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IntroductionThe models considered so far require exact computations, see [3],[4],[5], but in prac-tice exact computations of values of sparse polynomials are very di�cult. Indeed,we cannot even compute values of sparse polynomials in small integer points suchas 2,3,: : : . Since the lengths of the values will be exponential in the size of input inthe general case.We suggest two models which a�ord to avoid these di�culties. The �rst is theinterpolation with the modular oracle, see section 1, and the second the interpola-tion with the oracle which gives the real (or complex) evaluations of values of theconsidered polynomial and these evaluations have polynomial in the size of inputlengths, see section 2. The simple proof of theorem 2 of section 2 was found afterthe discussion with D.Yu. Grigoriev by the authors and independently by S.A. Ev-dokimov.In this paper for an integer a we de�ne the bitwise lengthl(a) = minfs 2Z: jaj � 2s�1g;and if q 2 Q then l(q) = l(q1)+ l(q2) where q = q1=q2; q1; q2 2Z; GC D (q1 ; q2) = 1.1 Fast modular interpolation of sparse polynomi-alsLet f 2 Q[X1; : : : ;Xn] be a polynomial, f =P(i1;:::;in)2I fi1;:::;inXi11 : : :Xinn where0 6= fi1;:::;in 2 Q; I�Zn+; #I= t; l � max(i1 ;:::;in)2Il(fi1 ; : : : ;in); gxi(f) <for every i. Therefore, the size of f is less than tnl(log(d) + 1).We consider the following oracle:INPUT: (a; p) where p is a prime number, a 2 Fnp = (Z=pZ)n.OUTPUT: f(a) = f(a)mod p 2 Fp [ f�g, where a 2 Zn;a mo p = a andf(a) = � i� there exists (i1; : : : ; in) 2 I such that fi1;:::;in = f 0i1;:::;in=p�, 1 � � 2Z,p does not divide the numerator and the denominator of f 0i1;:::;in .We suppose that the working time of this oracle for input (a; p) is polynomialin log p; t; n; l; logd.REMARK. One can consider also a slightly di�erent oracle for whichf(a) 2 Fp [ f1g and f(a) = 1 i� f(a) = q1=(q2p�) with 1 � � 2 Z, q1; q2 2Z,GCD(q1; q2; p) = 1. For this oracle one can also prove the formulated below theo-rem. The proof is almost without changes.THEOREM 1. Using the oracle described one can reconstruct f in time poly-nomial in t; l; n; logd. 2



PROOF Consider at �rst the case when n = 1; f 2 Q[X]. We need thefollowing auxiliary algorithm.AUXILIARY ALGORITHM:INPUT: s 2 NDESCRIPTION: Find by enumerating a minimal prime ps = p � 1mod s. Findby enumerating � 2 Fp such that �p = 1; � 6= 1. Compute using the oracle f(�t);0 � t < s. If f(�t) 6= � for all t then solve the linear systemX0�j<s�j�tj = f(�t) 0 � t < sand �nd �0; : : : ; �s�1 2 Fp .OUTPUT: (i) The element �(s) = � =Pj2Js �j�j 2 Fp [�] where Fp[�] = Fp[X]=(Xs�1) is the group algebra of the cyclic group of the order s, � = Xmod (Xs � 1), andthe set Js = fj : �j 6= 0; 0 � j < sg:(ii) The symbol � if f(�t) = � for some 0 � t < s.We shall identify Js with the subset of Z=sZ.Note that(1) by Linnik's theorem, see [6] p � sc where c is constant,(2) �j = Xfi: i mod s=j & i2Ig fi mod pfor every j 2 Js,(3) fi = 0 if i mod s =2 Js.Denote Is;j = fi : i mod s = j & i 2 Ig for every 0 � j < s.MAIN ALGORITHM (for n = 1)Find the �nite set S consisting of successive primes 2; 3; : : : such thatYs2S s > maxf2l+1; dgdt(t�1)=2 22ltFor every s 2 S apply the auxiliary algorithm to the input s. Let S1 be the subsetof s 2 S such that the auxiliary algorithm with the input s has output (i). Set� = maxs2S1 #JsS2 = fs 2 S1 : #Js = �gLEMMA (i) � = t(ii) Qs2S2 s > maxf2l+1; dg 2tl(iii) #Is;j = 1 for every s 2 S2 and j 2 Js.PROOF � � t, and � = t implies (iii).Note that Qs2SnS1 s � LCMs2SnS1fpsg � LCM0�i�deg(f)fdenominator(fi)g �3



