LEMMA 10. Let D; € K3[Xo,...,Xn], s +1 < i < n, be linear
forms in Xo,..., X,, with deg, D;, deg, D; < P(d?, dy,da), I(D;) < (My +
M2)YP(d™, dy, ds) for all 4,j. Denote U = W N{Ds41 = ... = Dy = 0} when
n>sand U' = W' N{Dsyo=...= D, =0} when n > s+ 1 in P*(K3).

(a) Suppose that dimU = 0. Then one can construct all the irreducible over
K3 components (they are points) of the variety U in time polynomial in
Mla MZa dn’ dla d2~

(b) Suppose that dimU’ = 1. Then one can construct all the irreducible over
K5 components (they are curves) of the variety U’ in time polynomial in
Mla MZa dn’ dla d2~

(c) Suppose that dim U/ = 0. Then one can construct all the irreducible over
K3 components (they are points) of the variety U N {Xy = 0} in time
polynomial in My, M5, d”, dy, ds.

(d) Suppose that dimU’ = 1. Then one can construct all the irreducible over

K3 components (they are points or curves) of the variety U/ N {Xy =0}
in time polynomial in My, M5, d”, dy, ds.

PROOF. Let Y be an algebraically independent element over the field

K,. Consider the following systems of equations

)

hi —YXI71 =0, 1<i<s
D;j—YX; =0, s+1<j<n

and

h —YX4&1 =0, 1<i<
{ i TSt (10)

Dj—YX; =0, s+2<j<n

These systems can be considered as systems with coefficints in K2(Y") with

the set of solutions in P?(K43(Y)) or as systems with coefficints in K5 with

the set of solutions in (P™ x Al)(K,) when Y is considered as a coordinate in
Al

Denote by {wx}rea (respectively {vi}aea,) the family of all defined and irre-
ducible over the field K3(Y) components of the variety of solutions of system
(9) (respectively (10)). Apply the algorithm from [4] and find {wy}rea and
{UA}AEA1~

We have dim (wy) = 0 and dim (vy) = 1, see e.g. [4] (so system (9) is just a

system with a finite number of solutions in P"( K3 (Y))

Now consider YV as a variable. Denote by Uy (respectively U{ ) the union of
all the irreducible components W' of the variety of solutions of system (9)
(respectively (10)) in (P™ x Al)(K3) such that W is not contained in the
union of a finite number of hyperplanes {Y = ¢}, ¢ € Ko. Then, see [4] and
c.f. also [3] section 2, the corollary of lemma 6, every wy (respectively vy)
corresponds bijectively to the irreducible and defined over Ky component W)
(respectively Vi) of the variety Uy (respectively U{). The algorithm from
[4] construct simultaneously with {wx}rea and {vi}rea, also {Wx}rea and
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{Va}rea,. Remind that the polynomial equtions over Ky which give W) as
a set of solutions give also wy under this correspondence if one consider Y
as an element of the coefficient field. In output of the algorithm from [4] wy
and W) are given by their “general points” and special systems of equations

of the required size. The similar is true for vy and Vj.

Using the algorithm from [4] find all the components {W ,},enr, defined and
irreducible over K5 of the variety WN{Y = 0}, A € A and all the components
{Va utuem, defined and irreducible over Ky of the variety Vi N {Y = 0},
A € Ay It can be done also using Newton’s polygon method by constructing
expansions of coordinates of the “general point” of Wy (respectively 13) in
the field of fraction-power series Q = (J, . Ko (e3)((Y'/*)) and taking the
free term, c.f. [3] section 3, paragraphs (11), (12), (13).

We claim that each component W) ,, (respectively V3 ,) which is not contained
in {X; = 0} is a component of the variety U (respectively U’) and each
component of U (respectively U’) which (may be contained in {X; = 0})
is equal to Wy , (respectively V3 ,) for some A € A, u € M) (respectively
A€ A1, p € My).

