On the Sequential and Parallel
Complexity of Matching in
Chordal and Strongly Chordal
Graphs

Elias Dahlhaus

Basser Department of Computer Science
University of Sydney
Australia

Marek Karpinski

Department of Computer Science
University of Bonn

53117 Bonn
and

International Computer Science Institute
Berkeley, California

January, 1994

Abstract

In this paper we consider the sequential and parallel complexity
of the maximum matching problem in chordal and strongly chordal
graphs. We prove that, given a strongly perfect elimination ordering,
a maximum matching in a strongly chordal graph can be found in a
linear time. On the other hand we observe that the matching problem
restricted to chordal (paths) graphs is of the same parallel complexiy
as a general bipartite matching.

*Supported in part by the DFG Grant KA 673/4-1, by the ESPRIT BR Grants 7097 and
ECUS030, and by the Volkswagen—Stiftung. E Mail: marek@cs.uni-bonn.de.

1 Introduction

Chordal graphs became interesting as a generalization of interval graphs (see for
example [8]). We call a graph chordal if every cycle of length greater than three has
a chord, 1.e. an edge that joins two non consecutive vertices of the cycle. Note that
interval graphs are not only chordal but strongly chordal as defined in [3]. Strongly
chordal graphs are just those chordal graphs having a so called strongly perfect
elimination ordering.

In this paper we consider the sequential and parallel complexity of the maximum
matching problem in chordal and strongly chordal graphs. Note that in general a
linear time algorithm for perfect matching is not known. Here we shall show that,
provided a strongly perfect elimination ordering is known, a maximum matching in
a strongly chordal graph can be found in linear time by a simple greedy algorithm.
This algorithm can be turned into a (non optimal) parallel algorithm. The random
bits in the algorithm of [9] can be eliminated in the special case of strongly chordal
graphs.

On the other hand, we shall find out that matching restricted to chordal graphs
(also restricted to path graphs) is of the same parallel complexity degree as bipartite
matching.

In section 2, we shall introduce the basic notation. In section 3 we consider
the sequential and parallel complexity of maximum matching restricted to strongly
chordal graphs. In section 4 we discuss the parallel complexity of matching restricted
to path graphs.

2 Notation and Basic Definitions

A graph G = (V, E) consists of a verter set V and an edge set E. Multiple edges
and loops are not allowed. The edge joining z and y is denoted by zy.

We say that z is a neighbor of y iff zy € E. The full neighborhood of x is the set
{x}U{y : 2y € E} consisting of # and all neighbors of # and is denoted by N(z).

A path is a sequence (z7 ...xy) of distinct vertices such that z;2;41 € E.

A cyele is a closed path, that means a sequence (g ...2;_12¢) such that z;
Tit1 (mod k) € E.

A subgraph of (V, E) is a graph (V', E') such that V! C V, B/ C E.

An induced subgraph is an edge-preserving subgraph, that means (V', E’) is an
induced subgraph of (V,E)iff V. CV and B! ={ay e F:x,ye V'}.

A graph (V| E) is chordal iff each cycle (zg...25_120) of length greater than
3 has an edge #z;2; € E,j — ¢ # 1 mod k (which joins vertices which are not
neighbors in the cycle). Sometimes they are also called triangulated or rigid circuit
graphs. We remark that this notion is equivalent to the nonexistence of an induced
cycle of length greater than 3.

Independently Gavril [5] and Buneman [1] proved the following:

Theorem: A graph is chordal iff it is the intersection graph of vertices of sub-
trees of a tree, 1.e. the vertices of the chordal graph corresond to subtrees of a fived

tree and two vertices of the chordal graph are joined by an edge iff the corresonding
subtrees share a vertex of the tree.

A path graph is the intersection graph of a collection of paths of a tree.
We also can define chordal graphs by characteristic orderings.

Theorem: [4] A graph G = (V, E) is chordal iff there is an ordering < of V|
such that with < y, * < z, xy € F, and #z € F, we have yz € E. Such an
ordering is called a perfect elimination ordering.

A graph G = (V, E) is called strongly chordal [3] iff there is an ordering < on
the vertices of V such that

1. for zy,xz € F/, such that # < y and # < z, also yz € F,

2. for xyys, xoy1, x129 € F, such that x1 < y; and x5 < y2, we have y1y» € E.

Such an ordering is called a perfect elimination ordering.

A matching of G = (V, E) is a subset M of E such that no two edges share a
vertex. A matching of maximal size 1s called a mazimum matching. If all vertices
of G belong to an edge of the matching M then M is called a perfect matching.

3 Maximum Matching Algorithms for Strongly
Chordal Graphs

We assume that a strongly perfect elimination ordering < of the vertex set of the
graph G = (V, E) i.e. the corresponding enumeration (v, ...v,) is given.

We claim that the following algorithm computes a maximum matching in a
strongly chordal graph.

