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is more di�cult the technics required is developed in [3]. Namely, the results ofreal algebraic geometry are essentually used. We consider an algebraically closed�eld of zero characteristic as the extension of degree 2 of a real ordered �eld. Therequired property can be formulated over this real ordered �eld. After that we canapply the \tranfer principle", see [1], and reduce everything to the case of the �eldof real numbers. For this �eld we have the developed theory. The result from [11]is crucial which in its turn is based on the result of [10], see below section 2.Note that the probabilistic algorithm for the computation of the dimension issimple in every characteristic. For every s one takes in random an hyperplaneHs of the dimension s, adds to the initial family of polynomials linear ones whichdetermine Hs and �nds whether the set of zeros of this new family is �nite. Thiscan be done in time polynomial in dn. The dimension will be equal to n� s1 wheres1 is the maximal s for which this set of zeros is �nite.Now we give the precise statements. Let k = Q(t1; : : : ; tl; �) be the �eld wheret1; : : : ; tl are algebraically independent over the �eld Q and � is algebraic overQ(t1; : : : ; tl) with the minimal polynomial F 2 Q[t1; : : : ; tl; Z] and leading coef-�cient lcZF of F is equal to 1. Let polynomials f0; : : : ; fm 2 k[X1; : : : ; Xn] begiven. Consider the closed algebraic set or which is the same in this paper thealgebraic varietyV = f(x1; : : : ; xn) : fi(x1; : : : ; xn) = 0 80 � i � mg � A n (�k) :This is a set of all common zeros of polynomials f0; : : : ; fm in A n(�k), where �k is analgebraic closure of k. The dimension dimV of V is de�ned to be the maximum ofdimensions of all irreducible components of V .We shall represent each polynomial f = fi in the formf = 1a0 Xi0;:::;in X0�j<degF ai1;:::;in;j�jXi00 � � �Xinn ;where a0; ai1;:::;in;j 2Z[t1; : : : ; tl]; gcdi1;:::;in;j(a0; ai1;:::;in;j) = 1. De�ne the lengthl(a) of an integer a by the formula l(a) = minfs 2 Z: jaj < 2s�1g. The lengthof coe�cients l(f) of the polynomial f is de�ned to be the maximum of length ofcoe�cients fromZof polynomials a0; ai1;:::;in;j and the degreedegt�(f) = maxi1;:::;in;jfdegt�(a0); degt�(ai1;:::;in;j)g ;where 1 � � � l. In the similar way degt� F and l(F ) are de�ned.We shall suppose that we have the following boundsdegX0;:::;Xn(fi) < d; degt�(fi) < d2; l(fi) < M;degZ(F ) < d1; degt�(F ) < d1; l(F ) < M1 :The size L(f) of the polynomial f is de�ned to be the product of l(f) to the numberof all the coe�cients fromZof f in the dense representation. We haveL(fi) < (�d+ nn �d1 + 1)dl2M2



Similarly L(F ) < dl+11 M1. Below if there is no special mention about it we set l tobe �x.THEOREM 1. The dimension dimV of the variety V of common zeros ofpolynomials f0; : : : ; fm in the projective space A n (�k) over �k can be computed withinthe time polynomial in dn, d1, d2, M , M1.REMARK 1. The working time of the algorithm from the theorem is es-sentialy the same as by solving system of polynomial equations with a �nite set ofsolutions in projective space. So it can be formulated also in the case when l is not�xed, see [4].1 Preliminary resultsIn [3] we developed the tecnics for constructing a real structure on the constant�eld. Namely, let l is not �xed now. Let k1 = Q(t1; : : : ; tl)[�] be some algebraicextension of k, where the element � has minimal polynomial ' 2 Q[t1; : : : ; tl; Z],lcZ' = 1, l(') < M2 and degt� ', degZ ' < D1 for all �. Our aim is to constructa real structure on k1.The real structure of k1 is de�ned to be an embedding k1 � k2(p�1), where k2 isa real ordered �eld, see [1].Compute the discriminant0 6= � = ResZ('; '0Z) 2 Q[t1; : : : ; tl]:Choose z1; : : : ; zl 2 Q such that �(t1; : : : ; tl) 6= 0. The polynomial' = '(z1; : : : ; zl; Z) 2 Q[Z] is separable, since �(z1; : : : ; zl) 6= 0.Let ' 2 Q[Z] and � be an arbitrary root of '. We constructed in [3](i) an irreducible polynomial 	 2 Q[Z], lcZ	 = 1, which has a real root �,(ii) polynomials R1; I1 2 Q[Z] with degZ R1; degZ I1 < degZ 	, such that for achosen root � of ' we have � = R1(�) +p�1 I1(�) in the �eld Q[ �;p�1 ].Besides that, � = � if � is real and Q[�; p�1] =Q[�; �1] where �1 is conjugated to� if � is not real.More precisely, let '1 = '=(Z � �) 2 Q[ � ][Z] andA = Q[ �; �1p�1 ] = Q[ � ][Z;Z1]=('1; Z21 + 1)be a separable Q{algebra, where�1 = Z mod ('1; Z21 + 1); p�1 = Z1 mod ('1; Z21 + 1):3



Let v1 = 12 (� + �1), v2 = 12p�1(� � �1); v1; v2 2 A. Construct an elementv = v1 + cv2 which is a primitive element of the separable algebra Q[v1; v2] overQ. One can �nd the minimal integer c such that 1 � c � 2D21. Find the minimalpolynomial � 2 Q[Z], lcZ� = 1, of the element v over Q and polynomials R2; I2 2Q[Z]; degR2; deg I2 < deg �, such that R2(v) = v1, I2(v) = v2.Factor � = Qj �j into the product of ireducible polynomials�j 2 Q[Z], lcZ�j =1. Set Q[�j;p�1 ] = Q[Z;Z1]=(�j; Z21 +1), where �j = Z mod (�j; Z21 +1), p�1 =Z1 mod (�j; Z21 + 1). Find 
 such that �
 has a real root �
 for which R2(�
) +p�1 I2(�
) = �. The existence of 
 follows immediately from the construction andthe fact that � is not a real root of '. Finilly, set 	 = �
 , � = �
 and R1; I1 to bethe residues from the division of R2 and I2 by �
 .In the case when � is real take � = �, 	 = ', R1 = Z, I1 = 0. So in any casewe can construct �, 	, R1, I1 for which (i) and (ii) hold.Denote ui = ti � zi, 1 � i � l. By Hensel's lemma the element � can berepresented as a series� = �0 + X(i1; ::: ;il)>(0; ::: ;0) �i1; ::: ;�lui11 � � � uill 2 Q[� ][[u1; : : : ; ul]];where �0 = �, �i1; ::: ;il 2 Q[ � ] � Q[ �;p�1 ]. Therefore, �0 = �(1)0 + p�1 �(2)0 ,�i1; ::: ;il = �(1)i1; :::;il +p�1 �(2)i1; :::;il, where �(1)0 ; �(2)0 ; �(1)i1; :::;il; �(2)i1; ::: ;il 2 Q[ � ].De�ne elements �(1) = �(1)0 + X(i1; ::: ;il)>(0; :::;0) �(1)i1; ::: ;ilui11 � � �uill ;�(2) = �(2)0 + X(i1; ::: ;il)>(0; :::;0) �(2)i1; ::: ;ilui11 � � �uill :Suppose that � is not real. Then we have � = �(1) + p�1 �(2). The element~� = �(1) � p�1 �(2) is a root of the polynomial '1 = '=(Z � �) 2 Q[�][Z] �Q[ �;p�1 ][[u1; : : : ; ul]][Z], since ' 2 Q[t1; : : : ; tl; Z].Set � = �(1) + c�(2) where c is the same as for v = v1 + cv2, see above. Weconstructed in [3] the minimal polynomial 	 2 Q[t1; : : : ; tl; Z] of the element �and found R; I 2 Q(t1; : : : ; tl)[Z], degZ R; degZ I < degZ 	, such that �(1) = R(�),�(2) = I(�). So � = R(�)+p�1 I(�). Besides that, the polynomial 	(z1; : : : ; zl; Z)is separable and divides �. So by Hensel's lemma the element � can be representedas a series � = �0 + X(i1; ::: ;il)>(0; ::: ;0) �i1; ::: ;ilui11 � � � uill ; (1)where �0 = �, �i1; ::: ;il 2 Q[ � ]. From (1) and the equalities � = �(1) +p�1�(2) =R(�) +p�1 I(�) we infer that�(1) = R(�); �(2) = I(�):4



