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c of the variety in time polynomial in d(c+1)(n�c) and the size of input which provesthe hypothesis from [3]. We are going to present these algorithms in next papers.By constructing the algorithm in this work the technics of the real algebraicgeometry is essentially used. Here the result from [10] is crucial which in its turnis based on the result of [9], see below section 2. We consider algebraically closed�elds but for them the existance of the automorphism of the complex conjugationis essential or more generally of the conjugation over a really closed sub�eld, seesection 1.Note that the probabilistic algorithm for the computation of the dimension issimple in every characteristic. For every s one takes in random an hyperplaneHs of the dimension s, adds to the initial family of polynomials linear ones whichdetermine Hs and �nd whether the set of zeros of this new family is �nite. Thiscan be done in time polynomial in dn. The dimension will be equal to n� s1 wheres1 is the maximal s for which this set of zeros is �nite.Now we give the precise statements. Let k = Q(t1; : : : ;tl; �) be the �eldwhere t1; : : : ; tl are algebraaically independant over the �eld Q and � is alge-braic over Q(t1; : : : ;tl) with the minimal polynomial F 2 Q[t1; : : : ;tl;Z]and leading coe�cient lcZF of F is equal to 1. Let homogeneous polynomialsf0; : : : ; fm 2 k[X0; : : : ; Xn] be given. Consider the closed algebraic set or which isthe same in this paper the algebraic varietyV = f(x0; : : : ; xn) : fi(x0; : : : ; xn) = 0 80 � i � mg � Pn(�k) :This is a set of all common zeros of polynomials f0; : : : ; fm in Pn(�k), where �k is analgebraic closure of k. The dimension dimV of V is de�ned to be the maximum ofdimensions of all irreducible components of V .We present each polynomial f = fi in the formf = 1a0 Xi0;:::;in X0�j<deg�ai1;:::;in;j�jXi00 � � �Xinn ;where a0; ai1;:::;in;j 2Z[t1; : : : ;tl]; gcdi1;:::;in;j(a0;ai1;:::;in;j) = 1. We de�nethe length l(a) of an integer a by the formula l(a) = minfs 2 Z: jaj < 2s�1g.The length of coe�cients l(f) of the polynomial f is de�ned to be the maximum oflength of coe�cients fromZof polynomials a0; ai1;:::;in;j . By de�nitiondegt�(f) = maxi1;:::;in;jfdegt�(a0); degt�(ai1;:::;in;j)g ;where 1 � � � l. In the similar way degt� F and l(F ) are de�ned.We shall suppose that we have the following boundsdegX0;:::;Xn(fi) < d; degt�(fi) < d2; l(fi) < M;degZ(F ) < d1; degt�(F ) < d1; l(F ) < M1 :2



The size L(f) of the polynomial f is de�ned to be the product of l(f) to thenumber of all the coe�cients fromZof f in the dense representation. We haveL(f) < (�d+ nn �d1 + 1)dl2l(f)Similarly L(f) < dl+11 l(F ). Below if there is no special mention about it we set l tobe �x.THEOREM. The dimension dimV of the variety V of common zeros of poly-nomials f0; : : : ; fm in projective space over �k can be computed within the timepolynomial in dn, d1, d2M , M1.REMARK. The working time of the algorithm from the theorem is essentialythe same as by solving system of polynomial equations with a �nite set of solutionsin projective space. So it can be formulated also in the case when l is not �xed, see[3].1 Constructing a real structure on the constant�eldIn this section l is not �xed. Let k1 = Q(t1; : : : ;tl)[�] be some algebraic ex-tension of k, where the element � has minimal polynomial ' 2 Q[t1; : : : ;tl;Z],lcZ' = 1, l(') < M2 and degt� ', degZ ' < D1 for all �. Our aim is to construct areal structure on k1. By the real structure we mean an embedding k1 � k2(p�1),where k2 is a real ordered �eld, see [1].Compute the discriminant0 6= � = ResZ('; '0Z) 2 Q[t1; : : : ;tl]:Find consequently z1; : : : ; zl 2 Q such that �(z1; : : : ; zi; ti+1; : : : ; tn) 6= 0. Onecan �nd 0 � zi � 2D21, zi 2 Z. The polynomial ' = '(z1; : : : ; zl; Z) 2 Q[Z] isseparable, since �(z1; : : : ; zl) 6= 0. Suppose that ' has not only real roots. In thiscase we shall �nd(i) an irreducible polynomial 	 2 Q[Z], lcZ	 = 1, which has a real root �,(ii) polynomials R1; I1 2 Q[Z] with degZ R1; degZ I1 < degZ 	, such that fora chosen not real root � of ' we have � = R1(�) + p�1 I1(�) in the �eldQ[ �;p�1 ].Let '1 = '=(Z��) 2 Q[ � ][Z] and A = Q[ �; �1p�1 ] = Q[� ][Z;Z1]=('1;Z21+1)be a separable Q{algebra, where�1 = Z mod ('1; Z21 + 1); p�1 = Z1 mod ('1; Z21 + 1):3