L. V':=V; M :=0;

2. Repeat

uv is an edge in F with u,v € V/, u is minimal with respect to <, v is the
<-smallest vertex in V'’ than is adjacent to u;

M = M U{uv}; V' = V' \ {u,v}

until there are no edges in F with both incident vertices in V.

It is easily seen that this algorithm has a time bound of O(n 4+ m).

We have to show the correctness.

For a matching M of G, we call a pair of edges ujus and wiws in M a defect of
M if

1. wqw, € F,

2. uy; < wo, and wy < us.

Lemma 1: If there is a matching of cardinality & then there is a defect free
matching of the same cardinality k.

Proof: We label the edge viv; with l,,,; 1= (i — j)?. Suppose there is a defect
consisting of the pair uyus and wyws. Then, by definition u;w; € E. Since u; < ws
and wy < ug and < is a strongly perfect elimination ordering, usws € E. Therefore
we get a matching M’ where the edges ujus and wyws are replaced by the edges
uiwy and usws.

Claim: EeEM’le < EeEMle~
Proof of Claim: For simplicity, we identify the vertices with their indices v;.

We consider the following subcases:
First case u; < wsy < wy < us:

(uz — wa)® + (w1 — w1)* = (up — w2)” + (w1 — wa) + (wa — uy))?
= (ug — wa)? + (w1 — w2)? + 2(wy — ws)(we — uy) + (wy — uy)?
< (w1 = wa)® + (ug — wa)* 4 2(uz — ur) (w2 — u1) + (wa — ug)?

= (w — w2)2 + (ug — U1)2~
Second case u; < wy < wy < Us:

2 2

(wi — 1) + (uz — wa)? < (uz — up)? < (ug — up)? 4 (wo — wy)

Third case u; < w; < us < wy: Then the inequality (wy — u1)? — (wa — u2)? <
(g —up)? + (w2 — wi)? follows immediately.

All other possible cases are permutations of the cases as considered.
O (Claim)

Clearly after the removal of several defects, we find a matching of the same
cardinality with a minimum sum of labels /.. This matching is free of defects.

0O (Lemma)
Lemma 2: The maximum matching obtained by above algorithm is defect free.

Proof. Suppose there 1s a defect uywi, usws with u; < ws, us < wy and
uyuy € E. Suppose u; < uy. Then w; is not the minimal choice of a neighbor as
required by the algorithm.

0O (Lemma)

Theorem 1: The matching computed by the above algorithm is a maximum
matching.

Proof: We consider any defect free maximum matching M and the matching M’
computed by the above algorithm.

Let @ be the smallest vertex y such that M restriced to {ulu < y} and M’
restricted to {ulu < y} are different. Then M restricted to {u|u < x} and M’
restricted to {ulu < z} coincide. Tt cannot be that # is covered by an edge of M
but not by an edge of M’, because necessarily x has a neighbor that is not covered

by M restricted to {ulu < #} and the edge joining « with the minimum neighbor ¢
must be in M’(if t < # then # is chosen as the smallest neighbor of ¢ not covered by
the matching considered before. If # < ¢ then ¢ is chosen as the smallest neighbor
of z by above algorithm). Suppose z is in an edge of M’ but does not appear in an
edge of M. Note that & has a neighbor ¢ that is not in an edge of M restricted to
{ulu < z}. We add zt to M and delete the edge ty € M if such an edge exists.

Therefore we may assume that there are edges xt of M and an edge xt’ of M’
that are incident with z. Note that ¢’ < ¢ < z and t' does not belong to an edge of
M restricted to {u|u < z}. Moreover, it cannot belong to an edge of M. Otherwise
there is an edge 'y € M with y > x and 'y and xt forms a defect. Therefore in M,
we can replace #t by xt’ and the new matchin M coincides with M’ in {u|u < }.
By induction, we get a maximum matching that coincides with M’.

O (theorem)

Corollary: For strongly chordal graphs, a maximum matching can be computed
in linear time

Theorem 2: In strongly chordal graphs, one can find a perfect matching by
a CREW-PRAM in O(log2 n) time with a polynomial processor bound if a perfect
matching exists.

Proof. We prove that there is at most one defect free perfect matching. Since
this is the perfect matching with the minimum sum of labels I,,, = (u—v)?, we get
a perfect matching by the minimum perfect matching algorithm of [9] in O(log? n)
time with a polynomial processor bound.

Lemma 3: There exists at most one defect free perfect matching.

Proof: Assume there are defect-free perfect matchings M and M’. Assume M
and M’ coincide in {u|u < 2} but not in {u|u < #}. Suppose 2t € M and zt’' € M’
are the edges in M and M’ respectively that are incident with z. Without loss of
generality, we assume that ¢ < ¢. Both ¢ and ¢ do not appear in any edge of M
and M’ with both incident vertices in {u|u < #}. Therefore the edge t'u in M that
is incident with ¢ must have the property that u > z. But then ¢« and zt form a
defect in M. This is a contradiction.