If � is real set 	 = ', � = � = �(1), �(2) = 0, R = Z, I = 0 and all the formulatedabove statements are satis�ed.Now de�ne an order of a real �eld on the �eld k2 = Q(t1; : : : ; tl)[�]. Consider theembedding k2 � Q[ � ]((u1; : : : ; ul)) = k3 which is determined by (1). The order onk2 will be induced by the order on the �eld of formal power series Q[ � ]((u1; : : : ul))or equivalently on the ring of formal power series Q[ � ][[u1; : : : ; ul]]. The monomialsui1 � � � uill in the �eld k3 are linearly ordered in the following way: ui11 � � � uill >uj11 � � � ujll i� there exists w such that i1 = j1; : : : ; iw�1 = jw�1 and iw < jw.An element � 2 Q[ � ][[u1; : : : ; ul]] is positive i� the coe�cient from Q[ � ] in themaximalmonomial of � with a non{zero coe�cient is positive. The order onQ[ � ] �R is induced by the order in R. This order on k3 is an order of a real �eld, see [2].We have [3] the following lemmas.LEMMA 1. For the �eld k1 an embedding of �elds over Q(t1; : : : ; tl) can beconstructed k1 = Q(t1; : : : ; tl)[�] � Q(t1; : : : ; tl)[�;p�1 ];where � is an algebraic element over Q(t1; : : : ; tl) with minimal polynomial 	 2Q[t1; : : : ; tl; Z], lcZ	 = 1 and � = R(�) +p�1 I(�)with R(Z); I(Z) 2 1�2Q[t1; : : : ; tl][Z], �2 = ResZ(	;	0Z) is the discriminant of 	;degZR; degZI < degZ	 � D21; degt�	; degt�R; degt�I � P(D1); l(	); l(R); l(I) <(M2+ l)P(D1) for some polynomial P and all �. For Q(t1; : : : ; tl)[�] the order of areal ordered �eld is constructed. The working time of constructing 	; R; I and theorder on Q(t1; : : : ; tl)[�] is polynomial in Dl1 and M2.LEMMA 2. Let ! 2 Q(t1; : : : ; tl)[�], ! = 1cP0�j�deg	 cj�j , where c; cj 2Z[t1; : : : ; tl], degt�c; degt�cj < D, l(c); l(cj) < M3 for all �; j. Then one canascertain whether ! > 0 within time polynomial in Dl1; Dl;M2;M3.LEMMA 3. There exists a polynomial P such that changing in the con-struction described elements zi for arbitrary elements z�i 2 Q with jzi � z�i j <2�P(D1)(M2+l), 1 � i � l, we can choose � � instead of � so that we get �� insteadof � such that R� = R; I� = I;	� = 	.Remind that the �eld Q(t1; : : : ; tl) has the order induced by the linear order onmonomials uj11 : : : ujll described above. Denote by ^Q(t1; : : : ; tl) the real closure ofthe �eld Q(t1; : : : ; tl) with this �xed order.LEMMA 4. The construction of this section gives all the possible realstructures of the �eld Q(t1; : : : ; tl)[�] when Q(t1; : : : ; tl) is the real ordered �eldwith the �xed order decribed above. More exactly, for every embedding � :Q(t1; : : : ; tl)[�]! ^Q(t1; : : : ; tl)[p�1 ] there exist an embedding�1 : Q(t1; : : : ; tl)[�]! Q(t1; : : : ; tl)[�;p�1 ]5



from Lemma 1 and an embedding�2 : Q(t1; : : : ; tl)[�]! ^Q(t1; : : : ; tl)of real ordered �elds which induces the embedding�02 : Q(t1; : : : ; tl)[�;p�1 ]! ^Q(t1; : : : ; tl)[p�1 ]such that � = �02 � �1 (all embeddings over Q(t1; : : : ; tl)).Now let K = Q(t1; : : : ; tl)[�] be real ordered �eld and "1 > "2 > "3 > "4 > 0be in�nitely small values ralatively to the �eld K such that "2 is an in�nitely smallvalue ralatively to the �eld K("1), "3 is an in�nitely small value ralatively to the�eld K("1; "2) and "4 is an in�nitely small value ralatively to the �eld K("1; "2; "3).Set K1 = K("1; "2; "4). Denote by ~K1 the real closure of the �eld K1, see [1]. SoK1 = ~K1(p�1 ) for the algebraic closure K1 of the �eld K1.If � = �1 +p�1�2 2 K1 ; �1; �2 2 ~K1 de�ne j�j =p�21 + �22 2 ~K1 . We de�ne theelement � 2 K1 to be in�nitely small (respectively in�nitely great) relatively tothe �eld ~K if j�j2 2 ~K1 is in�nitely small (respectively in�nitely great) relativelyto the real closure ~K of the �eld K.Let g1; : : : ; gs 2 K1(p�1 )[X0; : : : ; Xn ] and xi = yi + p�1zi 2 K1(p�1 ),yi; zi 2 K1, i = 1; : : : ; n. Consider the system of equations and an inequalityg1 = g2 = : : : = gs = 0; X0�i�n jXi � xij2 � "3 (2)with coe�cients from the �eld K1(p�1 ).We have the following result similar to that which was proved in sections 2 and3 of [3].THEOREM 2. One can construct a new order of the real �eld on K whichinduces the new real structure on K1(p�1 ) and K1 and �nd a solution x� =(x�0; : : : ; x�n) 2 A n+1 (K1) of system (2) relatively to this real structure of K1(p�1 )or ascertain that system (2) has no solutions in A n+1 (K1). More precisely, one canconstruct an irreducible over K1 polynomialP�;� 2 K1[Z ] (in the denotations of [3]section 3) which has the root ��;� and elements x�0;�;� : : : ; x�n;�;� 2 K1[��;� ;p�1 ]such that the solution x� is given by the isomorphism over the �eld K1K1 � K1 [x�0; : : : ; x�n ]' K1 [x0;�;�; : : : ; xn;�;� ] = K1 [��;�;p�1] (3)under which x�i 7�! xi;�;� for all i. The working time of this algorithm is polynomialin the time which is required for solving systems of polynomial equations with �nitenumber of solutions in Pn with the same size of input as system (2) has. Similarlythe estimations for degrees and sizes of coe�cients of x0;�;�; P�;� are analogous toones for output of the algorithm for solving systems of polynomial equations with�nite number of solutions in Pn with the same size of input as system (2) has.6



In [3] in section 3 the similar result was proved for the systemh1 = : : : = hs = h� "2Ld�10 = 0; X1�i�n jXi � xj;ij2 � "1 (4)Here there are only two in�nitely small values "1 and "2 and system has the specialform in Pn. But the proof of Theorem 1 remains just the same as it was in [3]in section 3. It is based on the result from [11] which reduces the initial systemto the case of systems of polynomial equations with �nite number of solutions inPn when systems are considered over R. In the general case we apply the \transferprinciple" and the Newton polygonsmethod, see sections 2 and 3 of [3]. The requiredestimations of coe�cients in the Newton polygons method when one consider in theproof fraction{power series in "i are obtained in [5], see also [6]. The algorithm forsolving systems of polynomial equations with �nite number of solutions in Pn isdescribed in [4], see also [9].REMARK 2. We change the real structure in section 3 of [3] to avoid consid-ering arbitrary multiple{fractional series in t1; : : : ; tl. We use only simple Hensel'slemma for constructing real structures in section 1 of [3]. If one get appropriateestimations for coe�cients of arbitrary multiple{fractional series similar to the es-timations which were obtained in [5] for the Newton polygons method then onewill not need to change the real structure. The required estimations for coe�cientsof arbitrary multiple{fractional series can be obtained but it is a quite di�erentsubject.REMARK 3. Note that if g1; : : : ; gs 2 K("4)(p�1 )[X0; : : : ; Xn ] and xi 2K("4)(p�1 ), i = 1; : : : ; n, then K3 � K("3; "4) and P�;� 2 K("3; "4)[Z].2 Description of the algorithm for the computa-tion of the dimension in the a�ne space(1) Denote by gi 2 K[X0; : : : ; Xn] the homogenization of fi , i.e.gi = Xdeg fi0 fi(X1=X0; : : : ; Xn=X0)for 0 � i � m. We shall suppose without loss of generality that deg(gi) =degX0; ::: ;Xn(gi) = d� 1 . If it is not so, we can change each gi for the familyffiX� deg(gi)+d�1j g0�j�n .Using induction by s � 1 we shall construct polynomials h1; : : : ; hs andlinear forms L(s)s+1; : : : ; L(s)n in X0; : : : ; Xn with integer coe�cients of the sizeO(nlogd) such that hi = X0�j�m�i;jgj; �i;j 2Zfor all i; j. Besides that, the following property will be ful�lled. LetW = fh1 = : : : = hs = 0g � Pn(k)7