Let v1 = 12(�+�1), v2 = 12p�1 (���1); v1; v2 2 A. Construct an element v = v1+cv2which is a primitive element of the separable algebra Q[v1;v2] over Q. One can�nd 1 � c � 2D21, c 2Z. Find the minimal polynomial � 2 Q[Z], lcZ� = 1, of theelement v over Q and polynomials R2; I2 2 Q[Z]; degR2; deg I2 < deg �, such thatR2(v) = v1, I2(v) = v2.Factor � = Qj �j into the product of ireducible polynomials �j 2 Q[Z], lcZ�j =1. Set Q[�j;p�1 ] = Q[Z;Z1]=(�j;Z21+1), where �j = Z mod (�j; Z21+1),p�1 =Z1 mod (�j; Z21 + 1). Find  such that � has a real root � for which R2(�) +p�1 I2(�) = �. The existance of  follows immediately from the construction andthe fact that � is not a real root of '. Finitely, we set 	 = � , � = � and R1; I1to be the residues from the division of R2 and I2 by � .In the case when ' has a real root � we can also take � = �, 	 = ', R1 = Z,I1 = 0. So in any case we can construct �, 	, R1, I1 for which (i) and (ii) hold.Denote ui = ti � zi, 1 � i � l. By Hensel's lemma the element � can berepresented as a series� = �0 + X(i1; ::: ;il)>(0; ::: ;0) �i1; ::: ;�lui11 � � � uill 2 Q[� ][[u1; : : : ;ul]];where �0 = �, �i1; ::: ;il 2 Q[ � ] � Q[ �;p�1 ]. Therefore, �0 = �(1)0 + p�1 �(2)0 ,�i1; ::: ;il = �(1)i1; :::;il +p�1 �(2)i1; :::;il, where �(1)0 ; �(2)0 ; �(1)i1; :::;il; �(2)i1; ::: ;il 2 Q[ � ].De�ne elements �(1) = �(1)0 + X(i1; ::: ;il)>(0; :::;0) �(1)i1; ::: ;ilui11 � � �uill ;�(2) = �(2)0 + X(i1; ::: ;il)>(0; :::;0) �(2)i1; ::: ;ilui11 � � �uill :Suppose that � is not real. Then we have � = �(1) + p�1 �(2). The element~� = �(1) � p�1 �(2) is a root of the polynomial '1 = '=(Z � �) 2 Q[�][Z] �Q[ �;p�1 ][[u1; : : : ;ul]][Z], since ' 2 Q[t1; : : : ;tl;Z].Set � = �(1)+c�(2) where c is the same as for v = v1+cv2, see above. Our aimnowis to construct the minimal polynomial 	 2 Q[t1; : : : ;tl;Z] of the element � and�nd R; I 2 Q(t1; : : : ;tl)[Z], degZ R; degZ I < degZ 	, such that �(1) = R(�),�(2) = I(�) (we shall prove that such polynomials exist). So � = R(�) +p�1 I(�).Let m = (t1� z1; : : : ; tl� zl) be the maximal ideal of Q[t1; : : : ;tl] generatedby t1 � z1; : : : ; tl � zl, S = Q[t1; : : : ;tl]nm and B = S�1Q[t1; : : : ;tl] thelocal ring. Let A = B[�; �1;p�1 ] = B[�][Z;Z1]=('1; Z21 + 1);where �1 = Z mod ('1; Z21 + 1), p�1 = Z1 mod ('1; Z21 + 1). Therefore, we haveA = A=mA, � = � modmA, �1 modmA.4



Let v1 = 12 (� + �1), v2 = 12p�1(� � �1), v = v1 + cv2, v1; v2; v 2 A. Findthe minimal polynomial � 2 Q(t1; : : : ;tl)[Z], lcZ� = 1, of the element v overQ(t1; : : : ;tl).Note that � 2 Q[t1; : : : ;tl;Z] since v is integral over Q[t1; : : : ;tl] and thisring is integrally closed, see 2. Therefore, �(z1; : : : ; zl; v) = 0, since A = A=mAand v = v modmA. So degZ � � degZ �.On the other hand degZ � coincides with the number of di�erent elements12(�0 + �01) + c�2p�1(�0 � �01);where �0; �01 are di�erent roots of ' in Q(t1; : : : ;tl). The degree � of B[v1; v2]
BQ(t1; : : : ;tl) over Q(t1; : : : ;tl) is equal to the number of di�erent pairs�12(�0 + �01); 1�2p�1(�0 � �01)� :So � = degZ '(degZ ' � 1) and degZ � � �. Similarly the degree � = [Q[v1;v2] :Q] = degZ'(degZ'�1) and deg � = �, since v is a primitive element of Q[v1;v2]over Q. We have degZ ' = degZ '. Thus, � = � � degZ � � degZ � = �.Therefore degZ � = degZ � and �(z1; : : : ; zl; Z) = �. Besides that, v is a primitiveelement of B[v1; v2] 
B Q(t1; : : : ;tl) over Q(t1; : : : ;tl). Therefore, thereexist polynomialsR3; I3 2 Q(t1; : : : ;tl)[Z], degZ R3; degZ I3 < degZ � such thatR3(v) = v1, I3(v) = v2. We �nd these polynomials R3; I3.Let �1 = ResZ(�;�0Z) 2 Q[t1; : : : ;tl] be the discriminant of �. Then �1R3and�1I3 2 Q[t1; : : : ;tl;Z], since v1 and v2 are integral over Q[t1; : : : ;tl], see 2.Note that �1(z1; : : : ; zl) = ResZ(�;�02) 6= 0. So R3 jt1=z1; ::: ;tl=zl ; I3 jt1=z1; ::: ;tl=zlare de�ned and coincide with R1; I1 since v = v modmA, v1 = v1 modmA,v2 = v2 modmA.Factor � = Qi �i, see 3, into the product of irreducible over Q(t1; : : : ;tl)polynomials �i 2 Q[t1; : : : ;tl;Z], lcZ�i = 1. Find i0 such that 	 divides�i0(z1; : : : ; zl;Z). We set 	 = �i0 and R; I to be the residues of the division of R3; I3 by �i0 .Show that 	(�) = 0. Indeed, �(�) = 0, since � and ~� are di�erent roots of', see above, and � = 12(� + ~�) + c2p�1(� � ~�). So there exists a unique index i1such that �i1(�) = 0. This equality can be considered as an equality in the ringQ[ �;p�1 ][[u1; : : : ;ul]]. Therefore, �i1(z1; : : : ; zl; �) = 0 and i0 = i1, 	 = �i1 ,since � is separable.We have � = R3(�) +p�1 I3(�)~� = R3(�)�p�1 I3(�);5