Indeed, we have UNA" (K3) (respectively U'NA™ (K3) ) is a subset of solutions
of system (9) (respectively (10)) with the coordinate Y = 0 in A" (K3). Let
Sy be acomponent of U (respectively U’). Then Sy is not contained in a
component of solutions of (9) (respectively (10)) which is contained in {Y = 0}
since, otherwise, Sy would be a component of (9) (respectively (10)) and
the codimension of Sy would be less than the number of equations in (9)

(respectively (10)). So we get the contradiction.

Thus, the set of components W), ,, (respectively Vi ,) which are not contained
in {Xy = 0} coincides with the set of components of U (respectively U’) which
have a non-empty intersection with A” (E) This proves the first statement
and the second statement when n = s (respectively n = s+1) since in this case
U = W' (respectively U’ = W) and all the components of U (respectively

U') have a non-empty intersection with A" (Ks).

Now we can suppose that n > s (respectively n > s+ 1). In the proof of
the second statement one should take into account that some components
of U and U’ may be contained in components of greater dimension lying in
{Xo = 0} of the vatiety of solutions of systems (9) and (10) respectively. So
this proof is slightly more complicated.

There exist linear forms D} = §;,_1Dj_1+ ...+ 6Dy, §; € Z,i—1 <
J<n, i1 £0, s+2 < i< n (respectively s + 3 < ¢ < n) such that

dimW' n{D,, ,=...=D, =0} = n—r+ 1, dmW N{D, ,=...=D; =
0}N{Xo =0} = n—r, forall s+2 <r <n (respectively dim W' N{D 3 =
=D =0 =n—r+2,dmW N{D;,3=...=D, =0}N{X, =0} =

n—r+1forall s+3<r <n).

These forms can be choosen by induction since each time when r < n there
are no components of W/ N{D{,, =...= D, =0} N{Xo =0} (respectively
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W' Nn{D,,3=...= D, =0}N{Xo = 0}) on which all the forms D,,..., D,

are vanishing. So there exists a linear combination of them which is not

vanishing on every component of W N{D{,, = ... =D, =0} N{X, = 0}
(respectively W/ N{D,, 3= ...= D, =0} N{Xo = 0}).
Denote Uy = W' N{D{,, =...= D) =0} and Uy = W N{D{ ,=...=

D!, = 0} in P*(K3). Note that U; and Us do not have components which
are contained in {Xy = 0} by the construction described of the forms D;.
Besides that, all the components of U (respectively Us) are of dimension one
(respectively two) and Uy N{D, = 0} = U (respectively UsN{D,, =0} =TU").

We shall need also the systems of equations

hi =YXt =0, 1<i<s
D} — Y((Sjyj_lXj_l + ...+ (Sjyan) =0, s+2<j53<n

and

hi =YX =0 1<i<
{ i ’ =t=0 (12)

D} - Y((Sjyj_lXj_l +...+ (Sjyan) =0, s+3<j<n

Denote by U,y (respectively Us y ) the union of all the irreducible components
W' of the variety of solutions of system (11) (respectively (12)) in (P" x
AY)(K3) such that W* is not contained in the union of a finite number of
hyperplanes {Y = ¢}, ¢ € K5. We have dimU; y = 1,dimUsy = 2, see e.g.

[4] and c.f. also [3] section 2, the corollary of lemma 6

Now let S; be a component of U (respectively U’). There exists an irreducible
component Sy of Uy (respectively Us) such that S; C Sa. Then S5 is a
component of Sy N {D,, = 0} since dim S; N {D, =0} = dim .S;.

Show that S5 is not contained in a component S3 of the variety of solutions
of system (11) (respectively (12)) in (P x A')(K2) such that S5 C {Y = 0}.
Indeed, otherwise Sy C S3, S3 C {h1 = ... =hy = D, =...= D] =
0} (respectively Sz C {h1 = ... = hy = Di,3 = ... = D, = 0}) and
S3N A" (Ky) # @. So Sz = S, is a component of Uy (respectively Us). But
dim Sy = 1 (respectively = 2), dim S3 > 2 (respectively > 3) and we get

the contradiction.

Thus, there exists a component Sy of the variety Uy y (respectively Usy)
such that S4N{Y =0} D S2. Then S5 is a component of Sy N{Y = 0} since
dimS; = dim Sy N{Y = 0}.

