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Abstract

In this paper we consider the interpolation of sparse polynomials in
two different oracle models taking into account the size of coefficients
only.
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Introduction

The models considered so far require exact computations, see [3],[4],[5], but in prac-
tice exact computations of values of sparse polynomials are very difficult. Indeed,
we cannot even compute values of sparse polynomials in small integer points such
as 2,3,.... Since the lengths of the values will be exponential in the size of input in

the general case.

We suggest two models which afford to avoid these difficulties. The first is the
interpolation with the modular oracle, see section 1, and the second the interpola-
tion with the oracle which gives the real (or complex) evaluations of values of the
considered polynomial and these evaluations have polynomial in the size of input
lengths, see section 2. The simple proof of theorem 2 of section 2 was found after
the discussion with D.Yu. Grigoriev by the authors and independently by S.A. Ev-

dokimov.
In this paper for an integer a we define the bitwise length
l(a) =min{s € Z : |D| < E~7¥},

and if ¢ € Q then I(q) = l(q1) +1(g2) where ¢ = ¢1/q2; 1,92 € Z, GCD(ige, 1) = W

1 Fast modular interpolation of sparse polynomi-

als

Let f € Q[Xy,...,X] be a polynomial, f = Z(il,...,in)el fio i, X Xin where
0 ;ﬁ fz’l,...,z’n eQ, IcC Z[X, #Hl==, <> max(3, . 3,)el <(ij, .. .,:l[x), 5n3(6) <
for every i. Therefore, the size of f is less than tnl(log(d) + 1).

We consider the following oracle:
INPUT: (@,p) where p is a prime number, @ € F* = (Z/1Z)*.

OUTPUT: f(a) = f(a)mod p € F, U {*}, where a € Z¥D»>x 1 = O and
f(@) =+ iff there exists (i1,...,4,) € I such that f;, ; = i/l,...,in/pa’ 1<aeZ,

p does not divide the numerator and the denominator of fz'/l,...,i .

n

We suppose that the working time of this oracle for input (@, p) is polynomial

in logp,t,n,l logd.

REMARK. One can consider also a slightly different oracle for which
f(@) € F,U{oo} and f(a) = oo iff f(a) = ¢1/(g2p®) with 1 < o« € Z, 1,92 € Z,
GCD(q1,q2,p) = 1. For this oracle one can also prove the formulated below theo-

rem. The proof is almost without changes.

THEOREM 1. Using the oracle described one can reconstruct f in time poly-

nomial wm t, 1, n,logd.



PROOF  Consider at first the case when n = 1,f € Q[X]. We need the

following auxiliary algorithm.

AUXILIARY ALGORITHM:
INPUT: s ¢ N
DESCRIPTION: Find by enumerating a minimal prime p;, = p = 1 mod s. Find
by enumerating ¢ € T, such that (¥ = 1,{ # 1. Compute using the oracle f({*),
0<t<s. If f(¢') # * for all ¢ then solve the linear system

oM =5(¢) 0<t<s
0<5<s
and find Ag,..., As_1 €TF,.
OUTPUT: (i) The element A(*) = X = > il Ajod € T [o] where T, [o] = TF, [X]/(X~—
) is the group algebra of the cyclic group of the order s, ¢ = X mod (X* — 1), and
theset J,={j: A #0,0<j < s}

(i) The symbol * if f(¢*) = * for some 0 < ¢ < s.
We shall identify J; with the subset of Z/~Z.

Note that
(1) by Linnik’s theorem, see [6] p < s® where ¢ is constant,
2)
Aj = Z fi mod p

{i:imod s=j & iel}
for every j € Js,
(3) f; =0 if imods & Js.
Denote I, ; ={i: imods=j & i€ I} forevery 0 <j<s.

MAIN ALGORITHM (for n = 1)

Find the finite set S consisting of successive primes 2,3, ... such that

H s> max{?l"'l, d}dt(t—l)/Z 921t
SES

For every s € S apply the auxiliary algorithm to the input s. Let S7 be the subset
of s € S such that the auxiliary algorithm with the input s has output (i). Set

a = max #Js
sES,

So={se€S :#J,=a}

LEMMA (i) a = t
(i) Tlies, s> max{2/+1 d} 2t
(i) #I,; =1 for every s € Sy and j € J,.

PROOF o <t and o =1 implies (iii).
Note that HseS\S1 s < LOMges\s,{ps} < LOMoc<i<deg(s)idenominator(f;)} <



2" since s and p, are primes and p, = 1 mod s. So [Tics, s > (Iles s5)/21 >
max{ 21 d}dtt-1/29% Let N = [liisi i1 i0er(it —i2). Then N < dt¢=1/2_ The
conditions s € S; and s does not divide NV imply a = ¢, since A; = Zie[s,j fi mod p.
We have HsESl,s|N s < N, since s € 57 are different primes. Therefore, H5652 s>
(ILies, $)/ UL es, siv 8) > Ies, 5)/dt=1/2 > max{2+1 d}2%. Lemmais proved.