since there exists an epimorphism A! B[�; ~�;p�1 ], such that � 7! �, �1 7! ~�,and, therefore, v 7! �, v1 7! 12 (� + ~�), v2 7! 12p�1 (� � ~�). Hence,� = R(�) +p�1 I(�)~� = R(�) �p�1 I(�):The polynomial 	(z1; : : : ; zl; Z) is separable since it divides �. So by Hensel'slemma the element � can be represented as a series� = �0 + X(i1; ::: ;il)>(0; ::: ;0) �i1; ::: ;ilui11 � � � uill ; (1)where �0 = �, �i1; ::: ;il 2 Q[ � ]. From (1) and equalities � = �(1) +p�1 �(2) =R(�) +p�1 I(�) we infer that�(1) = R(�); �(2) = I(�):Thus we have constructed the required polynomial 	; R; I in the case when � is notreal. If � is real we set 	 = ', � = � = �(1), �(2) = 0, R = Z, I = 0 and all theformulated above statements are satis�ed.Now de�ne an order of a real �eld on the �eld k2 = Q(t1; : : : ;yl)[�]. Con-sider the embedding k2 � Q[ � ]((u1; : : : ;ul)) = k3 which is determined by (1).The order on k2 will be induced by the order on the �eld of formal power seriesQ[ � ]((u1; : : : ul)) or equivalently on the ring of formal power seriesQ[ � ][[t1; : : : ;tl]].The monomials ti1 � � � till in the �eld k3 are linearly ordered in the following way:ui11 � � � uill > uj11 � � � ujll i� there exists x such that i1 = j1; : : : ; ix�1 = jx�1 andix < jx. An element � 2 Q[ � ][[t1; : : : ;tl]] is positive i� the coe�cient fromQ[ � ] in the maximal monomial of � with a non{zero coe�cient is positive. Theorder on Q[ � ] � R is induced by the order in R. This order on k3 is an order of areal �eld, see 2.We resume the results obtained in the followingLEMMA 1. For the �eld k1 an embedding of �elds over Q(t1; : : : ;tl) canbe constructed k1 = Q(t1; : : : ;tl)[�] � Q(t1; : : : ;tl)[�;p�1 ];where � is an algebraic element over Q(t1; : : : ;tl) with minimal polynomial	 2 Q[t1; : : : ;tl;Z], lcZ	 = 1 and� = R(�) +p�1 I(�)with R(Z); I(Z) 2 1�2Q[t1; : : : ;tl][Z], �2 = ResZ(	;	0Z) is the discriminant of	; degZR; degZI < degZ	 � D21; degt�	; degt�R; degt�I � P(D1); l(	); l(R); l(I) <6



(M2 + l)P(D1) for some polynomial P and all �. For Q(t1; : : : ;tl)[�] the orderof a real ordered �eld is constructed. The working time of constructing 	; R; I andthe order on Q(t1; : : : ;tl)[�] is polynomial in Dl1 and M2.PROOF. The fact that R; I 2 1�2Q[t1; : : : ;tl;Z] is proved similarly to thatR3; I3 2 1�1Q[t1; : : : ;tl;Z], see above. The bounds for degrees, length and theworking time follow immediately from the description of the algorithm. All theother statements were proved above.LEMMA 2. Let ! 2 Q(t1; : : : ;tl)[�], ! = 1cP0�j�deg	 cj�j , where c; cj 2Z[t1; : : : ;tl], degt�c; degt�cj < D, l(c); l(cj) < M3 for all �; j. Then one canascertain whether ! > 0 within time polynomial in Dl1; Dl;M2;M3.PROOF. Changing ! for !c2 we can suppose that c = 1. The minimal polyno-mialH(Z) of the element ! over Q(t1; : : : ;tl) belongs to Q[t1; : : : ;tl;Z] anddegt�H = �� < P(D;D1) and l(H) < (M1+M2+ l)P(D;D1) for some polynomialP, degZH � 2D21 for all �.Let !j1; ::: ;jluj11 � � � ujll be the maximal monomial of ! considered as an elementof k3. Show that j1 � �1; : : : ; jl � �l and !j1; ::: ;jl 2 Q[ � ] is one of the roots of thepolynomial (( � � � (H(Zuj11 � � � ujll )=u�11 ) jt1=z1 � � � )=u�ll ) jtl=zl ;where �1; : : : ; �l are choosen maximal, such that after the cancellation to u�ii oneobtains a polynomial fromZ[t1; : : : ;tl][Z].Indeed, let H = H1(u1; : : : ; ul; Z) for some polynomialH1 2 Q[u1; : : : ;ul;Z].Considering Newton's polygon of H1 relatively (Z; u1) we get j1 � �1, see e.g.[4]. Denote H2 = (H1(Zuj11 )=u�11 ) jt1=z1 . We have degt�H2 � degt�H1, � > 1,degZH2 � degZ H1, l(H2) � l(H1) and !j1; ::: ;jluj22 � � � ujll is a maximal monomialof H2. Therefore, by induction we ascertain the required statements.Thus, we can construct !j1; ::: ;jl in the required time and check whether!j1; ::: ;jl > 0 within the same time; Lemma is proved.Below we shall need the followingLEMMA 3. There exists a polynomial P such that changing in the con-struction described elements zi for arbitrary elements z�i 2 Q with jzi � z�i j <2�P(D1)(M2+l), 1 � i � l, we can choose � � instead of � so that we get �� = �;R� =R; I� = I;	� = 	.PROOF. Suppose that the following requirements are satis�ed:(a) �(z�1 ; : : : ; z�l ) 6= 0,(b) �1(z�1 ; : : : ; z�l ) 6= 0,(c) there exists a real root ~� of the polynomial 	(z�1 ; : : : ; z�l ; Z).7