Since dimS; = dim S, — 2 there exists an irreducible component Sy of the
variety Sa N {D,, — Y X, = 0} such that S; is a component of S5 N {Y = 0}.

Show that S5 is not contained in the union of a finite number of hyperplanes
{Y = ¢}, ¢ € Ky. Indeed, otherwise S5 C {Y = 0} since S5 N {Y = 0} D
S1 £ 0. So S5 = 51 and we get the contradiction: dimSy — 1 < dimS; =
dimS; =dimS; — 2.

Thus, Ss is contained in a component of Uy (respectively Ui, ) since system
(11) (respectively (12)) with the additional equation D, — Y X,, = 0 is equiv-
alent to (9) (respectively (10)). Further, dimSs > dimS; — 1 = dimUy
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(17)

(respectively = dimU{,). Therefore, S5 coincides with a component Wy (re-
spectively V) for some A and S; coincides with a component Wy , (respec-

tively Vi ) for some A, p. The second statement is proved.

Now to prove (a) and (b) we need only a criteria to determine whether the
component Wy , C U (respectively V3 , C U’) for a component Wy ,, (respec-
tively Vi ) such that W) , C {Xo = 0} (respectively V3 , C {Xo =0}).

We can verify whether the linear forms D; are vanishing on Wy , (respectively
Vi u) substituting the “general point” of W) , (respectively Vj ,) in D; for
s+1 < i < n (respectively for s+2 < i < n). So it is enough to check whether
Wa,p C W' (respectively Vi , C W').

In the following Lemma 11 a criteria i1s given which affords to determine
whether a point from {Xy = 0} belongs to W’. Using Lemma 11 we can
verify whether Wy , C W".

Consider V, ,. Construct arbitrary (d — 1)* + 1 points of Vj , in P (K3)
(one can take e.g. appropriate specializations of the “general point” of V3 ,)
and verify using Lemma 11 whether they belong to W’. We claim that if
Wa,p @ W' then at least one of the constructed points does not belong to W”.
Indeed, deg W' < (d — 1)® and deg Wy, < (d — 1)*. So their intersection
has at most (d — 1)?* points by the Bézout inequality. Thus, we constructed
everything which is required in (a) and (b).

The statement (c¢) for U N {Xy = 0} follows from (a) immediately. The
components of dimension one of U’ N {Xy = 0} are the components of U’
lying in {Xy = 0}. Other components of U/ N{Xy = 0} are some components
of Vi , N{Xo = 0} where V3, & {Xo = 0} for some XA € Ay, p € M. We
can construct all the points from Vy , N {Xy = 0} using e.g. the Newton
polygons method by constructing expansions of coordinates of the “general
point” of Vy in the field of fraction-power series and taking the free term, c.f.
[3] section 3, paragraphs (11), (12), (13). Thus, we constructed everything
which is required in (c) and (d).

The required estimation for the working time of the algorithm described in
the proof of this Lemma follows directly from the estimations for the working

time of the algorithms applied. Lemma is proved.

Let 0 < g4 < e3 be infinitely small values for the field K5 and ¢4 is infinitely
small value for the field Ka(e3). Let K has an order of the real field such
as it is described in section 1. Tt induces the real structure on Ka(es,e4) =

[((51,52, €3, 64)

LEMMA 11. Let (zf,...,2,) € A"(K>), /. # 0 and deg, 2, deg,,

K3

deg, z, < P(d", dy,da), l(2}) < (My + M2)P(d",dy,ds) for all ¢,j. Then

K3
/

one can ascertain whether the point ' = (0 : 2z} : ... : 2}) € W' in time
polynomial in d”, dy, ds, My, M.
More precisely ' € W' if and only if the system of equations and an inequality
hlz...IhsIXo—EleTIO,|X0|2—|— Z |Xj—l‘}|2§63 (9)
1<j<n
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has a solution z* € A"T!(Ky(es,¢c4))

Thus, applying Theorem 2 we can ascertain whether ' € W’ and if it is
so, construct a new order of the real field on K which induces the new real
structure on the field m and find a solution z* = (xf, ... ,2}) €
AMFL(K3) of system (9) relatively to this real structure of m. Here
the field K3 C m, K3 = Ks(es, 64)[7](1), v—1] and 7 is an algebraic
element over K3(e3,c4) with minimal polynomial IS K(g3,€4)[7] such
that deg,, $0), deg,, $0) < P(d",dy, ds), LHD) < (My + Ma)P(d", di, do)

for all 7, 5.

