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1 IntroductionChordal graphs became interesting as a generalization of interval graphs (see forexample [8]). We call a graph chordal if every cycle of length greater than three hasa chord, i.e. an edge that joins two non consecutive vertices of the cycle. Note thatinterval graphs are not only chordal but strongly chordal as de�ned in [3]. Stronglychordal graphs are just those chordal graphs having a so called strongly perfectelimination ordering.In this paper we consider the sequential and parallel complexity of the maximummatching problem in chordal and strongly chordal graphs. Note that in general alinear time algorithm for perfect matching is not known. Here we shall show that,provided a strongly perfect elimination ordering is known, a maximummatching ina strongly chordal graph can be found in linear time by a simple greedy algorithm.This algorithm can be turned into a (non optimal) parallel algorithm. The randombits in the algorithm of [9] can be eliminated in the special case of strongly chordalgraphs.On the other hand, we shall �nd out that matching restricted to chordal graphs(also restricted to path graphs) is of the same parallel complexity degree as bipartitematching.In section 2, we shall introduce the basic notation. In section 3 we considerthe sequential and parallel complexity of maximummatching restricted to stronglychordal graphs. In section 4 we discuss the parallel complexity of matching restrictedto path graphs.2 Notation and Basic De�nitionsA graph G = (V;E) consists of a vertex set V and an edge set E. Multiple edgesand loops are not allowed. The edge joining x and y is denoted by xy.We say that x is a neighbor of y i� xy 2 E. The full neighborhood of x is the setfxg [ fy : xy 2 Eg consisting of x and all neighbors of x and is denoted by N (x).A path is a sequence (x1 : : : xk) of distinct vertices such that xixi+1 2 E.A cycle is a closed path, that means a sequence (x0 : : :xk�1x0) such that xixi+1 (mod k) 2 E.A subgraph of (V;E) is a graph (V 0; E0) such that V 0 � V , E0 � E.An induced subgraph is an edge-preserving subgraph, that means (V 0; E0) is aninduced subgraph of (V;E) i� V 0 � V and E0 = fxy 2 E : x; y 2 V 0g.A graph (V;E) is chordal i� each cycle (x0 : : :xk�1x0) of length greater than3 has an edge xixj 2 E; j � i 6= �1 mod k (which joins vertices which are notneighbors in the cycle). Sometimes they are also called triangulated or rigid circuitgraphs. We remark that this notion is equivalent to the nonexistence of an inducedcycle of length greater than 3.Independently Gavril [5] and Buneman [1] proved the following:Theorem: A graph is chordal i� it is the intersection graph of vertices of sub-trees of a tree, i.e. the vertices of the chordal graph corresond to subtrees of a �xed2



tree and two vertices of the chordal graph are joined by an edge i� the corresondingsubtrees share a vertex of the tree.A path graph is the intersection graph of a collection of paths of a tree.We also can de�ne chordal graphs by characteristic orderings.Theorem: [4] A graph G = (V;E) is chordal i� there is an ordering < of V ,such that with x < y, x < z, xy 2 E, and xz 2 E, we have yz 2 E. Such anordering is called a perfect elimination ordering.A graph G = (V;E) is called strongly chordal [3] i� there is an ordering < onthe vertices of V such that1. for xy; xz 2 E, such that x < y and x < z, also yz 2 E,2. for x1y2; x2y1; x1x2 2 E, such that x1 < y1 and x2 < y2, we have y1y2 2 E.Such an ordering is called a perfect elimination ordering.A matching of G = (V;E) is a subset M of E such that no two edges share avertex. A matching of maximal size is called a maximum matching. If all verticesof G belong to an edge of the matching M then M is called a perfect matching.3 Maximum Matching Algorithms for StronglyChordal GraphsWe assume that a strongly perfect elimination ordering < of the vertex set of thegraph G = (V;E) i.e. the corresponding enumeration (v1; : : : vn) is given.We claim that the following algorithm computes a maximum matching in astrongly chordal graph.1. V 0 := V ; M := ;;2. Repeatuv is an edge in E with u; v 2 V 0, u is minimal with respect to <, v is the<-smallest vertex in V 0 than is adjacent to u;M :=M [ fuvg; V 0 := V 0 n fu; vguntil there are no edges in E with both incident vertices in V 0.It is easily seen that this algorithm has a time bound of O(n+m).We have to show the correctness.For a matchingM of G, we call a pair of edges u1u2 and w1w2 in M a defect ofM if1. u1w1 2 E,2. u1 < w2, and w1 < u2. 3