Then we set � � = (R jt1=z�1 ; ::: ;tl=z�l )(~�) + p�1(I jt1=z�1 ; ::: ;tl=z�l (~�) (it can becomputed due to (b)). We have '(R(�) � p�1 I(�)) = 0; � = R(�) + cI)�). So'(z�1 ; : : : ; z�l ; � �) = 0. Let � � correspond to � in our construction when � � cor-responds to �. Then we have � � = ~� and by the uniqueness in Hensel's lemma�� = �;	� = 	; R� = R.Note that in the assumptions of the Lemma (a), (b), and (c) are satis�ed forsome polynomial P. Lemma is proved.Remind that the �eld Q(t1; : : : ;tl) has the order induced by the linear or-der on monomials uj11 : : : ujll described above. Denote by Q ~(t1; : : : ;tl) the realclosure of the �eld Q(t1; : : : ;tl) with this �xed order.LEMMA 4. The construction of this section gives all the possible realstructures of the �eld Q(t1; : : : ;tl)[�] when Q(t1; : : : ;tl) is a real ordered�eld with the �xed order decribed above. More exactly, for every embedding� : Q(t1; : : : ;tl)[�]! Q ~(t1; : : : ;tl)[p�1 ] there exists an embedding�1 : Q(t1; : : : ;tl)[�]! Q(t1; : : : ;tl)[�;p�1 ]from Lemma 1 and an embedding�2 : Q(t1; : : : ;tl)[�]! Q ~(t1; : : : ;tl)of real ordered �elds which induces the embedding�02 : Q(t1; : : : ;tl)[�]! Q ~(t1; : : : ;tl)[p�1 ]such that � = �02 � �1 (all embeddings over Q(t1; : : : ;tl)).The arbitrariness of the construction of this section consists in the choice of theroot � of the polynomial '.PROOF. Follows directly from the description of Q ~(t1; : : : ;tl) as a �eld ofmultiple fraction{power series over real closure ~Q of Q, see e.g. [1].2 Solving an auxiliary system over the �eld of realnumbersIn this section by the proof of Lemma 5 we follow [10]. The proof of the analogue ofLemma 5 in [10] is based in its turn on the idea from [9]. We give proofs of Lemmas5 and 6 for the completeness, their statements are slightly di�erent from [10].Let f1; : : : ; fm 2 R[X1; : : : ;Xn], 0 < � < R, deg fi < d, 1 � i � m, d 2 Z.Consider the system with an inequalityf1 = : : : = fm = 0; � � X1�i�nX2j � 0 (2)8



Let 0 < " 2 R, "�d+1 < 1. Consider also the following inequalitiesg = (� � X1�j�nX2j + ")(" � X1�i�m f2i ) � "3 X1�j�nX2d+2j > 0 (3)� � X1�j�nX2j � �"; X1�i�m f2i � " (4)LEMMA 5. (cf. [10]) Let system (2) have a solution. Then there exists asequence f"ig1i=0, 0 < "i 2 R, which tends to zero, such that for every i the systemof equations in X1; : : : ; Xn@g@X1 ����"="1 = : : : = @g@Xn ����"="i = 0 (5)has a solution x(i) = (x(i)1 ; : : : ; x(i)n ) 2 Rn and the sequence fx(i)g1i=0 tends tosome solution x = (x1; : : : ; xn) 2 Rn of system (2).PROOF. It follows from (2) that Pj X2d+2j � �d+1. (2) implies (3), since"2 > "3�d+1. (2) implies (4).Show that for each connected component W of solutions of (3) which containssome solution � of (2), also (4) is satis�ed, i.e. every �1 2W is a solution of (4).Indeed, since W is a component of solutions of (3), functions ��PjX2j + " andPi f2i � " can not have zeros on W . So they have the same sign for all �1 2 W ,since W is connected. We have � �PjX2j + " > 0, Pi f2i � " < 0 in the point �.Therefore, these inequalities are satis�ed for all �1 2 W , i.e. (4) is satis�ed for all�1 2 W .Each connected component of solutions of (4) is bounded. Therefore, each con-nected componentW of solutions of (3), which contains some solution of (2), is alsobounded. Therefore, there exists a local maximum �2 of g in the domainW . In thepoint �2 the equality grad g = 0 is satis�ed.Connected components of solutions of (4) tend to connected components ofsolutions of (2) in the sense that for every � > 0 there exists � > 0 such that forevery 0 < " < � the �{neighbourhood of the connected component W1 of solutions(2) contains the connected component W2 of solutions of (4) such that W2 � W1.From here the assertion of the Lemma follows immediately.Now let " be transcentental over R. Consider the following system@g@X1 = : : : = @g@Xn = 0 (6)in the variables ";X1; : : : ; Xn. Let the set of zeros of 6 be V � (A 1 � A n )(C )over the �eld C . Denote by � : A1 � A n ! A n the projection to the second factor.9