PROOF. It coincides essentially with the proof of Lemma 5 or Lemma
9 in [3]. We can assume that ' € {hy = ... = hy = 0} = W. Now the
statement of the Lemma is equivalent to the following one: system (9) has no
solutions iff the hyperplane {Xy = 0} contains all the components W, of the
variety W = {h; = ... = hy = 0} C P*(K) such that ' € W;.

Let Xy be equal identically to zero on each such Wi. Denote V. ={h; = ... =
hy =0} C Ant! (M) Then there exists a homogeneous polynomial
P with coefficients from K, such that (Xo/X,)(V N {PX, # 0}) = {0}
and P(x;) #0. Let 7 = (0,2}, ...,2,) € A", Denote {|X — 7|* <
ez} C {|Xo)* + doi<i<n X — #i|> < ez} C A (K (e3,24)). Show that
{IX-2P<es}nV C{X, P£0}NV.

Indeed, otherwise there exists ' € A?+! (m such that (X, P)(z') =0
and |2/ — Z|? < 3, i.e. (X, P)(T+ (2’ —F)) = 0 where 2’ — T has infinitely
small coordinates relatively to the field K. This leads to the contradiction,

since T € A" (K;) and (X, P)(T) # 0.
Thus, we have (Xo/X,)({|X —Z|* < e3} N V) = {0}, i.e. there are no

solutions of (13) over Ks(eg,£4).

Conversely, suppose that Xy is not equal identically to zero on some compo-
nent Wy of W, such that =/ € Wy . Let V) C A"t (K3) be component of V

corresponding to Wi , i.e. V] is given by the same equations as Wi .

There exists a closed algebraic curve Vs defined and irreducible over K5 such
that Vo C V4,7 € V2 and Xg (Va2) # {0}. Let ¢ be a uniformizing element of
some branch of V5 containing the point . The coordinate functions z(?) | 0 <
p < n,on Vs in the neighbourhood of the points 7 = (0, #}, ..., z),) can be
represented as series
z?) = ), + Z tha,i, a,; € K, xy =0,
i>1
0)

(
L _ v v . . ’d
x(r)_aot—l—élt ai, o € Ko, 0<v € Z,ag #0.

It follows form here that one can solve the equation X/ X, = &4 relatively

to t and represent

1 z N
t:toEi’—l—E tiEXEQ,tiE[(z,tQ;ﬁO
i>1
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(18)

(19)

2P :x’p—l—z ﬁpwa €Q, B, € K2
i>1
where the field € is the field of fration power series in €4 with coefficients in
K5 Besides that, these expressions for z(#) in Q are algebraic over K since
E(Vz) D E(x(o)/x(’“)) i1s a finite extension of fields due to the fact that
Xo(Va) # {0}. Therefore, c.f. [3] paragraph (14), since 4 is the infinitely
small value relatively to the field Ks(e3) we conclude that these expressions
for (") 0 < p < n, give the solution of system (9) over the field m.

Lemma is proved.

REMARK 4. Note that if « € K then K3 C K(e3,e4), (D) €
K (g3,e4)[7]. Tt follows from Remark 3.

Return to the description of the auxiliary algorithm. Namely to the construc-
tion of Myy1, ..., M, see paragraph (14). Enumerate 2(d—1)** +2(d—1)* +1

different values ¢* of €3 such that I,; o — " are integers of the required size.