be the variety of all common zeros of polynomials h1; : : : ; hs in Pn(k) andW 0 be the union of all the components W1 of W such that W1 \ A n (k) 6= �.Then W 0 \ fL(s)s+1 = : : : = L(s)n = 0g \ fX0 = 0g = � ;In particular each component W1 of W has the dimension equal to n � s inthis case.(2) The construction for the base s = 0 is easy. One can take L(0)i = Xi, i � 1.(3) Now let n > s � 0 and suppose that h1; : : : ; hs; L(s)s+1; : : : ; L(s)n are con-structed. Denote for brevity L(s)j = Lj, s + 1 � j � n. Using the algorithmfrom [4], see also [9], we shall �nd all the points fxjg1�j�N of the setVs =W \ A n (k) \ fLs+1 = : : := Ln = 0g =W 0 \ fLs+1 = : : : = Ln = 0g. Find a linear form L0 with integer coe�cients, such that L0(xj) 6= 0 for all1 � j � N .(4) Consider xj = (xj;0 : : : : : xj;n) 2 Pn(k). Remind that in output of thealgorithm from [4] for every j we have an isomorphism of �elds over kk�xj;0xj;� ; : : : ; xj;nxj;�� ' k[�j];where 'j(�j) = 0, 'j 2 k[Z] is an irreducible polynomial, xj;� 6= 0. Constructfor every j a primitive element �j = �+c�j of the �eld k(�j) overQ(t1; : : : ; tl),c 2 Z, with minimal polynomial �j 2 Q[t1; : : : ; tl; Z] over Q(t1; : : : ; tl).We can suppose that lcZ�j = 1 changing if it is not so, �j for (lcZ�j)�j.Since xj 2 A n(k) � Pn(k) we can set � = 0 and xj;0 = 1. Denote xj =(xj;0 ; : : : ; xj;n) 2 A n+1 (k).(5) Consider the set of polynomials fP0�i�m cigi : 1 � c � m(d � 1)s + 1; c 2Zg= H. We shall enumerate the elements of H. Let h 2 H.(6) Find all j for which h(xj) = 0. Let, say, h(xj) = 0 when 1 � j � N 0, andh(xj) 6= 0 when N 0 < j � N . If N 0 = 0 then we set hs+1 = h, L(s+1)s+1+i =Ls+1+i for every i � 1 and go to the step s+ 1. If N 0 > 0 we shall enumerateall the points xj, 1 � j � N 0.(7) For the considered 1 � j � N 0 construct for the �eld Q(t1; : : : ; tl)[�j] a realstructure by section 1, i.e. construct �j;	j ; Rj; Ij for �j analogous to �;	; R; Ifor �.(8) Let "1 and "2 be algebraically independent in�nitely small values for the �eldK = Q(t1; : : : ; tl)[�j ], 0 < "2 < "1, and "2 is in�nitely small value relativelyto the �eld K("1 ). The �eld K1 = K("1; "2) is a real ordered �eld.Let xj = (xj;0 ; : : : ; xj;n) 2 A n+1 (k ) with xj;0 = 1 in accordance withparagraph (4). Consider the system of equations with coe�cients from the�eld K1(p�1)h1 = : : : = hs = h� "2Ld0 = 0; X0�i�n jXi � xj;ij2 � "1 (5)8



(9) Apply Theorem 2 to system (5) (here there are only two in�nitely small values"1, and "2). We construct a new order of the real �eld on K which inducesnew real structures on K1(p�1 ) and K1. If system (5) has any solutionrelatively to this new real structures we get a solution x�j = (x�j;0; : : : ; x�j;n ) 2A n+1(K1) . This solution is given in the form (3). If system (5) has nosolutions we ascertain this fact.(10) Suppose that we found 1 � j � N 0 , for which system (5) has no solutions.Then we go to the consideration of the next element h 2 H.(11) Let for the considered index j system (5) have a solution which x�j = (x�j;0 ; : : : ,x�j;n ) 2 A n+1 (K1) which is found in paragraph (9). By paragraph (9) we havex�j;i 2 K1 [��;�;p�1] = K2.By (5) we haveP0�i�n jxj;i�x�j;ij2 � "1. Remind that xj = (xj;0 ; : : : ; xj;n) 2A n+1 (k), see paragraph (4).Find �i 2 K2 such that (Li��iL0)(x�j ) = 0; s+1 � i � n. Set L0i = Li��iL0.Consider the systemh1 = : : : = hs = L0s+1 = : : : = L0n = 0 (6)with coe�cient from the �eld K2 .(12) We need the following four lemmas.LEMMA 5. The polynomial h is equal identically to zero on each irre-ducible component W1 of the variety W = fh1 = : : : = hs = 0g � Pn (k),such that xj 2 W1 if and only if there exist no solutions of system (5) overthe algebraic closure K1 of K1.PROOF. It coincides with the proof of Lemma 9 in [3].LEMMA 6. Let W1 be a component of the variety W = fh1 = : : : =hs = 0g � Pn (K1) such that xj = (xj;0 : : : : : xj;n) 2 W1 for some1 � j � N and let �i 2 K1 ; s + 1 � i � n, be in�nitely small valuesrelatively to the �eld ~K.Then there exists x00; : : : ; x0n 2 K1 such that x0 = (x00 : : : : : x0n) 2 W1 ,(Li� �iL0)(x0) = 0 and x00�xj;0 ; : : : ; x0n�xj;n are in�nitely small relativelyto the �eld K.PROOF. It coincides with the proof of Lemma 10 in [3].LEMMA 7. Suppose that the polynomial h is equal identically to zeroon some component W1 of the variety W = fh1 = : : : = hs = 0g � Pn (K),such that xj 2 W1 and there exists x�j , see paragraph (9). Then there existtwo di�erent solutions x0 = (x00; : : : ; x0n) and x00 = (x000 ; : : : ; x00n) of system (5)such that xj;i � x0i and xj;i � x00i are in�nitely small relatively to the �eld Kfor all 0 � i � n.PROOF. It coincides with the proof of Lemma 11 in [3].9



The next lemma is a generalization of Lemma 6. Remind that in paragraph(1) the variety W 0 was de�ned. Let K0 be an arbitrary extension of K with areal structure and K00 an extension of K0 by �nite number of in�nitely smallvalues.LEMMA 8. Let Di 2 K0[X0; : : : ; Xn ]; s + 1 � i � n, be linear formsin X0; : : : ; Xn and eDi 2 K 00[X0; : : : ; Xn ]; s + 1 � i � n, linear forms inX0; : : : ; Xn all the coe�cints of which are in�nitely small values relatively tothe �eld K0.(a) Let x000 ; x001 ; : : : ; x00n 2 K00 be such that x00 = (x000 : x001 : : : : : x00n) 2 W 0 ,(Di� eDi)(x00) = 0; s+1 � i � n, x00i is not in�nitely great relatively to the�eld K0 for every 0 � i � n and x00i0 6= 0 is not in�nitely small relativelyto the �eldK 0 for some 0 � i0 � n. Then there exist x00; x01; : : : ; x0n 2 K0such that x0 = (x00 : x01 : : : : : x0n) 2 W 0 , Di(x0) = 0 and x00i � x0i; ; s +1 � i � n are in�nitely small values relatively to the �eld K0.(b) Let W 0 \ fDs+1 = : : : = Dn = 0g \ fX0 = 0g = � in Pn(K0). ThenW 0 \ fDs+1 � eDs+1 = : : : = Dn � eDn = 0g \ fX0 = 0g = � in Pn(K 00).(c) Let W 0 \ fDs+1 = : : : = Dn = 0g be a �nite set in Pn(K0). Then thereexist only a �nite number of x00 = (x000 : x001 : : : : : x00n) 2W 0 in Pn(K 00)such that (Di � eDi)(x00) = 0.(d) Let W 0 \ fDs+1 = : : : = Dn = 0g be a �nite set in Pn(K0) andx00; x01; : : : ; x0n 2 K 0 be such that x0 = (x00 : x01 : : : : : x0n) 2 W 0 \fDs+1 = : : : = Dn = 0g . Then there exist x000 ; x001 ; : : : ; x00n 2 K00 suchthat x00 = (x000 : x001 : : : : : x00n) 2 W 0 in Pn (K 00) , (Di � eDi)(x00) = 0and x00i � x0i; ; s + 1 � i � n are in�nitely small values relatively to the�eld K0.PROOF.(a) Let z 2 K00 be an element which is not in�nitely great relatively to the�eld K0. Then,see e.g. [1], the standart part st(z) 2 K0 is de�ned. Itcoincides with the free term in the expansion of z in multiple fraction-power series in algebraically independent in�nitely small values over K0,see e.g. [1]. So z � st(z) is in�nitely small value relatively to the �eldK0. Therefore, the point st(x00) = (st(x000) : st(x001) : : : : : st(x00n) ) 2W \ fDs+1 = : : : = Dn = 0g is the required element x0 2 Pn(K 0).(b) Suppose contrary that there exist x000 ; x001 ; : : : ; x00n 2 K 00 such that x00 =(x000 : x001 : : : : : x00n) 2 W 0 \ fX0 = 0g and (Di � eDi)(x00) = 0; s + 1 �i � n. Show that we can assume without loss of generality that every x00iis not in�nitely great relatively to the �eld K 0 for 0 � i � n and x00i0 6= 0is not in�nitely small relatively to the �eld K0 for some 0 � i0 � n.Indeed, let jx00�j be maximal of all jx00i j; s+ 1 � i � n. Then changing x00for x00=jx00�j we get new x00 with the required property. Now the assertionof (b) follows from (c). 10