Lemma 1: If there is a matching of cardinality k then there is a defect freematching of the same cardinality k.Proof: We label the edge vivj with lvivj := (i � j)2. Suppose there is a defectconsisting of the pair u1u2 and w1w2. Then, by de�nition u1w1 2 E. Since u1 < w2and w1 < u2 and < is a strongly perfect elimination ordering, u2w2 2 E. Thereforewe get a matching M 0 where the edges u1u2 and w1w2 are replaced by the edgesu1w1 and u2w2.Claim: �e2M 0 le < �e2M le.Proof of Claim: For simplicity, we identify the vertices with their indices vi.We consider the following subcases:First case u1 < w2 < w1 < u2:(u2 � w2)2 + (w1 � u1)2 = (u2 �w2)2 + ((w1 � w2) + (w2 � u2))2= (u2 �w2)2 + (w1 �w2)2 + 2(w1 �w2)(w2 � u1) + (w2 � u1)2< (w1 �w2)2 + (u2 �w2)2 + 2(u2 � u1)(w2 � u1) + (w2 � u1)2= (w1 � w2)2 + (u2 � u1)2:Second case u1 < w1 < w2 < u2:(w1 � u1)2 + (u2 �w2)2 < (u2 � u1)2 < (u2 � u1)2 + (w2 � w1)2Third case u1 < w1 < u2 < w2: Then the inequality (w1 � u1)2 � (w2 � u2)2 <(u2 � u1)2 + (w2 �w1)2 follows immediately.All other possible cases are permutations of the cases as considered.2 (Claim)Clearly after the removal of several defects, we �nd a matching of the samecardinality with a minimum sum of labels le. This matching is free of defects.2 (Lemma)Lemma 2: The maximummatching obtained by above algorithm is defect free.Proof: Suppose there is a defect u1w1, u2w2 with u1 < w2, u2 < w1 andu1u2 2 E. Suppose u1 < u2. Then w1 is not the minimal choice of a neighbor asrequired by the algorithm.2 (Lemma)Theorem 1: The matching computed by the above algorithm is a maximummatching.Proof: We consider any defect free maximummatchingM and the matchingM 0computed by the above algorithm.Let x be the smallest vertex y such that M restriced to fuju � yg and M 0restricted to fuju � yg are di�erent. Then M restricted to fuju < xg and M 0restricted to fuju < xg coincide. It cannot be that x is covered by an edge of Mbut not by an edge of M 0, because necessarily x has a neighbor that is not covered4



by M restricted to fuju < xg and the edge joining x with the minimum neighbor tmust be in M 0(if t < x then x is chosen as the smallest neighbor of t not covered bythe matching considered before. If x < t then t is chosen as the smallest neighborof x by above algorithm). Suppose x is in an edge of M 0 but does not appear in anedge of M . Note that x has a neighbor t that is not in an edge of M restricted tofuju < xg. We add xt to M and delete the edge ty 2M if such an edge exists.Therefore we may assume that there are edges xt of M and an edge xt0 of M 0that are incident with x. Note that t0 < t < x and t0 does not belong to an edge ofM restricted to fuju < xg. Moreover, it cannot belong to an edge of M . Otherwisethere is an edge t0y 2M with y > x and t0y and xt forms a defect. Therefore in M ,we can replace xt by xt0 and the new matchin M coincides with M 0 in fuju � xg.By induction, we get a maximum matching that coincides with M 0.2 (theorem)Corollary: For strongly chordal graphs, a maximummatching can be computedin linear timeTheorem 2: In strongly chordal graphs, one can �nd a perfect matching bya CREW-PRAM in O(log2 n) time with a polynomial processor bound if a perfectmatching exists.Proof: We prove that there is at most one defect free perfect matching. Sincethis is the perfect matching with the minimum sum of labels luv = (u� v)2, we