Let U = V nf" = 0g be an open subset of V and U (R) subset of U consisting ofpoints with real coordinates, U and U (R) be closures of U and U (R) respectivelyin the Zariski topology.LEMMA 6. (c.f.[10])(a) The set U \ f" = 0g is �nite.(b) If system (2) has some solution over R then there exists � 2 �(U (R)\f" = 0g)which satis�es (2). This assertion is also true in the classic topology.PROOF. Set " = "1="0, Xi = Zi=Z0, 1 � i � n, and consider the homogeneousrelatively ("1; "0); (Z0; : : : ; Zn) system corresponding to (6), which is obtained from(6) by the given above substitution and multiplication to the least common denom-inator. Let we get the following systemg1 = : : : = gn = 0 (7)It de�nes the set of solutions W � (P1 � Pn)(C ). Let W = SiWi be thedecomposition ofW into irreducible components over C . Denote by �1 : P1�Pn!P1 the projection to the �rst factor. Then �1(Wi) = P1 or some point in P forevery i. Show that if �1(Wi) = P1 then dimWi = 1. Indeed, ; 6= Wi \ f"0 =0g � f(2d+ 2)Z2d+1i = 0; i = 1; : : : ; ng \ f"0 = 0g = fp0g, where p0 is a point. So,dimWi � 1 and, therefore, dimWi = 1.We have V � W . Denote by V the closure of V in P1�Pn. Let V = Sj V j bethe decomposition of V into irreducible components. Each component of V is alsothe component of W , and each component of W which is not contained in somehyperplane f"1 = c "0g, c 2 C , is the component of V . This follows from the factthat p0 2 P1� A n .Thus, we have proved that Wnf"1 = 0g\f"1 = 0g is �nite. Therefore, U \f" =0g is �nite, since U � Wnf"1 = 0g. The second assertion of the lemma follows fromthe Lemma 5.COROLLARY(a) LetW 0 (respectively V 0; V 0; U 0) denotes the union of all the components ofW(respectively V; V ; U ) which are not contained in some hyperplane f"1 = c "0g,c 2 C . Then W 0 = V 0 = V 0, V 0 = W 0\ A 1 � A n , U 0 = V 0\f" 6= 0g, V 0 � U .(b) We can consider (7) as a system over the �eld C (") in the variablesX1; : : : ; Xnwith the variety of solutionsW. Then irreducible over C (") components ofWcorrespond bijectively to the irreducible over C components of W 0.10



PROOF. We need only to prove (b). But this general fact can be obtainedby the localization of the rings of regular functions C [W \fZ� 6= 0; "0 6= 0g] = A � ,0 � � � n, relatively to the multiplicatively closed set S = C ["]nf0g, c.f. [3].Irreducible components of W 0 \ fZ� 6= 0; "0 6= 0g correspond bijectively to theminimal prime ideals of A� which do not intersect S, i.e. to the minimal primeideals of S�1A� = C (")[W \ fZ� 6= 0; "0 6= 0g] and, therefore, to the irreduciblecomponents de�ned over C (") of the variety W \ fZ� 6= 0; " 6= 0g. This gives therequired independnt of � bijection. The corollary is proved.LEMMA 7. The assertion (b) of Lemma 6 when one consider classic topologycan be expressed in the language L( ~Q) of the �rst order of the real closed �eld ~Q,see [1].PROOF. Let the bound for the degree d be �xed and fi =Pj1; ::: ;jn fi;j1; ::: ;jnXj11 : : : Xjnn where fi;j1; ::: ;jn 2 Rfor all i; j1; : : : ; jn. We shall consider all fi;j1; ::: ;jn ;X1; : : : ; Xn; "; � as variables over the �eld ~Q. Then the assertion (b) of the Lemma6 can be written in the form8fi;j1; ::: ;jn8"8�f" > 0 & "�d+1 < 1 & � > 0) [9X1 : : : 9Xn((X1; : : : ; Xn) satis�es (2))) 9X 01 : : : 9X0n((X01; : : : ; X0n) satis�es (2) & (0; X 01; : : : ; X0n) 2 U (R))]g:The conditions "(X1; : : : ; Xn) satis�es (2)" and "(X 01; : : : ; X0n) satis�es (2)" canbe expressed in L( ~Q). The condition "("00; X001 ; : : : ; X00n) 2 U (R)" can be expressedin L( ~Q), since U (R) = V(R)nf" = 0g where V (R) is the set of solutions of (6)with real coordinates. So (0; X01; : : : ; X0n) 2 U (R) can be expressed in the form8� > 09"009X 001 : : : 9X 00n(("00)2 +Pi(X 0i � X 00i )2 < � & ("00; X 001 ; : : : ; X00n) 2 U (R)),which gives the required expression in L( ~Q) for the assertion (b) of Lemma 6.Lemma is proved.LEMMA 8. Let R be an arbitrary really closed �eld, f1; : : : ; fm 2R[X1; : : : ; Xn], 0 < � 2 R, 0 < " 2 R, "�d+1 < 1, deg fi < d, d 2 Z. Then theassertion (b) of Lemma 6 with changing R for R is satis�ed, herewith the closureU (R) is considered as the closure in the Zariski topology. Besides that, U (R) � Uin the Zariski topology.Therefore, if system (2) has some solution over R then there exists � 2 �(U\f" =0g), which satis�es (2), where U is the closure of U � (A 1 � A n )(R(p�1)) in theZariski topology.PROOF. Consider at �rst the topology of a really closed �eld. Then by Lemma7, by the assertion (b) of Lemma 6 and the transfer principle, see [1], the �rststatement of the Lemma is satis�ed but when the closure U (R) is considered in thetopology of the really closed �eld R. 11