(c) Choose a linear form D0 2 K0[X0; : : : ; Xn ] such that for every x0 2W 0 \ fDs+1 = : : : = Dn = 0g in Pn(K0) we have D0(x0) 6= 0. Theprojection p : W 0 �! Pn�s ; (X0 : : : : : Xn) 7�! (D0 : Ds+1 : Ds+2 :: : : : Dn), is de�ned everywhere and, therefore �nite, see [9]. Show thatthe projectin ~p : W 0 �! Pn�s ; (X0 : : : : : Xn) 7�! (D0 : Ds+1 �eDs+1 : Ds+2 � eDs+2 : : : : : Dn � eDn) is also de�ned everywhere. Letz = (z0 : : : : : zn) 2 Pn(K 00). We can assume without loss of generality,see (b), that every zi is not in�nitely great relatively to the �eld K 0 for0 � i � n and x00i0 6= 0 is not in�nitely small relatively to the �eld K0 forsome 0 � i0 � n. Therefore, st(z) 2 Pn(K 0) is de�ned, see (a). Thereexists s + 1 � i � n or i = 0 for which Di(st(z)) 6= 0 since p is de�nedeverywhere. Then (Di � eDi)(z) 6= 0. Thus, ~p is also de�ned everywhereand �nite. So, there exist only a �nite number of x00 = (x000 : x001 : : : : :x00n) 2 W in Pn (K00) such that (Di � eDi)(x00) = 0; s + 1 � i � n sinceeach such x0 is an element of the �nite set ~p�1 ((1 : 0 : : : : : 0)). Here~p�1 denotes the inverse image of ~p.(d) There exists a linear form D 2 K0[X0; : : : ; Xn] such that (D=D0)(x01) 6=(D=D0)(x02) for every di�erent x01; x02 2 W 0 \ fDs+1 = : : : = Dn = 0gin Pn(K 0). Consider the projections p1 : W 0 �! Pn�s+1 ; (X0 : : : : :Xn) 7�! (D0 : Ds+1 : Ds+2 : : : : : Dn : D) and ~p1 : W 0 �!Pn�s+1 ; (X0 : : : : : Xn) 7�! (D0 : Ds+1 � eDs+1 : Ds+2 � eDs+2 :: : : : Dn � eDn : D). Since ~p is �nite (see the proof of (c)) there exists apolynomial eG 2 K00[Z0; Zs+1; Zs+2; : : : ; Zn; Z] such that ~p1(W 0) = f eG =0g in Pn�s+1(K 00) and lcZ eG = 1.Show that each coe�cient of eG is not in�nitely great relatively to the �eldK0. Suppose contrary. Then there exists x00; x0s+1; : : : ; x0n 2 K0 suchthat there exists a coe�cient of the polynomial g1 = eG(x00; x0s+1; : : : ; x0n,Z) 2 K 00[Z] which is in�nitely great relatively to the �eld K 0. So, x0 =(x00 : x0s+1 : : : : : x0n) 2 Pn�s(K 0). The set of roots of g1 coincideswith (D=D0)( ~p1�1(x0)) since ~p1(W 0) = f eG = 0g. For every x00 = (x000 :x001 : : : : : x00n) 2 ~p1�1(x0) choose x000 ; x00s+1; : : : ; x00n 2 K00 such thatx00 = (x000 : x001 : : : : : x00n) and every x00i is not in�nitely great relativelyto the �eld K 0 for 0 � i � n for and x00i0 6= 0 is not in�nitely smallrelatively to the �eld K 0 for some 0 � i0 � n, see the proof of (b).So st(x00) is de�ned and (D=D0)(x00) = (D=D0)(st(x00)) is not in�nitelygreat for every x00. This leads to the contradiction since now we getthat each root of g1 is not in�nitely great relatively to the �eld K0 andlcZg1 = 1. The assertion is proved.Thus, the polynomial st( eG) = G 2 K0[Z0; Zs+1; Zs+2; : : : ; Zn; Z] is de-�ned (the coe�cints of G are the standart parts of coe�cints of eG). Wehave p1(W 0) � fG = 0g in Pn�s+1(K0). Denote g = G(1; 0; 0; : : : ; 0; Z)and ~g = eG(1; 0; 0; : : :; 0; Z). So g((D=D0)(x0)) = 0 for every x0 2W 0 \ fDs+1 = : : : = Dn = 0g in Pn(K 0) and ~g((D=D0)(x0)) is in�nitelysmall value relatively to the �eld K 0. Since lcZ~g = 1 there exists a root11



� of ~g such that �� (D=D0)(x0) is in�nitely small value relatively to the�eld K 0. But � = (D=D0)(x00) for some x00 2 W 0 in Pn (K 00) such that(Di � eDi)(x00) = 0 for s + 1 � i � n. We can choose, see the proof of(b), x000 ; x00s+1; : : : ; x00n 2 K00 such that x00 = (x000 : x001 : : : : : x00n), eachx00i ; 0 � i � n is not in�nitely great relatively to the �eld K0 and x00i0 6= 0is not in�nitely small relatively to the �eld K0 for some 0 � i0 � n.So by (a), st(x00) 2 W 0 \ fDs+1 = : : : = Dn = 0g in Pn(K0). Finally,(D=D0)(x0) = (D=D0)(st(x00)) and therefore, x0 = st(x00). Lemma isproved.(13) System (6) de�nes a closed set inPn(K2). By Lemma8 (d) system (6) has onlya �nite number of solutions in A n (K2) = Pn(K2)\fX0 6= 0g andW 0\fL0s+1 =: : : = L0ng \ fX0 = 0g = � in Pn(K2).Apply the algorithm from [4] and �nd all the solutions x
 ; 
 2 � of system(6) in A n (K2). Denote by N1 = #� the number of elements of �.(14) We need an auxiliary algorithm. In input of this algorithm linear formsDi 2 K2[X0; : : : ; Xn]; s + 1 � i � n in X0; : : : ; Xn are given with deg"j Di,degtj Di � P(dn; d1; d2), l(Di) � (M1 +M2)P(dn; d1; d2) for all i; j. Besidesthat, these forms satisfy to one of the following conditions(a) N2 = #W 0 \ fDs+1 = : : : = Dn = 0g < +1, W 0 \ fDs+1 = : : : = Dn =0g \ fX0 = 0g = � in Pn(K2);(b) #W 0 \ fDs+1 = : : : = Dn = 0g < +1, N2 = #W 0 \ fDs+1 = : : : =Dn = 0g \ A n (K2).In output of the auxiliary algorithmwe have linear formsMs+1 ; : : : ; Mn withcoe�cients fromZand of the size l (Mi) = O (n log d); s+1 � i � n such thatif condition (a) is satis�ed then N2 � #W 0\fMs+1 = : : : = Mn = 0g < +1,W 0 \ fMs+1 = : : : =Mn = 0g \ fX0 = 0g = � in Pn(K2);if condition (b) is satis�ed then #W 0 \ fMs+1 = : : : = Mn = 0g < +1,N2 � #W 0 \ fMs+1 = : : : =Mn = 0g \ A n (K2).In the description of the auxiliary algorithm below we don't suppose that weare given the forms Ls+1; : : : ; Ln but use only the de�nition ofW 0 i.e. supposeonly that h1 : : : ; hs are given.At �rst, show that we can change an arbitrary coe�cient in formsDs+1; : : : ; Dnfor an integer coe�cient with the required length such that the condition (a)(respectively (b)) will be satis�ed for new forms if the condition (a) (respec-tively (b)) is satis�ed.Let Ds+1 =P0�i�n ls+1;iXi ; ls+l;i 2 K1 and we wish to change, say ls+1;0,for a coe�cient from Z. At �rst change ls+1;0 for an element ls+l;0 � "3where "3 is an in�nitely small value relatively to the �eld K2. Denote byD0s+1 = (ls+l;0 � "3)X0 +P0�i�n ls+1;iXi the form obtained. Consider thesystem 12