O (lemma)
O (theorem)

Remark: A strongly perfect matching of a strongly chordal graph can be com-
puted in O(log* n) time with a linear processor number [2]. Therefore it is possible
to get an NC-algorithms to compute a perfect matching in strongly chordal graphs
also without the knowledge of a strongly perfect elimination ordering.

4 The Parallel Complexity of Maximum Matching
in Path Graphs

Theorem 3: Suppose the we can find a perfect matching of a path graph in
polylogarithmic time with a polynomial processor bound. Then we can find a
perfect matching in a bipartite graph in polylogarithmic time with a polynomial
processor bound, i.e. the marriage problem is in NC.

Proof. We construct a reducton from the the bipartite perfect matching problem
into the perfect matching problem restricted to path graphs that can be computed
in logarithmic time with O(n?) processors.

Given a bipartite graph B = (VUW,) with all edges incident with exactly one
vertex in V' and exactly one vertex in WW. Note that B has only a perfect matching
if V and W have the same size.

We construct an interval representation as follows.

The tree T is consists of a main node ¢, vertices t,, for each v € V', and vertices
Swi, 1 <i< deg(w), w& W. The parent of each t, and each s, 1 is ¢ and the the
parent of each sy ; 15 8y -1, for ¢ # 1.

The collection P of paths is constructed as follows. For each node ¢t # ¢ of T
we provide a one node path p; containing exactly ¢, and for each vw € E, we have
a path gy containing ?,, ¢, and all nodes s, ;.

It is easily seen that this path representation and therefore also the resulting
path graph G = (P, E) can be constructed in O(logn) time with O(n?) processors
by a CREW-PRAM.

It remains to show that each perfect matching in GG induces a perfect matching
in B and vice versa.

Suppose a perfect matching M og G is given. Note that there are as many
paths p; as paths ¢,. Note that each path p; shares a node only with a path ¢y .
Therefore a perfect matching of G consists only of edges of the form p;qyq. Since
there are deg(w) — 1 nodes s, ;, exactly and deg(w) many paths ¢, ., exactly one
path ¢y . 1s matched with p; ., say ¢y, w. Then M’ = {v,wlw € W} defines a
perfect matching in B.

Vice versa, we assume that a perfect matching M’ of B is given. For each
vw € M’ let py, quw € M and for each vw € E with v’ # v, choose a distinguished
number i,; < deg(w) and let sy ; ,qurw € M. M defines a perfect matching of G.

O (theorem)

5 Conclusions

We would like to mention that the parallel perfect matching algorithm for strongly
chordal graphs is not optimal. It remains an intersting problem to find an optimal
parallel perfect elimination algorithm for strongly chordal graphs.

Finally we would like to remark that strongly chordal graphs are exactly the
chordal graphs that are complements of comparability graphs [6]. It is known that
the perfect matching problem restricted to complements of cocomparability graphs
is equivalent to 2-processor scheduling, and this can be done in log? n) time with a
polynomial processor bound [7]. It might be interesting to find a reasonable upper
class of strongly chordal graphs and complements of comparability graphs such that
the perfect matching problem can still be parallelized.

6 Acknowledgements

Recently Stephan Olariu has mentioned to us that R. Lin got similar results to
ours. We are grateful to Avi Wigderson, Joseph Naor, and Alejandro Schaeffer for
a number of intersting conversations.

References

[1] P. Bunemann, A Characterization of Rigid Circuit Graphs, Discrete Mathe-
matics 9 (1974), pp. 205-212.

[2] E. Dahlhaus, Chordale Graphen im besonderen Hinblick auf parallele Algorith-
men, Habilitation Thesis, University of Bonn, 1991.

[3] M. Farber, Characterizations of Strongly Chordal Graphs, Discrete Mathemat-
ics 43 (1983), pp. 173-189.

[4] D. Fulkerson, O. Gross, Incidence Matrices and Interval Graphs, Pacific Journal
of Mathematics 15 (1965), pp.835-855.

[6] F. Gavril, The Intersection Graphs of Subtrees in Trees Are FExactely the
Chordal Graphs, Journal of Cobinatorial Theory Series B, vol. 16(1974), pp.
47-56.

[6] P. Gilmore, A. Hoffman, A Characterization of Cocomparability Graphs and
of Interval Graphs, Canadian Journal of Mathematics 16 (1964), pp. 539-548.

[7] D. Helmbold, E. Mayr, Two Processor Scheduling is in NC, in VLSI Algorithms
and Architectures (F. Makedon et al. ed.), LNCS 227 (1986), pp. 12-15.

[8] C. Lekkerkerker, J. Boland, Representation of a Finite Graph by a Set of
Intervals on the Real Line, Fundamenta Mathematicae 51.

[9] K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix inversion,

Combinatorica 7 (1987), pp. 105-113.