The Zariski topology in (A 1 � A n )(R) is weaker than the topology of the reallyclosed �eld. Therefore, the �rst statement of the lemma is satis�ed also in theZariski topology.Note that the Zariski topology in A n+1 (R) when polynomials with coe�cientsfrom R are considered is induced by the Zariski topology in A n+1 (R(p�1)) whenpolynomials with coe�cients from R(p�1) are considered. So U (R) � U in theZariski topologies. This implies the last statement of the Lemma. Lemma is proved.3 Description of the algorithm for the computa-tion of the dimension(1) We shall suppose without loss of generality that degX0; ::: ;Xn(fi) = d�1. If itis not so, we can change each fi for the family ffiX� deg(fi)+d�1j g0�j�n. Usinginduction by s � 1 we shall construct polynomials h1; : : : ; hs and linear formsL(s)s+1; : : : ; L(s)n in X0; : : : ; Xn, such thatL(s)j 2Z[Xo; : : : ;Xn]; s+ 1 � j � n;hi = X0�j�m�i;jfj ; �i;j 2Zfor all i; j and the subset of P(k)Vs = fh1 = : : : = hs = L(s)s+1 = : : : = L(s)n = 0gof all common zeros of polynomials h1; : : : ; hs; L(s)s+1; : : : ; L(s)n is �nite, i.e.#Vs < +1. The required dimension dimV = dimff0 = : : : = fm = 0g isequal to n� s0 where s0 is the maximal s for which this construction can bedone.(2) The construction for the base s = 1 is easy. If f0(X0; X1; 0; : : : ; 0) 6= 0 thenone can take h1 = f0 and L(1)i = Xi, i � 2. In the general case it is notdi�cult to �nd an appropriate linear substitution such that after applying itthe condition f0(X0; X1; 0; : : : ; 0) 6= 0 will be satis�ed.(3) Now let n > s � 1 and suppose that h1; : : : ; hs; L(s)s+1; : : : ; L(s)n are con-structed. Denote for brevity L(s)j = Lj, s + 1 � j � n. Using the algorithmfrom [3], see also [8], �nd all the points fxjg1�j�N of the set Vs. Find a linearform L0 with integer coe�cients, such that L0(xj) 6= 0 for all 1 � j � N .(4) Let xj = (xj;0 : : : : : xj;n) 2 Pn. Remind that in output of the algorithmfrom [3] for every j we have an isomorphism of �elds over kk�xj;0xj;� ; : : : ; xj;nxj;� )� ' k[�j];where 'j(�j) = 0, 'j 2 k[Z] is an irreducible polynomial, xj;� 6= 0. Con-struct for every j a primitive element �j = � + c�j of the �eld k(�j) over12



Q(t1; : : : ;tl), c 2 Z, with minimal polynomial Fj 2 Q[t1; : : : ;tl;Z]over Q(t1; : : : ;tl). We can suppose that lcZ�j = 1 changing if it is not so,�j for (lcZ�j)�j.(5) Consider the set of polynomials fP0�i�m cifi : 1 � c � md2+1; c 2Zg= H.We shall enumerate the elements of H. Let h 2 H.(6) Find all j for which h(xj) = 0. Let, say, h(xj) = 0 when 1 � j � N 0, andh(xj) 6= 0 when N 0 < j � N . If N 0 = 0 then we set hs+1 = h, L(s+1)s+1+i =Ls+1+i for every i � 1 and go to the step s + 1. If N 0 > 0 we enumerate allthe points xj, 1 � j � N 0.(7) For the considered 1 � j � N 0 construct for the �eld Q(t1; : : : ;tl)[�] areal structure by section 1, i.e. construct �i;	j; Rj; Ij for �j analogous to�;	; R; I for �.(8) Let "1 and "2 be algebraically independent in�nitely small values for the �eldK = Q(t1; : : : ;tl)[�j], 0 < "2 < "1, and "2 has the greater order of small-ness than "1. The �eld K1 = K("1; "2) is a real ordered �eld.Consider the system of equations with coe�cients from the �eld K1(p�1)h1 = : : : = hs = h� �2Ld0 = 0: (8)Set Xi = Yi + p�1Zi, 0 � i � n, where Yi and Zi are new variables.Then hi = hi;1 + p�1hi;2, 1 � i � s, h � "2Ld0 = h(1) + p�1h(2), wherehi;1; hi;2; h(1); h(2) 2 K("2)[Y0; : : : ; Yn; Z0; : : : ; Zn]. Consider the systemwith coe�cient from the �eld K1h1;1 = h1;2 = : : : = hs;1 = hs;2 = h(1) = h(2) = 0 (9)The solutions of system (8) over the algebraic closure K1 of the �eld K1correspond bijectively to the solutions of system (9) over the real closure ~K1of the �eld K1.Let xj = (xj;0 : xj;1 : : : : : xj;n), some xj;� = 1, xj;u = yj;u + p�1 zj;u,yj;u; zj;u 2 K, 0 � u � n. Denote h(3) = P0�i�n((Yi � yj;i)2 + (Zi � zj;i)2)and consider the system with an inequalityh1;1 = h1;2 = : : : = hs;1 = hs;2 = h(1) = h(2) = 0; h(3) � "1 (10)with coe�cients from the �eld K1. Each solution of (10) over ~K1 is thesolution of (9) and gives the solution of (8) over K1.(9) System (10) over ~K1 is analogous to system (2) over R. The variables Y 0i =Yi � yi;j, Z 0i = Zi � zi;j , 0 � i � n in (10) play the role of X1; : : : ; Xn in (2)(but we shall not use Y 0i ; Z0i explicitely below). Construct the functionG = (� � h(3) + ")(" � X1�i�s(h2i;1 + h2i;2)� (h(1))2 � (h(2))2)13