h1 = : : : = hs = D0s+1 = Ds+2 = : : := Dn = 0: (7)Denote by � the set of solutions of this system in A n (K2). By Lemma 8 wehave #� = N3 � N2 but #� < +1 if (a) or (b) are satis�ed andW 0\fD0s+1 =Ds+2 = : : : = Dn = 0g\fX0 = 0g = � (respectively #W 0\fD0s+1 = Ds+2 =: : : = Dn = 0g < +1) in Pn(K2) if (a) (respectively (b)) is satis�ed.Denote U 0 = W 0 \ fDs+2 = : : : = Dn = 0g. For every irreducible componentW 00 (it is a curve) of U 0 there exists at most one value "� of "3 such thatD0s+1 j"3="� is vanishing onW 00. Further, for every irreducible componentW 000of U 0\fX0 = 0g there exists at most one value "� of "3 such that D0s+1 j"3="�is vanishing on W 000 if (a) is satis�ed. So, by the B�esout inequality, thereexists at most 2(d� 1)s di�erent values "� 2 K2 of "3 such that the systemh1 = : : : = hs = D0s+1 j"3="� = Ds+2 = : : : = Dn = 0: (8)has in�nitely many solutions in A n (K2) or W 0 \ fD0s+1 jt=t0 = Ds+2 = : : : =Dn = 0g \ fX0 = 0g 6= � in Pn(K2) if (a) is satis�ed. Similarly there existsat most (d � 1)s di�erent values "� 2 K2 of "3 such that W 0 \ fD0s+1 jt=t0 =Ds+2 = : : : = Dn = 0g is in�nite in Pn(K2) if (b) is satis�ed.(15) LEMMA 9. There exist at most 2(d � 1)2s di�erent values "� 2 K2 of"3 such that the number of solutions of system (8) in A n (K2) is less than N3.PROOF. There exists a linear form L = c0X0 + : : :+ cnXn with integercoe�cients ci such that the function L=X0 has N3 di�erent values on the setof solutions of system (7) in A n (K2), i.e. #(L=X0)(�) = N3 and L is notvanishing in each point of the �nite set W 0 \fDs+1 = : : := Dng\ fX0 = 0g .The projection p0 : U 0 �! P2 ; (X0 : : : : : Xn) 7�! (X0 : Ds+1 : L),is de�ned everywhere since L is not vanishing in each point of the �nite setW 0 \ fDs+1 = : : : = Dng \ fX0 = 0g . Therefore, p0(U 0) � P2 is a closed setin the Zariski topology of dimension 1 and the projection p0 : U 0 �! p0(U 0)is �nite. So p0(U 0) = fG(X0; Ds+1; L) = 0g where G 2 K[Z0; Z1; Z2] isa separable polynomial of degree degZ0;Z1;Z2 G � deg U 0 � (d � 1)s. Wehave G(1; "3; (L=X0)(�)) = 0 for every solution of system (7) in A n(K2).Therefore, degZ2 G � N3. Denote by �� the set of solutions of system (8)in A n (K2). Now we have (L=X0)(��) = f�� : G(1; "�; (L=X0)(��)) = 0g.Denote R(Z1; Z2) = ResZ2(G;G0Z2) the discriminant of the polynomial Grelatively to Z2. So if R(1; "�) 6= 0 then �� � (L=X0)(��) � degZ2 G � N3.We have R 6= 0 since R is seprable. The degree degZ3 R � 2(d�1)2s. Further,R(1; Z) 6= 0 since R is homogeneous as the discriminant of the homogeneouspolynomial G. The degree degZ R(1; Z) � degZ3 R � 2(d � 1)2s. From herethe assertion of the lemma follows immediately.(16) In the proof of the following lemma we don't suppose that we are given theforms Ls+1; : : : ; Ln but use only the de�nition of W 0 i.e. suppose only thath1 : : : ; hs are given. 13



LEMMA 10. Let Di 2 K2[X0; : : : ; Xn]; s + 1 � i � n ; be linearforms in X0; : : : ; Xn with deg"j Di; degtj Di � P(dn; d1; d2); l(Di) � (M1 +M2)P(dn; d1; d2) for all i; j. Denote U = W 0 \ fDs+1 = : : : = Dn = 0g whenn � s and U 0 = W 0 \ fDs+2 = : : : = Dn = 0g when n � s + 1 in Pn(K2).(a) Suppose that dimU = 0. Then one can construct all the irreducible overK2 components (they are points) of the variety U in time polynomial inM1; M2; dn; d1; d2.(b) Suppose that dimU 0 = 1. Then one can construct all the irreducible overK2 components (they are curves) of the variety U 0 in time polynomial inM1; M2; dn; d1; d2.(c) Suppose that dimU = 0. Then one can construct all the irreducible overK2 components (they are points) of the variety U \ fX0 = 0g in timepolynomial in M1; M2; dn; d1; d2.(d) Suppose that dimU 0 = 1. Then one can construct all the irreducible overK2 components (they are points or curves) of the variety U 0 \ fX0 = 0gin time polynomial in M1; M2; dn; d1; d2.PROOF. Let Y be an algebraically independent element over the �eldK2. Consider the following systems of equations( hi � Y Xd�1i = 0; 1 � i � sDj � Y Xj = 0; s + 1 � j � n (9)and ( hi � Y Xd�1i = 0; 1 � i � sDj � Y Xj = 0; s + 2 � j � n (10)These systems can be considered as systems with coe�cints in K2(Y ) withthe set of solutions in Pn(K2(Y )) or as systems with coe�cints in K2 withthe set of solutions in (Pn� A 1)(K2) when Y is considered as a coordinate inA 1 .Denote by fw�g�2� (respectively fv�g�2�1) the family of all de�ned and irre-ducible over the �eld K2(Y ) components of the variety of solutions of system(9) (respectively (10)). Apply the algorithm from [4] and �nd fw�g�2� andfv�g�2�1 .We have dim(w�) = 0 and dim(v�) = 1, see e.g. [4] (so system (9) is just asystem with a �nite number of solutions in Pn(K2(Y ))Now consider Y as a variable. Denote by UY (respectively U 0Y ) the union ofall the irreducible components W 00 of the variety of solutions of system (9)(respectively (10)) in (Pn � A 1 )(K2) such that W 00 is not contained in theunion of a �nite number of hyperplanes fY = cg; c 2 K2. Then, see [4] andc.f. also [3] section 2, the corollary of lemma 6, every w� (respectively v�)corresponds bijectively to the irreducible and de�ned over K2 component W�(respectively V�) of the variety UY (respectively U 0Y ). The algorithm from[4] construct simultaneously with fw�g�2� and fv�g�2�1 also fW�g�2� and14



fV�g�2�1. Remind that the polynomial equtions over K2 which give W� asa set of solutions give also w� under this correspondence if one consider Yas an element of the coe�cient �eld. In output of the algorithm from [4] w�and W� are given by their \general points" and special systems of equationsof the required size. The similar is true for v� and V�.Using the algorithm from [4] �nd all the components fW�;�g�2M� de�ned andirreducible overK2 of the varietyW�\fY = 0g, � 2 � and all the componentsfV�;�g�2M� de�ned and irreducible over K2 of the variety V� \ fY = 0g,� 2 �1. It can be done also using Newton's polygon method by constructingexpansions of coordinates of the \general point" of W� (respectively V�) inthe �eld of fraction-power series 
 = S� 2NK2 ("3)((Y 1= �)) and taking thefree term, c.f. [3] section 3, paragraphs (11), (12), (13).We claim that each componentW�;� (respectively V�;�) which is not containedin fX0 = 0g is a component of the variety U (respectively U 0) and eachcomponent of U (respectively U 0) which (may be contained in fX0 = 0g)is equal to W�;� (respectively V�;�) for some � 2 �; � 2 M� (respectively� 2 �1; � 2M�).Indeed, we have U\A n(K2) (respectively U 0\A n (K2) ) is a subset of solutionsof system (9) (respectively (10)) with the coordinate Y = 0 in A n (K2) . LetS0 be acomponent of U (respectively U 0). Then S0 is not contained in acomponent of solutions of (9) (respectively (10)) which is contained in fY = 0gsince, otherwise, S0 would be a component of (9) (respectively (10)) andthe codimension of S0 would be less than the number of equations in (9)(respectively (10)). So we get the contradiction.Thus, the set of components W�;� (respectively V�;�) which are not containedin fX0 = 0g coincides with the set of components of U (respectively U 0) whichhave a non-empty intersection with A n (K2). This proves the �rst statementand the second statement when n = s (respectively n = s+1) since in this caseU = W 0 (respectively U 0 = W 0) and all the components of U (respectivelyU 0) have a non-empty intersection with A n(K2).Now we can suppose that n > s (respectively n > s + 1). In the proof ofthe second statement one should take into account that some componentsof U and U 0 may be contained in components of greater dimension lying infX0 = 0g of the vatiety of solutions of systems (9) and (10) respectively. Sothis proof is slightly more complicated.There exist linear forms D0i = �i;i�1Di�1 + : : : + �i;nDn, �i;j 2 Z; i � 1 �j � n; �i;i�1 6= 0, s + 2 � i � n (respectively s + 3 � i � n) such thatdimW 0 \fD0s+2 = : : : = D0r = 0g = n� r+1, dimW 0 \fD0s+2 = : : : = D0r =0g\ fX0 = 0g = n� r, for all s+ 2 � r � n (respectively dimW 0 \fD0s+3 =: : : = D0r = 0g = n� r + 2, dimW 0 \ fD0s+3 = : : : = D0r = 0g \ fX0 = 0g =n� r + 1 for all s + 3 � r � n).These forms can be choosen by induction since each time when r < n thereare no components of W 0 \ fD0s+2 = : : : = D0r = 0g \ fX0 = 0g (respectively15