Apply Lemma 10 and construct all the irreducible components of U/ and
U'N{Xy = 0}. Substitute “general points” of components of U’ in the
form D}, |c,=c+ and check whether D} |.,=.+ is vanishing on any of these
components , i.e. which is the same whether system (8) has a finite number of
solutions in P(K>). Substitute “general points” of components of U’ N{ X, =
0} in the form D, |c,=.+ and check whether D}, |.,=.~ is vanishing on
any of these components. If D{,,|.,—.+ is not vanishing on any of these
components then W/ N{D{, | |c,zc* = Dsq2=... =D, =0}N{Xo =0} =0
(respectively #W'N{D} | |c,ze» = Dsyo = ... = Dy = 0}N{Xp = 0} < 400)
in P7(Ky) if (a) (respectively (b)) is satisfied.

By paragraph (14) there exists > 2(d — 1)** 4 1 different values ¢* among
enumerated such that system (8) has a finite number of solutions in P"(K>)
and W N{D, 1 |e,=er = Dsyo = ... = Dy = 0} N{Xo = 0} = O (respectively
#W'nN {Dg_l_l legzer = Dsy2 = ...=Dp =01 N{Xy =0} < +00) in P"(E)
if (a) (respectively (b)) is satisfied.

For these values ¢* apply again Lemma 10, construct all the irreducible com-
ponents of U and check whether #UNA" (K3) > N3. By Lemma 9 there exists
a value ¢} among enumerated such that Ny < N3 < #U NA" (K3) < +00 and
and W/ N {D, ) |c;=e» = Dsq2... = Dy =0} N {Xy = 0} = O (respectively
#W NA{D, |esmer = Dogn ... = Dy = 0} N {Xy = 0} < +o00) in P*(K,) if
(a) (respectively (b)) is satisfied. We change [,41 o for l,41 0 — ¢} and get new
forms Dyy1, ..., Dn.

Applying the procedure described further to the second, third, ... coefficients
of the forms D41, ..., D, , we get the required M1, ..., My,

Return to the description of the algorithm, see paragraph (13). Consider
the case when N; > N, see paragraph (13). In this case using the aux-
iliary algorithm with condition (a) we change the forms Ls4q, ..., L, for

Msy1, ..., My and return to the beginning of the algorithm for the consid-
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(20)

(21)

(22)

(23)

ered s. We get #V; > Ny > N for new linear forms, i.e. the number of

points of V;, see paragraph (1), now is greater than it was.

Show that if for the considered h for every z;, 1 < j < N', there exists ]
and the number of solutions in A” (K) of system (6) Ny = Ni(j) = N for
every 1 < j < N’ then

dim{hy=...=h,=h=0}= dim{hy=...= hy =0} — 1.

Indeed, it is sufficient to prove that A is not equal identically to zero on each
component Wi of the variety W’. Note that Wy N {Lsy1 = ... = L, =
0} NA™ (K) # @ since W) is projective, W N {Ly11 = ... = L, = 0}N{Xy =
0} = O and dimW; = n —s. So there exists 1 < j < N such that z; € W.

If N < j < N we have h(z;) # 0, see paragraph (6), and the assertion
is proved for Wy. If 1 < j < N’ then by lemma 5 the polynomial A is
not vanishing on some component W, of W such that z; € W,. Suppose
that h is equal identically to zero on Wp . Then by lemma 7 there exist two
1

different points 2’ and 2" which are solutions of (6) and z;; — «} ,z;,; — z}

are infinitely small relatively to the field K for all 0 < i < n. On the other

side by lemma 6 for every 1 < j; < N there exists a solution z"

of system (6)
such that 2" € Wi and ! — z;, ; are infinitely small relative to K for all
0 < i < n. Therefore, system (6) has > N +1 solutions in A” (K), since points
zj, € ]P)”(K) This leads to the contradiction. Thus, A is not equal identically

to zero on Wi . The assertion is proved. We set in this case hy41 = h.

Show that if for every h € H there exists z;, 1 < j < N’ = N’ (h) for which

does not exist 7, then
dim{fo=...=fm =0t =dim{hy=...=h;, =0} =n—s.