� "3 X0�i�n((Yi � yi;j)2d+2 + (Zi � zi;j)2d+2)analogous to g from section 2. Here " is transcendental over the �eld K1.Consider the system of equations with the coe�cients from the �eld K1 anal-ogous to (6) @G@Y0 = : : : = @G@Yn = @G@Z0 = : : : = @G@Zn = 0 (11)Here " is considered as a variable.(10) Similarly to section 2 de�ne the set U1 for (11) corresponding to the set U for(6). We have U1 � (A 1 � A 2n+2)(K1). Analogous to the proof of Lemma6 we prove that U1 \ f" = 0g is a �nite set where U1 is the closure of U1 inthe Zariski topology. Therefore, each irreducible component V� of U1 whichhas a non{empty intersection with f" = 0g has the dimension dimV� = 1.Further, Lemma 8 implies that if (10) has a solution over the �eld ~K1 thenthere exists � 2 �(U1 \ f" = 0g) which satis�es (10). In the next paragraphs(11), (12), (13) we shall construct all the points from U1 \ f" = 0g.(11) Consider the system G1 = : : : = G2n+2 = 0 (12)for the system (11) which is analogous to (7) for system (6) and the setsW1; V1;W1; V 1;W 01; V 01; V 01 analogous to W;V;W; V ;W 0; V 0; V 0. In the de�ni-tions one should change C ;R for K1; ~K1. For W 01; V 01 ; V 01; U 01 the assertion (a)of the corollary of Lemma 6 is satis�ed. The proof is without changes. Theassertion (b) is satis�ed if one changes C for K1 or K1. The proof also is thesame.System (12) has a �nite number of solutions in P2n+2(K1 (")). We solvesystem (12) using the algorithm from [3] and �nd all the irreducible andde�ned over K1(") components v� of W1. By the corollary of Lemma 6 eachv� correspond to the irreducible and de�ned over K1 component V� of V 01and conversely each V� correspond to some v�. Note that V 01 � U1 andV 01 \ f" = 0g = U1 \ f" = 0g.The component v� is given in output of the algorithm from [3] by the isomor-phism of �elds over K1(")K1(")[v�] = K1(")[y�;0; : : : ; y�;n; z�;0; : : : ; z�;n] ' K1(")[��]: (13)Here K1(")[v�] is the �eld of rational functions on v� de�ned over K1("),y�;0; : : : ; y�;n; z�;0; : : : ; z�;n are coordinate functions on v� in A 2n+2 (K1 (")),the element �� is algebraic over K1(") and has minimal polynomial �� 2K1(")[Z]. By [3] the degrees degtj ; deg"1 ; deg"2 ; deg", 1 � j � l of all y�;i; z�;i;�� are less than P(dn; d1; d2) and the lengths of coe�cients from Zof theseelements are less than P(dn; d1; d2)(M1 +M ) for some polynomial P.14



(12) Our aim is to �nd all the points from V�\f" = 0g. Use the algorithm from [4](see also [5]) and construct roots of the polynomial �� in the �eld of fraction{power series S�2NK1(("1=�)) in the following way. The roots are dividedinto classes with indices �. For each class the �eld of constant K1[�0�;�] isconstructed, where �0�;� is an algebraic over K1 element with minimal poly-nomial ��;� 2 K1[Z]. There exists a root ~��;� of �� such that~��;� = Xio�i<1 v�;�;i "1=�(�;�);where v�;�;i 2 K1[�0alpha;� ] for all i, v�;�;i0 6= 0, 0 < �(�; �) 2Z. Each root of�� from the class � has coe�cients conjugated over K1 to the coe�cients of~��;�, i.e. has the formPi0�i<1(�v�;�;i)"1=�(�;�), where � : K1[�0�;�] ! K1is an embedding over K1.By [4] for deg"1 ; deg"2 ; degtj and the lengths of coe�cients from Zof ��;�we have the same bounds as for �� and for v�;�;i the degrees less thanP(dn; d1; d2)(jij+1) and l(v�;�;i) < (M1+M2)P(dn; d1; d2)(jij+1) log(jij+2).Besides that, for the order we have jord"(~��;�)j = ji0=�(�; �)j < P(dn; d1; d2).One can construct all ��;� in time polynomial in dn; d1; d2;M1;M and v�;�;iin time polynomial in dn; d1; d2;M1;M; i for every i for some polynomial P.(13) Let y�;i = y�;i ("; ��); z�;i = z�;i ("; ��) in (13). Compute the �rst terms ofexpansions inK1 [�0�;�] (("1= �(�;�))) of the elements y�;i ("; ~��;�); z�;i ("; ~��;�) .It can be done by bounds which were given above in time polynomial indn; d1; d2;M1;M . Then substitute " = 0 i.e. compute y�;i ("; ~��;�)j" =0 ; z�;i ("; ~��;�)j" = 0 .We get elements y�;�;i ; z�;�;i 2 K1 [�0�;�] [ f1g (if the exponent in " is neg-ative we get 1). We shall consider only � for which y�;�;i ; z�;�;i 2 K1 [�0�;�]for all i. Construct a primitive element ��;� of the �eldK1 [y�;�;0 ; : : : ; y�;�;n ;z�;�;0 ; : : : ; z�;�;n] overK1. Denote by P�;� 2 K1[Z] the constructed minimalpolynomial of ��;�.Thus (cf. [5]), all the possible isomorphisms over the �eld K1 for all �; �K1 � K1 [y0 ; : : : ; yn ; z0 ; : : : ; zn]' K1 [y0;�;�; : : : ; yn;�;� ; z0;�;� ; : : : ; zn;�;�] = K1 [��;�] (14)give all the points (y0 ; : : : ; yn ; z0 ; : : : ; zn) 2 � (U1 \ f" = 0g) .Let � be an embedding of the �eld K1 [��;�] in K1 over K1 . The the elementsof U1 \ f" = 0g correspond to the elements � ��;� where �; �; � are arbitraryin accordance with (14).By [4] the degrees degtj ; deg"1 ; deg"2; 1 � j � l of all y�;�;i z�;�;i P�;� are lessthan P (dn; d1; d2) and the lengths of coe�cients fromZof these elements areless than (M1 +M2) P (dn; d1; d2) for some polynomial P.15