W 0 \ fD0s+3 = : : : = D0r = 0g \ fX0 = 0g) on which all the forms Dr ; : : : ; Dnare vanishing. So there exists a linear combination of them which is notvanishing on every component of W 0 \ fD0s+2 = : : : = D0r = 0g \ fX0 = 0g(respectively W 0 \ fD0s+3 = : : : = D0r = 0g \ fX0 = 0g).Denote U1 = W 0 \ fD0s+1 = : : : = D0n = 0g and U2 = W 0 \ fD0s+2 = : : : =D0n = 0g in Pn(K2). Note that U1 and U2 do not have components whichare contained in fX0 = 0g by the construction described of the forms Di.Besides that, all the components of U1 (respectively U2) are of dimension one(respectively two) and U1\fDn = 0g = U (respectively U2\fDn = 0g = U 0).We shall need also the systems of equations( hi � Y Xd�1i = 0; 1 � i � sD0j � Y (�j;j�1Xj�1 + : : :+ �j;nXn) = 0; s+ 2 � j � n (11)and ( hi � Y Xd�1i = 0; 1 � i � sD0j � Y (�j;j�1Xj�1 + : : :+ �j;nXn) = 0; s+ 3 � j � n (12)Denote by U1;Y (respectively U2;Y ) the union of all the irreducible componentsW 00 of the variety of solutions of system (11) (respectively (12)) in (Pn �A 1)(K2) such that W 00 is not contained in the union of a �nite number ofhyperplanes fY = cg; c 2 K2. We have dimU1;Y = 1; dimU2;Y = 2, see e.g.[4] and c.f. also [3] section 2, the corollary of lemma 6Now let S1 be a component of U (respectively U 0). There exists an irreduciblecomponent S2 of U1 (respectively U2) such that S1 � S2. Then S1 is acomponent of S2 \ fDn = 0g since dim S2 \ fDn = 0g = dimS1.Show that S2 is not contained in a component S3 of the variety of solutionsof system (11) (respectively (12)) in (Pn� A 1)(K2) such that S3 � fY = 0g.Indeed, otherwise S2 � S3, S3 � fh1 = : : : = hs = D0s+2 = : : : = D0n =0g (respectively S3 � fh1 = : : : = hs = D0s+3 = : : : = D0n = 0g) andS3 \ A n (K2) 6= �. So S3 = S2 is a component of U1 (respectively U2). ButdimS2 = 1 (respectively = 2), dim S3 � 2 (respectively � 3) and we getthe contradiction.Thus, there exists a component S4 of the variety U1;Y (respectively U2;Y )such that S4 \ fY = 0g � S2. Then S2 is a component of S4 \ fY = 0g sincedimS2 = dimS4 \ fY = 0g.Since dimS1 = dimS4 � 2 there exists an irreducible component S5 of thevariety S4 \ fDn � Y Xn = 0g such that S1 is a component of S5 \ fY = 0g.Show that S5 is not contained in the union of a �nite number of hyperplanesfY = cg; c 2 K2. Indeed, otherwise S5 � fY = 0g since S5 \ fY = 0g �S1 6= �. So S5 = S1 and we get the contradiction: dimS4 � 1 � dimS5 =dimS1 = dimS4 � 2.Thus, S5 is contained in a component of UY (respectively U 0Y ) since system(11) (respectively (12)) with the additional equation Dn � Y Xn = 0 is equiv-alent to (9) (respectively (10)). Further, dimS5 � dimS4 � 1 = dimUY16



(respectively = dimU 0Y ). Therefore, S5 coincides with a component W� (re-spectively V�) for some � and S1 coincides with a component W�;� (respec-tively V�;�) for some �; �. The second statement is proved.Now to prove (a) and (b) we need only a criteria to determine whether thecomponentW�;� � U (respectively V�;� � U 0) for a component W�;� (respec-tively V�;�) such that W�;� � fX0 = 0g (respectively V�;� � fX0 = 0g).We can verify whether the linear formsDi are vanishing onW�;� (respectivelyV�;�) substituting the \general point" of W�;� (respectively V�;�) in Di fors+1 � i � n (respectively for s+2 � i � n). So it is enough to check whetherW�;� � W 0 (respectively V�;� �W 0).In the following Lemma 11 a criteria is given which a�ords to determinewhether a point from fX0 = 0g belongs to W 0. Using Lemma 11 we canverify whether W�;� � W 0.Consider V�;�. Construct arbitrary (d � 1)2s + 1 points of V�;� in Pn(K2)(one can take e.g. appropriate specializations of the \general point" of V�;�)and verify using Lemma 11 whether they belong to W 0. We claim that ifW�;� 6� W 0 then at least one of the constructed points does not belong to W 0.Indeed, deg W 0 � (d � 1)s and deg W�;� � (d � 1)s. So their intersectionhas at most (d� 1)2s points by the B�ezout inequality. Thus, we constructedeverything which is required in (a) and (b).The statement (c) for U \ fX0 = 0g follows from (a) immediately. Thecomponents of dimension one of U 0 \ fX0 = 0g are the components of U 0lying in fX0 = 0g. Other components of U 0\fX0 = 0g are some componentsof V�;� \ fX0 = 0g where V�;� 6� fX0 = 0g for some � 2 �1; � 2 M . Wecan construct all the points from V�;� \ fX0 = 0g using e.g. the Newtonpolygons method by constructing expansions of coordinates of the \generalpoint" of V� in the �eld of fraction-power series and taking the free term, c.f.[3] section 3, paragraphs (11), (12), (13). Thus, we constructed everythingwhich is required in (c) and (d).The required estimation for the working time of the algorithm described inthe proof of this Lemma follows directly from the estimations for the workingtime of the algorithms applied. Lemma is proved.(17) Let 0 � "4 � "3 be in�nitely small values for the �eld K2 and "4 is in�nitelysmall value for the �eld K2("3). Let K has an order of the real �eld suchas it is described in section 1. It induces the real structure on K2("3; "4) =K("1; "2; "3; "4)LEMMA 11. Let (x01; : : : ; x0n) 2 A n(K2), x0r 6= 0 and deg"1 x0i, deg"2 x0idegtj x0i � P(dn; d1; d2), l(x0i) � (M1 + M2)P(dn; d1; d2) for all i; j. Thenone can ascertain whether the point x0 = (0 : x01 : : : : : x0n) 2 W 0 in timepolynomial in dn; d1; d2;M1;M2.More precisely x0 2W 0 if and only if the system of equations and an inequalityh1 = : : : = hs = X0 � "4Xr = 0; jX0j2 + X1�j�n jXj � x0j j2 � "3 (9)17