Indeed, suppose that dim{fy = ... = f,, = 0} < n—s. Let W be the same
as above. For each W; there exist at most m different h € H such that
h is equal identically to zero on W;. By Bézout’s inequality the number of
components Wi is < (d — 1)®. So, there exists h € H such that h is not
equal identically to zero on each component Wj. Then by lemma 5 for every

zj, 1 <j <N’ there exists x; . We get the contradiction. The assertion is

proved.
Let s = n. We shall enumerate h € H . If there exists h such that 0 € h (V},
then {fo=...= fn = 0}NA" (k) = Q@ and dim {fo = ... = f,, = 0}NA" (k) =

—1 and we set h, 41 = h. Otherwise dim {fo = ... = f, } N A" (E) =0.

Return to paragraph (20). Let h = hg and W' be as above. We shall construct
L" in Xg,..., X, with coeflicients from Z of the size

n

4 1"
linear forms L{,,,...,

O(nlogd) such that

W A{h=0}N{Lly =...= LI =0}
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(24)

is a finite set in ]P)”(E) Define the set

L= Z A Lepi e €Z,1<e<(d=1)(n—-s)+1}.
1<i<n—s

We shall enumerate the elements L € £. Let

W={h=...=h,=L=0}CPk)

be the variety of all common zeros of polynomials hy, ..., hs, L in P?(k) and

W' be the union of all the components W, of W such that Wy N A® (k) £ Q.

Show that W/ = W’/ N {L = 0}. Indeed, one should only to check that
dimW' N{L =0} N{Xy =0} = dim W’ — 2. But this fact follows from the
equality W N{L = 0}N{lsya = ... = L, = 0} N{Xy = 0} = @. The
statement is proved.
Thus,

W' N {Lyyo=...=L,=0}N{Xy =0} = 0.
In particular each component W; of W has the dimension equal to n — s — 1

in this case.

Apply the algorithm from paragraph (6), ..., (22), changing s for s + 1
the polynomials hy,..., hs for hy,... hs, L9~ the forms Lsiq,..., L, for
Lsya,..., Ly with h = k11 (we just checked that it can be done). If we get

dim{hlz...:hs:L:hs_HZO}OA"(E):n—s—l,

then go to the consideration of the next element L &€ L. Otherwise, set

L/s/+2 = L and we have
dim{h; =...=h; = L) s =hey1 =0} NA" (k) =n—5—2.

Note that such L € L exists, since by Bézout’s inequality there exists <
(d — 1)*+1 components W of the variety {h; = ... = hyy1 = 0} N A" (k) and

for each W there exists < n — s linear forms L € £ vanishing on W".

Similarly sequentially for every 2 < i < n — s — 1 construct L},; € L such
that
dim{h; =...=h =L s =... =L =h1 =0}NA" (k) =n—s5—i—1.

Thus, we get all the forms LY, ,, ..., L/, It is fulfilled W/ N { L}, , = ... =
LI=01N{Ls4y1 =0} N{Xy =0} = . So the variety of dimension one
W' Nn{L{,,=...=L; =0} does not have irreducible components lying in
{Xo = 0} and, therefore, W' N {hyy1 =0}N{LY,, =...=L;=0}isa

finite set in P™(k). The required property is satisfied.

Let n > s+ 1. Now our aim is to construct linear forms ng:;l), ce L£LS+1),

see paragraph (1)
Apply Lemma 10 when s is changed for s + 1, polynomials hq, ..., hs for
hi,... hs, hsy1 and D; = LY, s 4+2 < i < n. Denote W = {hy = ... =

7
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(25)

(26)

(27)

hs = hsg1 =0} C ]P)”(E) and W’ be the union of all the components W, of
W such that W, N A" (k) # @. Using Lemma 10 construct all the irreducible
components S of U = W/ N {LY,, = ... = L = 0} in P"(k) and all the

irreducible components Sy of U/ = W/ N{L/, s =...= L/ =0} in P"(k) and
Sz of U'N{ Xy = 0}. Choose a linear form Ly € £, = {Xo+c¢X1+.. .+ X, :
1<e<n(d—1)* 41, c€Z}such that L§(S1) # 0 for each component 5

of U. Denote Ny = #U N A" (k).