geta perfect matching by the minimum perfect matching algorithm of [9] in O(log2 n)time with a polynomial processor bound.Lemma 3: There exists at most one defect free perfect matching.Proof: Assume there are defect-free perfect matchings M and M 0. Assume Mand M 0 coincide in fuju < xg but not in fuju � xg. Suppose xt 2M and xt0 2M 0are the edges in M and M 0 respectively that are incident with x. Without loss ofgenerality, we assume that t0 < t. Both t and t0 do not appear in any edge of Mand M 0 with both incident vertices in fuju < xg. Therefore the edge t0u in M thatis incident with t0 must have the property that u > x. But then t0u and xt form adefect in M . This is a contradiction.2 (lemma)2 (theorem)Remark: A strongly perfect matching of a strongly chordal graph can be com-puted in O(log4 n) time with a linear processor number [2]. Therefore it is possibleto get an NC-algorithms to compute a perfect matching in strongly chordal graphsalso without the knowledge of a strongly perfect elimination ordering.4 The Parallel Complexity of Maximum Matchingin Path GraphsTheorem 3: Suppose the we can �nd a perfect matching of a path graph inpolylogarithmic time with a polynomial processor bound. Then we can �nd aperfect matching in a bipartite graph in polylogarithmic time with a polynomialprocessor bound, i.e. the marriage problem is in NC.5



Proof: We construct a reducton from the the bipartite perfect matching probleminto the perfect matching problem restricted to path graphs that can be computedin logarithmic time with O(n2) processors.Given a bipartite graph B = (V [W;E) with all edges incident with exactly onevertex in V and exactly one vertex in W . Note that B has only a perfect matchingif V and W have the same size.We construct an interval representation as follows.The tree T is consists of a main node c, vertices tv, for each v 2 V , and verticessw;i, 1 � i < deg(w), w 2W . The parent of each tv and each sw;1 is c and the theparent of each sw;i is sw;i�1, for i 6= 1.The collection P of paths is constructed as follows. For each node t 6= c of T ,we provide a one node path pt containing exactly t, and for each vw 2 E, we havea path qvw containing tv, c, and all nodes sw;i.It is easily seen that this path representation and therefore also the resultingpath graph G = (P; EG) can be constructed in O(logn) time with O(n2) processorsby a CREW-PRAM.It remains to show that each perfect matching in G induces a perfect matchingin B and vice versa.Suppose a perfect matching M og G is given. Note that there are as manypaths pt as paths qvw. Note that each path pt shares a node only with a path qvw.Therefore a perfect matching of G consists only of edges of the form ptqvw. Sincethere are deg(w) � 1 nodes sw;i, exactly and deg(w) many paths qv;w, exactly onepath qv;w is matched with pt;v, say qvw;w. Then M 0 = fvwwjw 2 Wg de�nes aperfect matching in B.Vice versa, we assume that a perfect matching M 0 of B is given. For eachvw 2M 0, let ptvqvw 2M and for each v0w 2 E with v0 6= v, choose a distinguishednumber iv0 < deg(w) and let sw;iv0 qv0w 2M . M de�nes a perfect matching of G.2 (theorem)5 ConclusionsWe would like to mention that the parallel perfect matching algorithm for stronglychordal graphs is not optimal. It remains an intersting problem to �nd an optimalparallel perfect elimination algorithm for strongly chordal graphs.Finally we would like to remark that strongly chordal graphs are exactly thechordal graphs that are complements of comparability graphs [6]. It is known thatthe perfect matching problem restricted to complements of cocomparability graphsis equivalent to 2-processor scheduling, and this can be done in log2 n) time with apolynomial processor bound [7]. It might be interesting to �nd a reasonable upperclass of strongly chordal graphs and complements of comparability graphs such thatthe perfect matching problem can still be parallelized.6
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