has a solution x� 2 A n+1 (K2("3; "4))Thus, applying Theorem 2 we can ascertain whether x0 2 W 0 and if it isso, construct a new order of the real �eld on K which induces the new realstructure on the �eld K2("3; "4) and �nd a solution x� = (x�0; : : : ; x�n) 2A n+1(K3) of system (9) relatively to this real structure of K2("3; "4). Herethe �eld K3 � K2("3; "4) , K3 = K2("3; "4)[�(1);p�1 ] and �(1) is an algebraicelement over K2("3; "4) with minimal polynomial  (1) 2 K2("3; "4)[Z] suchthat deg"i  (1), degtj  (1) � P(dn; d1; d2), l( (1)) � (M1 +M2)P(dn; d1; d2)for all i; j.PROOF. It coincides essentially with the proof of Lemma 5 or Lemma9 in [3]. We can assume that x0 2 fh1 = : : : = hs = 0g = W . Now thestatement of the Lemma is equivalent to the following one: system (9) has nosolutions i� the hyperplane fX0 = 0g contains all the components W1 of thevariety W = fh1 = : : : = hs = 0g � Pn(K) such that x0 2 W1.Let X0 be equal identically to zero on each such W1. Denote V = fh1 = : : : =hs = 0g � A n+1 (K2("3; "4)) . Then there exists a homogeneous polynomialP with coe�cients from K2 such that (X0 =Xr)(V \ fP Xr 6= 0g) = f0gand P (xj) 6= 0. Let x = (0 ; x01 ; : : : ; x0n) 2 A n+1 . Denote fjX � xj2 <"3g � fjX0j2 +P1�j�n jXj � x0j j2 � "3g � A n+1 (K2("3; "4)). Show thatfjX � xj2 < "3g \ V � fXr P 6= 0g \ V .Indeed, otherwise there exists x0 2 A n+1(K2("3; "4)) such that (Xr P )(x0) = 0and jx0 � xj2 < "3 , i.e. (Xr P )(x+ (x0 � x)) = 0 where x0 � x has in�nitelysmall coordinates relatively to the �eld K2. This leads to the contradiction,since x 2 A n+1 (K2) and (Xr P )(x) 6= 0.Thus, we have (X0 =Xr)(fjX � xj2 < "3g \ V ) = f0g , i.e. there are nosolutions of (13) over K2("3; "4).Conversely, suppose that X0 is not equal identically to zero on some compo-nent W1 of W , such that x0 2 W1 . Let V1 � A n+1 (K2) be component of Vcorresponding to W1 , i.e. V1 is given by the same equations as W1 .There exists a closed algebraic curve V2 de�ned and irreducible over K2 suchthat V2 � V1 ; x 2 V2 and X0 (V2) 6= f0g. Let t be a uniformizing element ofsome branch of V2 containing the point x . The coordinate functions x(�) ; 0 �� � n , on V2 in the neighbourhood of the points x = (0 ; x01 ; : : : ; x0n) can berepresented as seriesx(�) = x0� +Xi�1 ti ��;i ; ��;i 2 K; x00 = 0;x(0)x(r) = �0t� +Xi�1 ti+��i ; �i 2 K2 ; 0 < � 2 Z; �0 6= 0:It follows form here that one can solve the equation X0 =Xr = "4 relativelyto t and representt = t0" 1�4 +Xi�1 ti" i�4 2 
 ; ti 2 K2 ; t0 6= 018



x(�) = x0� +Xi�1 ��;i " i�4 2 
 ; ��;i 2 K2where the �eld 
 is the �eld of fration power series in "4 with coe�cients inK2 Besides that, these expressions for x(�) in 
 are algebraic over K2 sinceK2(V2) � K2(x(0) = x(r)) is a �nite extension of �elds due to the fact thatX0(V2) 6= f0g. Therefore, c.f. [3] paragraph (14), since "4 is the in�nitelysmall value relatively to the �eld K2("3) we conclude that these expressionsfor x(�); 0 � � � n, give the solution of system (9) over the �eld K2("3; "4).Lemma is proved.REMARK 4. Note that if x0 2 K then K3 � K("3; "4) ,  (1) 2K("3; "4)[Z]. It follows from Remark 3.(18) Return to the description of the auxiliary algorithm. Namely to the construc-tion ofMs+1; : : : ;Mn,see paragraph (14). Enumerate 2(d�1)2s+2(d�1)s+1di�erent values "� of "3 such that ls+1;0� "� are integers of the required size.Apply Lemma 10 and construct all the irreducible components of U 0 andU 0 \ fX0 = 0g. Substitute \general points" of components of U 0 in theform D0s+1 j"3="� and check whether D0s+1 j"3="� is vanishing on any of thesecomponents , i.e. which is the same whether system (8) has a �nite number ofsolutions in Pn(K2). Substitute \general points" of components of U 0\fX0 =0g in the form D0s+1 j"3="� and check whether D0s+1 j"3="� is vanishing onany of these components. If D0s+1 j"3="� is not vanishing on any of thesecomponents then W 0\fD0s+1 j"3="� = Ds+2 = : : : = Dn = 0g\fX0 = 0g = �(respectively #W 0\fD0s+1 j"3="� = Ds+2 = : : : = Dn = 0g\fX0 = 0g < +1)in Pn(K2) if (a) (respectively (b)) is satis�ed.By paragraph (14) there exists � 2(d � 1)2s + 1 di�erent values "� amongenumerated such that system (8) has a �nite number of solutions in Pn(K2)andW 0\fD0s+1 j"3="� = Ds+2 = : : : = Dn = 0g\fX0 = 0g = � (respectively#W 0 \ fD0s+1 j"3="� = Ds+2 = : : : = Dn = 0g \ fX0 = 0g < +1) in Pn(K2)if (a) (respectively (b)) is satis�ed.For these values "� apply again Lemma 10, construct all the irreducible com-ponents of U and check whether #U\A n(K2) � N3. By Lemma 9 there existsa value "�0 among enumerated such that N2 � N3 � #U \ A n(K2) < +1 andand W 0 \ fD0s+1 j"3="� = Ds+2 : : : = Dn = 0g \ fX0 = 0g = � (respectively#W 0 \ fD0s+1 j"3="� = Ds+2 : : : = Dn = 0g \ fX0 = 0g < +1) in Pn(K2) if(a) (respectively (b)) is satis�ed. We change ls+1;0 for ls+1;0� "�0 and get newforms Ds+1 ; : : : ; Dn .Applying the procedure described further to the second, third, : : : coe�cientsof the forms Ds+1 ; : : : ; Dn , we get the required Ms+1 ; : : : ; Mn.(19) Return to the description of the algorithm, see paragraph (13). Considerthe case when N1 > N , see paragraph (13). In this case using the aux-iliary algorithm with condition (a) we change the forms Ls+1 ; : : : ; Ln forMs+1 ; : : : ; Mn and return to the beginning of the algorithm for the consid-19



ered s. We get #Vs � N1 > N for new linear forms, i.e. the number ofpoints of Vs, see paragraph (1), now is greater than it was.(20) Show that if for the considered h for every xj , 1 � j � N 0 , there exists x�jand the number of solutions in A n (K) of system (6) N1 = N1(j) = N forevery 1 � j � N 0 , thendimfh1 = : : : = hs = h = 0g = dimfh1 = : : : = hs = 0g � 1:Indeed, it is su�cient to prove that h is not equal identically to zero on eachcomponent W1 of the variety W 0. Note that W1 \ fLs+1 = : : : = Ln =0g\ A n(K) 6= � since W1 is projective, W 0\ fLs+1 = : : : = Ln = 0g\fX0 =0g = � and dimW1 = n� s. So there exists 1 � j � N such that xj 2 W1.If N 0 < j � N we have h(xj) 6= 0, see paragraph (6), and the assertionis proved for W1 . If 1 � j � N 0 then by lemma 5 the polynomial h isnot vanishing on some component W2 of W such that xj 2 W2 . Supposethat h is equal identically to zero on W1 . Then by lemma 7 there exist twodi�erent points x0 and x00 which are solutions of (6) and xj;i � x0i ,xj;i � x00iare in�nitely small relatively to the �eld K for all 0 � i � n . On the otherside by lemma 6 for every 1 � j1 � N there exists a solution x000 of system (6)such that x000 2 W1 and x000i � xj1;i are in�nitely small relative to K for all0 � i � n . Therefore, system (6) has � N+1 solutions in A n (K), since pointsxj1 2 Pn(K). This leads to the contradiction. Thus, h is not equal identicallyto zero on W1 . The assertion is proved. We set in this case hs+1 = h .(21) Show that if for every h 2 H there exists xj , 1 � j � N 0 = N 0 (h) for whichdoes not exist x�j , thendimff0 = : : : = fm = 0g = dimfh1 = : : : = hs = 0g = n� s:Indeed, suppose that dimff0 = : : : = fm = 0g < n� s. Let W1 be the sameas above. For each W1 there exist at most m di�erent h 2 H such thath is equal identically to zero on W1. By B�ezout's inequality the number ofcomponents W1 is � (d � 1)s . So, there exists h 2 H such that h is notequal identically to zero on each component W1. Then by lemma 5 for everyxj , 1 � j � N 0 , there exists x�j . We get the contradiction. The assertion isproved.(22) Let s = n . We shall enumerate h 2 H . If there exists h such that 0 62 h (Vn)then ff0 = : : : = fm = 0g\A n (k) = � and dimff0 = : : : = fm = 0g\A n (k) =�1 and we set hn+1 = h. Otherwise dimff0 = : : : = fmg \ A n (k) = 0.(23) Return to paragraph (20). Let h = h0 andW 0 be as above. We shall constructlinear forms L00s+2; : : : ; L00n in X0; : : : ; Xn with coe�cients from Zof the sizeO(nlogd) such thatW 0 \ fh = 0 g \ fL00s+1 = : : : = L00n = 0 g20