Consider the case when dimU’ N {Xy = 0} = 0. Choose a linear form L €
L1 ={Xo+eXi+...+"X, : 1 <c<n(d—1)T +1,¢c € Z} such that
L(Ss) # 0 for each component Sz of U' N { Xy =0}.

Thus, we get W/ N{L = LV, s =...= LI = 0} N{Xo = 0} = @ in P"(k).
The forms L, LY 5,..., L, satisfy to all the conditions which are required for

TSSO A

7. So, if it nescessary, apply the auxiliary algorithm with condition (a), see
paragraphs (14) and (18), changing s for s + 1 the variety W’ for W’ and
Deyr,...,Dpfor L, LY 5, ..., L,. We get the forms M, ..., M, with the
required size of coefficients from Z such that W/ N {M,4o = ... = M, =
0} N{Xo = 0} = @ in P*(k). Set LZ(»S-H) = M;,s+2 < i< n in this case
when dimU’ N {Xy =0} = 0.

apart of the bound, may be, for the size of coefficients from

Consider the case when dimU’ N {Xy = 0} = 1 in this and next paragraphs.
Choose and fix a component Ss of U’ N { Xy = 0} such that dimSs = 1.
Construct a point =’ € Sz, c.f. the proof of Lemma 10. Apply Lemma
11 changing s for s + 1, the variety W’ for W', polynomials hy, ..., h, for
hi,..., hs, hsy1 and find a point z* € W’ in P*(K3) such that st z* = 2/
relatively to some real structure. We shall consider below in paragraph (27)
this real structure. By Remark 4 we have K3 C m. Change the
denotations €3, 4 for £1,€2. Then K3 C m and K3 may play the role

of K5 in the conditions of the other lemmas.

Find v; € K3 such that
(L) — v Lg)(z*)=0,s+2<i<n.

Denote M/ = LY — ~; L for s + 2 < ¢ < n. Note that v; are infinitely small
values relatively to the field K since in the considered real structure , see

paragraph (27) , we have st z* = 2’ € P"(k).

Apply Lemma 8 (d) and (c) changing s for s + 1, the variety W' for W',
polynomials hy,... ks for hy,..., hs, hsy1 when the forms D; = LY | D; =

viLy, s+2 < i< n Weget that Ny = #W' n{L},, = ... = LI =
0} NA" (k) < #W' N{M! , =...= M, =0} NA"(k) = N5 < +oo since
e e Wn{Ml ,=...= M, =0}nA"(k) but sta™ =2’ ¢ W N{LV,, =

=L =0}n A" ().

Apply Lemma 10 changing s for s + 1, the variety W’ for W', polynomials
hi,... hs for hy, ... hg, hsyq the field Ky for K3 when the forms D; = M/,
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(28)

s+2 < i < n. Thus, construct all the irreducible components of W’O{M;_I_Z =
...= M} =0} in P*(K3).

Apply the auxiliary algorithm from paragraphs (14) and (18) with the condi-
tion (b) changing s for s + 1, the variety W' for W', polynomials hy, ..., h,
for hy,...,hs, hsy1 the field Ky for K3 when the forms D; = M] s+ 2 <
i < n. The condition (b) is satisfied here by lemma 8 (c). Thus, construct

forms Mo, ..., M, with the required size of coefficients from 7Z such that
#FW' N {Myyo=...= M, =0} N A" (k) > Ns.

Change the forms LY ,, ..., L for M4, ..., M, and return to the beginning
of paragraph (24).

We have #U N A" (k) < (d — 1)**? for arbitrary forms L s, ..., Ly such that
#U < +oo by Bésout’s inequality. So, there are at most (d — 1)*! returns
from paragraph (27) to paragraph (24). Therefore, we shall construct linear

(1) (s+D)

forms L0557, ..., Ln in the required time in paragraph (25).

Similarly there are at most (d —1)° returns from paragraph (19) to paragraph
(1).

The required estimation for the working time of the all algorithm described
follows directly from the estimations for the working time of the algorithms

applied. Theorem 1 1s proved.
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