2lt, since s and ps are primes and ps � 1 mod s. So Qs2S1 s � (Qs2S s)=2lt >maxf2l+1; dgdt(t�1)=22lt. Let N = Qi1>i2; i1;i22I(i1� i2). Then N < dt(t�1)=2. Theconditions s 2 S1 and s does not divide N imply � = t, since �j =Pi2Is;j fimodp.We have Qs2S1 ;sjN s < N , since s 2 S1 are di�erent primes. Therefore, Qs2S2 s �(Qs2S1 s)=(Qs2S1;sjN s) > (Qs2S1 s)=dt(t�1)=2 > maxf2l+1; dg2lt. Lemma is proved.Fix s0 2 S2. For every s 2 S2; s 6= s0 apply the auxiliary algorithm to the inputss0. Denote by S3 the subset of s 2 S2 such that the auxiliary algorithm with inputss0 has output (i), i.e. for every s 2 S3 we get in output of the auxiliary algorithm�(ss0) and Jss0 .Note thatQs2S2nS3 s � LCMs2S2nS3fpss0g � LCM0�i�deg(f)fdenominator(fi)g < 2lt, sinces and pss0 are primes and pss0 � 1mod (ss0).Therefore, Qs2S3 s � (Qs2S2 s)=2lt > maxf2l+1; dg.Construct the mappings �0 : Jss0 �! Js0 and�s : Jss0 �! Js;which are reductions mod s0 and mod s respectively for every s 2 S3; s 6= s0. Themappings �0 and �s are bijective, since #Jss0 = #Js = t and �0(Jss0) = Js0,�s(Jss0) = Js by (2), see above.Using chinese reminders theorem �nd minimal uj 2Z; 0 � uj < ; j 2 Js0 suchthat uj mod s = �s��10 (j);uj mod s0 = jfor all j 2 S3. It is possible, since Qs2S3 s > d.We have I = fuj : j 2 Js0g by (2). Again applying chinese reminders theorem�nd fi; i 2 I from the conditionsfi mod ps = �j ; jfij < 2l;where j = i mod s 2 Js for every s 2 S3. It is possible since LCMs2S3fpsg >Qs2S3 s > 2l+1.Thus, we can reconstruct f in the required time in the case n = 1. The caseof n variables is reduced to n = 1 by the substitution Xi = Xdi�1 ,1 � i � n.Denote �f = f(X;Xd; : : : ; Xdn�1 ). The oracle for f gives the oracle for �f . Sowe can reconstruct �f in time polynomial in t; l; log(ndn) + 1, i.e. polynomial int; n; l; log(d) + 1. Then knowing �f one can easy �nd f . The theorem is proved.2 Fast interpolation of sparse polynomials withreal and complex coe�cientLet f be the same as in section 1. Consider the following oracleINPUT (a1; : : : ; an) 2 Qn and polynomials P1; P2 in 4 variables with integer co-e�cients. 4



OUTPUT (i) u 2 Q such that jf(a) � uj < 2�P1(t;l;n;logd),(ii) the symbol � if u does not exist.The working time of this oracle is polynomial in P1�i�n l(ai); t; l; n.THEOREM 2. Using the oracle described one can reconstruct f in time poly-nomial in l; n; t logd.PROOF Consider the case n = 1; f = P1�i�t fiXbi . Let � > 0. Considerthe expansion f(1 + �) =Xi fi + �Xi fibi + �2Xi fi�bi2�+ � � �Choose � and the oracle such that we can �nd from this expansion 2t termsPi fi�bij �;0 � j � 2t with the exactness 2�2lt�1. It is possible, since jPi fi�bij �j < t2tldj. Forexample, one can take � = (22lt+l+2d2tt2)�1. So we can �nd qj 2 Q such thatjPi fi�bij �� qjj < 1=22lt+1 and l(qj) < P (t; l; n; logd) for some polynomial P . Butthe denominator of each Pi fi�bij � = uj is less than 2lt. So uj is the uniquelydetermined appropriate traction in the expansion of qj in the chain fraction. It canbe found in time polynomial in t; l; n; log d.Thus, we can �nd all uj; 0 � j � 2t, and, therefore, all vj; 1 � j � 2t, whereX1�i�t fib ji = vj ; 1 � j � 2t:Now we can �nd from this system, as it is well known in the theory of interpo-lation of sparse polynomials, all fi and bi; 1 � i � t.Remind how it can be done. Consider the linear operator A : Rt! RtA ((r1 ; : : : ;rt)T) = (1r1; : : : ;trt)T(T denotes the transponation). The eigen-values of A are b1; : : : ; bt. Let F = (f1; : : : ; ft)T . Then F;AF; : : : ; At�1F is a basisofRt. Let � : Rn! Rbe the sum of coordinate, i.e. �((r1; : : : ; rt)T ) = r1+: : :+rt.Consider the following matrix(vi+j�2)i;j = 0BBBB@ �F �AF � � � �At�1F �AtF�AF �A2F � � � �AtF �At+1F... ... ... ...�At�1F �AtF � � � �A2t�2F �A2t�1F 1CCCCAThe �rst t columns of this matrix are linearly independent. Indeed, otherwise thereexist �1; : : : ; �t 2 R; (�1; : : : ; �t) 6= (0; : : : ;0) such that(�Aj)( X1�i<t�iAi�1F ) = 0 ; 0 � j < ti.e. 0 6=Pi �iAi�1F 2 T0�j<tKer(�Aj) = f0g and we get the contradiction whichproves our assertion. 5



Therefore, there exist unique �0; : : : ; �t�1 2 R such that(�Aj)(At+P0�i<t �iAi�1)(F ) = 0; 0 � j < t. By the same argument as above weget (At +P0�i<t�iAi�1)(F ) = 0. It follows from here that(At + X0�i<t�iAi�1)(AjF ) = 0for all j. It means that Zt +Pi �iZi is the characteristic polynomial of A (up tothe sign). We can �nd �i solving the linear system for the linear dependence ofcolumns of the matrix (vi+j�2)i;j and then �nd bi; 1 � i � t, which are roots ofZt +Pi �iZi. After that solving linear system we �nd fi; 1 � i � t. Thus wereconstruct f in the case n = 1.In the case of many variables we can proceed similarly to that it was in section 1by reduction from arbitrary n to n = 1. The theorem is proved.REMARK. We can change everywhere in the de�nitions of f , the oracle, . . .and the statement of the theorem 2 the �eld Q for the �eld Q[i] where i = p�1.The theorem will be true also in this case. The proof is almost without changes.References[1] Grigoriev D.Y., Karpinski M., Singer M.F., The Interpolation Problem for k-Sparse Sums of Eigenfunctions of Operators. Advances in Applied Mathematics12 (1991) pp. 76{81.[2] Grigoriev D.Y., Karpinski M., Algorithms for Sparse Rational Interpolations.Proc. ISSAC, 1991, pp. 7{13.[3] Grigoriev D.Y., Karpinski M., Singer M.F., Fast Parallel Algorithms for SparseMultivariate Polynomial Interpolation over Finite Fields. SIAM Journal of Com-put. 19, #6 (1990) pp. 1059{1063.[4] Kaltofen E., Yagati, L., Improved Sparse Multivariate Polynomial InterpolationAlgorithms. Preprint. Rensselaer Polytechnic Institute, 1988.[5] Karpinski, M., Boolean Circuit Complexity of Algebraic Interpolation Problems,Proc. CSL '88, LNCS 385 (1989), Springer Verlag, pp. 138{147.[6] Zippel R. Interpolating Polynomials from their Values. Journal of SymbolicComputation 9 (1990) pp. 375{403.[7] Prachar K. Primzahlverteilung, Springer Verlag, Berlin G�ottingen Heidelberg,1957. 6