is a �nite set in Pn(k). De�ne the setL = f X1�i�n�s ci Ls+i : c 2 Z; 1 � c � (d� 1)s+1(n� s) + 1g:We shall enumerate the elements L 2 L. Let~W = fh1 = : : : = hs = L = 0g � Pn(k)be the variety of all common zeros of polynomials h1; : : : ; hs; L in Pn(k) and~W 0 be the union of all the components W1 of ~W such that W1 \ A n(k) 6= �.Show that ~W 0 = W 0 \ fL = 0g . Indeed, one should only to check thatdimW 0 \ fL = 0g \ fX0 = 0g = dimW 0 � 2. But this fact follows from theequality W 0 \ fL = 0g \ fLs+2 = : : : = Ln = 0g \ fX0 = 0g = �. Thestatement is proved.Thus, ~W 0 \ fLs+2 = : : : = Ln = 0g \ fX0 = 0g = � :In particular each component W1 of W has the dimension equal to n� s � 1in this case.Apply the algorithm from paragraph (6), : : : , (22), changing s for s + 1the polynomials h1; : : : ; hs for h1; : : : ; hs; Ld�1 , the forms Ls+1; : : : ; Ln forLs+2; : : : ; Ln with h = hs+1 (we just checked that it can be done). If we getdimfh1 = : : : = hs = L = hs+1 = 0g \ A n (k) = n� s � 1;then go to the consideration of the next element L 2 L . Otherwise, setL00s+2 = L and we havedimfh1 = : : : = hs = L00s+2 = hs+1 = 0g \ A n (k) = n� s � 2:Note that such L 2 L exists, since by B�ezout's inequality there exists �(d� 1)s+1 components W 00 of the variety fh1 = : : : = hs+1 = 0g \ A n(k) andfor each W 00 there exists � n � s linear forms L 2 L vanishing on W 00.Similarly sequentially for every 2 < i � n � s � 1 construct L00s+i 2 L suchthatdimfh1 = : : := hs = L00s+2 = : : : = L00s+i = hs+1 = 0g\ A n (k) = n� s� i� 1:Thus, we get all the forms L00s+2; : : : ; L00n. It is ful�lled W 0 \ fL00s+2 = : : : =L00n = 0 g \ fLs+1 = 0 g \ fX0 = 0 g = �. So the variety of dimension oneW 0 \ fL00s+2 = : : : = L00n = 0 g does not have irreducible components lying infX0 = 0 g and, therefore, W 0 \ fhs+1 = 0 g \ fL00s+2 = : : : = L00n = 0 g is a�nite set in Pn(k). The required property is satis�ed.(24) Let n > s + 1. Now our aim is to construct linear forms L(s+1)s+2 ; : : : ; L(s+1)n ,see paragraph (1)Apply Lemma 10 when s is changed for s + 1, polynomials h1; : : : ; hs forh1; : : : ; hs; hs+1 and Di = L00i ; s + 2 � i � n. Denote �W = fh1 = : : : =21



hs = hs+1 = 0g � Pn(k) and �W 0 be the union of all the components W1 of�W such that W1 \ A n (k) 6= �. Using Lemma 10 construct all the irreduciblecomponents S1 of U = �W 0 \ fL00s+2 = : : : = L00n = 0g in Pn(k) and all theirreducible components S2 of U 0 = �W 0 \fL00s+3 = : : : = L00n = 0g in Pn(k) andS3 of U 0\fX0 = 0 g. Choose a linear formL000 2 L1 = fX0+cX1+: : :+cnXn :1 � c � n(d� 1)s+1 + 1; c 2Zg such that L000(S1) 6= 0 for each component S1of U . Denote N4 = #U \ A n (k).(25) Consider the case when dimU 0 \ fX0 = 0g = 0. Choose a linear form L 2L1 = fX0 + cX1 + : : :+ cnXn : 1 � c � n(d � 1)s+1 + 1; c 2 Zg such thatL(S3) 6= 0 for each component S3 of U 0 \ fX0 = 0 g.Thus, we get �W 0 \ fL = L00s+3 = : : : = L00n = 0g \ fX0 = 0g = � in Pn(k).The forms L; L00s+3; : : : ; L00n satisfy to all the conditions which are required forL(s+1)s+2 ; : : : ; L(s+1)n apart of the bound, may be, for the size of coe�cients fromZ. So, if it nescessary, apply the auxiliary algorithm with condition (a), seeparagraphs (14) and (18), changing s for s + 1 the variety W 0 for �W 0 andDs+1; : : : ; Dn for L; L00s+3; : : : ; L00n. We get the formsMs+2; : : : ; Mn with therequired size of coe�cients from Zsuch that �W 0 \ fMs+2 = : : : = Mn =0g \ fX0 = 0g = � in Pn(k). Set L(s+1)i = Mi; s + 2 � i � n in this casewhen dimU 0 \ fX0 = 0g = 0.(26) Consider the case when dimU 0 \ fX0 = 0g = 1 in this and next paragraphs.Choose and �x a component S3 of U 0 \ fX0 = 0 g such that dimS3 = 1.Construct a point x0 2 S3, c.f. the proof of Lemma 10. Apply Lemma11 changing s for s + 1, the variety W 0 for �W 0, polynomials h1; : : : ; hs forh1; : : : ; hs; hs+1 and �nd a point x� 2 �W 0 in Pn(K3) such that st x� = x0relatively to some real structure. We shall consider below in paragraph (27)this real structure. By Remark 4 we have K3 � K("3; "4) . Change thedenotations "3; "4 for "1; "2. Then K3 � K("1; "2) and K3 may play the roleof K2 in the conditions of the other lemmas.(27) Find 
i 2 K3 such that(L00i � 
iL000 )(x�) = 0; s+ 2 � i � n:Denote M 0i = L00i � 
iL000 for s + 2 � i � n. Note that 
i are in�nitely smallvalues relatively to the �eld K since in the considered real structure , seeparagraph (27) , we have st x� = x0 2 Pn(k).Apply Lemma 8 (d) and (c) changing s for s + 1, the variety W 0 for �W 0,polynomials h1; : : : ; hs for h1; : : : ; hs; hs+1 when the forms Di = L00i , eDi =
iL000 , s + 2 � i � n. We get that N4 = # �W 0 \ fL00s+2 = : : : = L00n =0g \ A n (k) < # �W 0 \ fM 0s+2 = : : : = M 0n = 0g \ A n(k) = N5 < +1 sincex� 2 �W 0 \ fM 0s+2 = : : : = M 0n = 0g \ A n (k) but stx� = x0 62 �W 0 \ fL00s+2 =: : : = L00n = 0g \ A n (k).Apply Lemma 10 changing s for s + 1, the variety W 0 for �W 0, polynomialsh1; : : : ; hs for h1; : : : ; hs; hs+1 the �eld K2 for K3 when the forms Di = M 0i ,22



s+2 � i � n. Thus, construct all the irreducible components of �W 0\fM 0s+2 =: : : = M 0n = 0g in Pn(K3).Apply the auxiliary algorithm from paragraphs (14) and (18) with the condi-tion (b) changing s for s + 1, the variety W 0 for �W 0, polynomials h1; : : : ; hsfor h1; : : : ; hs; hs+1 the �eld K2 for K3 when the forms Di = M 0i s + 2 �i � n. The condition (b) is satis�ed here by lemma 8 (c). Thus, constructforms Ms+2; : : : ;Mn with the required size of coe�cients from Zsuch that# �W 0 \ fMs+2 = : : : = Mn = 0g \ A n(k) � N5.Change the formsL00s+2; : : : ; L00n forMs+2; : : : ;Mn and return to the beginningof paragraph (24).(28) We have #U \ A n (k) � (d� 1)s+1 for arbitrary forms L00s+2; : : : ; L00n such that#U < +1 by B�esout's inequality. So, there are at most (d � 1)s+1 returnsfrom paragraph (27) to paragraph (24). Therefore, we shall construct linearforms L(s+1)s+2 ; : : : ; L(s+1)n in the required time in paragraph (25).Similarly there are at most (d�1)s returns from paragraph (19) to paragraph(1).The required estimation for the working time of the all algorithm describedfollows directly from the estimations for the working time of the algorithmsapplied. Theorem 1 is proved.
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