Fix sy € S2. For every s € Sa,s # sp apply the auxiliary algorithm to the input
ssg. Denote by Ss the subset of s € S5 such that the auxiliary algorithm with input
ssg has output (i), i.e. for every s € Sz we get in output of the auxiliary algorithm
A(50) and Jsso-

Note that
H5652\53 s < LOMes,\5,1Pss0) < LOMo<i<deg(pytdenominator(f;)} < 2! since
s and pgs, are primes and p,s, = 1 mod (ssp).

Therefore, [T,cq, 5 > ([T,cs, 5)/2" > max{2/*! d}.
Construct the mappings
BGot Jssg — Js,  and
Bs : JssD — JSa
which are reductions mod sy and mod s respectively for every s € S3,s # sg. The
mappings Sy and f; are bijective, since #J55, = #Js = t and Go(Jss,) = Jso,
Bs(Jsso) = Js by (2), see above.

Using chinese reminders theorem find minimal u; € Z, ¥ < &3 <, J € J., such

that
ujmod s = B 351(j),
uj mod 5o = j

for all j € S3. It is possible, since H5653 s> d.

We have I = {u; : j € J,,} by (2). Again applying chinese reminders theorem
find f;, ¢ € I from the conditions

fimodp,=x; , |fil <2,
where j = imod s € J; for every s € S3. It is possible since LOM es,{ps} >

141
H56535>2+~

Thus, we can reconstruct f in the required time in the case n = 1. The case
of n variables is reduced to n = 1 by the substitution X; = Xdl_l,l <i<n.
Denote f = f(X,X? . ..,an_l). The oracle for f gives the oracle for f. So
we can reconstruct f in time polynomial in t,l,log(nd”) + 1, i.e. polynomial in

t,n,l log(d) + 1. Then knowing f one can easy find f. The theorem is proved.

2 Fast interpolation of sparse polynomials with
real and complex coefficient
Let f be the same as in section 1. Consider the following oracle

INPUT (ay,...,an) € Q% and polynomials Py, Ps in 4 variables with integer co-

efficients.



OUTPUT (i) u € Q such that |f(a) — u| < 2= Fr(t:Lnlogd)
(ii) the symbol # if 4 does not exist.

The working time of this oracle is polynomialin >, .., {(ai), ¢, {, n.

THEOREM 2. Using the oracle described one can reconstruct f in time poly-

nomial wn I, n,tlogd.

PROOF Consider the case n = 1, f = ZKthiXb’. Let € > 0. Consider

the expansion
fl46) = Zf +ezi:fibi+ezzi:fi (2) 4

Choose € and the oracle such that we can find from this expansion 2¢ terms ), f; (l}’),
0 < j < 2t with the exactness 272~1 It is possible, since [> fi (l}’) < t21d7 . For
example, one can take ¢ = (2%1++242%42)=1  So we can find q; € Q such that
> fi (l}’) — qj] < 1/2%+L and I(¢;) < P(t,1,n,logd) for some polynomial P. But
the denominator of each >, f; (l}’) = wu; is less than 2. So u; 1s the uniquely

determined appropriate traction in the expansion of ¢; in the chain fraction. It can

be found in time polynomial in ¢, {, n, logd.

Thus, we can find all u;, 0 < j < 2¢, and, therefore, all v;, 1 < j < 2¢, where

Y fibl=v o, 1<i<on
1<i<t

Now we can find from this system, as it is well known in the theory of interpo-

lation of sparse polynomials, all f; and b;, 1 <17 <¢.

Remind how it can be done. Consider the linear operator A : R® — R=

A~y . \z)T) = (e, - .,z\z)T (T denotes the transponation). The eigen-
values of A are by, ..., b;. Let F = (f1,...,f;)7. Then F, AF,... A""1F is a basis
of R®. Let o : RX — IR be the sum of coordinate, i.e. a((r1,...,7)T) = ri+.. +r.

Consider the following matrix

oF cAF .. gA'T'F cAtF
cAF cA%F ... cAtF gAML
(Vigj—2)ij = : :
cA"TIE gA'F ... gATEIpR | gAZ-lp

The first ¢ columns of this matrix are linearly independent. Indeed, otherwise there

exist Ap, ..., At € R, (A, .., Ax) £ (K, ..., F) such that

(AN (> NATIR) =0, 0<j<t

1<i<t

Le. 0 £ >, NATTIF € No<j<t Ker(cA7) = {0} and we get the contradiction which

proves our assertion.



Therefore, there exist unique pg, ..., pui—1 € R such that
(e AT) (A + D o<ict pi AT (F) =0, 0 < j < t. By the same argument as above we
get (A" + 3 cicy i ATH)(F) = 0. It follows from here that

(A4 3 AT F) =0
0<i<t

for all j. It means that Z* + 3, piZ% is the characteristic polynomial of A (up to
the sign). We can find p; solving the linear system for the linear dependence of
columns of the matrix (viy;_2); ; and then find b;, 1 < ¢ < ¢, which are roots of

Zt + > wiZ%. After that solving linear system we find f;, 1 < ¢ < ¢. Thus we

reconstruct f in the case n = 1.

In the case of many variables we can proceed similarly to that it was in section 1

by reduction from arbitrary n to n = 1. The theorem is proved.

REMARK. We can change everywhere in the definitions of f, the oracle, ...
and the statement of the theorem 2 the field @ for the field Q[3] where i = /—1.

The theorem will be true also in this case. The proof is almost without changes.
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