(14) Let 
2 = S�1 2NK ("1)(("1 = �22 )) be the �eld of fraction{power series in "2with coe�cients from the algebraic closure K ("1) of K ("1) and
 = [�1;�2 2NK(("1 = �11 ))(("1 = �22 ))the �eld of fraction{power series in "2 with coe�cients from the �eld offraction{power series 
1 = [�1 2NK (("1 = �11 )) in "1 over K. The �elds 
; 
1;
2 are algebraically closed, K ("1; "2) � 
2 � 
 , and for the real closure~K ("1; "2) of K ("1; "2) we have the embedding of real ordered �elds~K ("1; "2) � [�1;�2 2N~K(("1 = �11 )) (("1 =�22 )) ;herewith the last �eld is really closed, see [1].(15) Now our aim is to �nd the points form � (U1 \ f" = 0g) which are solutionsof (10). By paragraphs (10), (13) and (14) it is su�cient for this to constructexpansions in the �eld 
 of all the elements � ��;� , i.e. to construct expansionsof all the roots of polynomials P�;� in 
 for all �; �.(16) Apply the algorithm from [4], see also [5], and �nd the partial sums of theexpansions of roots of P�;� in 
2. We take the partial sums till the separa-tion of roots in Newton's polygon method,see [4]. Herewith the irreduciblepolynomials P�;�; 2 K ("1)[Z] with the roots ��;�; are constructed whichsatisfy the following properties. Let �1 be an arbitrary embedding of the �eldK ("1) [��;�;] in K ("1) over K ("1). Then the set of �elds K ("1) [�1 ��;�;]for all �; �; ; �1 coincides with the set of �elds K�;�;� , where the �eld K�;�;�is generated over K ("1) by the coe�cients from K ("1) of the expansion in
2 of the element � ��;� , for all �; �.Besides that we have degz (P�;�;); deg"1 ; degtj (P�;�;); < P(dn; d1; d2) for allj and l (P�;�;) < (M1+M )P (dn; d1; d2)) for all �; �;  for some polynomialP, see [4].We can suppose also without loss of generality that P�;�; 2 K ["1; Z],lcz P�;�; = 1.(17) Apply again the algorithm from [4] and �nd partial sums of the expansions ofroots of P�;�; in 
1. We take the partial sums till the separation of roots ofP�;�; in Newton's polygon method, see [4]. Herewith the irreducible polyno-mialsP�;�;;� 2 K [Z] with roots ��;�;;� are constructed which satisfy the fol-lowing properties. Let �2 be an arbitrary embedding of the �eld K [�; �; ; �]in K over K. Then the set of �elds K [�2 ��;�;;�] for all �2; �; �; ; � coincideswith the set of �elds K�;�;;�1 for all �; �; ; �1, where the �eld K�;�;;�1 isgenerated over K by the coe�cients from K of the expansion in 
1 of theelement �1 ��;�; .Besides that, we have, see [4], degz (P�;�;;�); degtj (P�;�;;�) < P (dn; d1; d2)for all j and l (P�;�;;�) < (M1 +M ) P (dn; d1; d2) for all �; �; ; � and somepolynomial P. 16



We can suppose also without loss of generality that P�;�;;� 2 Q [t1 ; : : : ; tl ;�j ; Z], lcz (P�;�;;�) = 1 for all �; �; ; �.(18) Now we shall choose new real structures for the �elds Q (t1 ; : : : ; tl)[�j] andK[��;�; ;�] for the considered index j and all �; �; ; �. Change for brevity�; �; ; � for one index �. Compute a primitive element �j + c��; c 2 Z,of the �eld K [��] over Q (t1 ; : : : ; tl) with minimal polynomial �� 2Q [t1 ; : : : ; tl ;Z], lcz (��) = 1. Find the product of the resultants �3 = Q� Resz (��; �0�).Let in the algorithm of section 1 by the construction of �j the elementsz1 ; : : : ; zl 2 Q be chosen. Using lemma 3 for the element �j instead of� �nd z�1 ; : : : ; z�l 2 BbbQ for which the conclusion of lemma 3 is satis�edand �3 (z�1 ; : : : ; z�l ) 6= 0. Thus, by lemma3 we construct a new real structureof Q (t1 ; : : : ; tl)[�j] for which ��j = �j ; R�j = Rj ; I�j = Ij.By lemma4 construct using the algorithm from section 1 all the real structuresfor the �eld Q (t1 ; : : : ; tl)[�mu] which induce this new real structure ofthe �eld Q (t1 ; : : : ; tl)[�j]. These real structures of Q (t1 ; : : : ; tl)[��]exist by lemma 4, since ~K (p�1) = K � Q (t1 ; : : : ; tl)[��]. The numberof these real structures of Q (t1 ; : : : ; tl)[��] is no more than degz P� bythe construction of section 1. Considering one of these real structures weshall denote by �� ; R� ; I� ; 	� the elements corresponding to � ; R ; I ; 	 ofsection 1.(19) Note that systems (9), : : : , (12) have the same form for the new real structureof Q (t1 ; : : : ; tl)[�j] as for the old one, since ��j = �j . Further we shallconsider only the new real structures for the �elds Q (t1 ; : : : ; tl)[�j] K [�� ]for all �.(20) Now we can �nd the elements of � (U1 \ f" = 0g) which are solutions of(10). By paragraphs (15), (16), (17) if such a solution exists then there exists� for which the �eld Q (t1 ; : : : ; tl)[��] is a real ordered �eld in one ofreal structures constructed in paragraph (18), i.e. in one of real structureswith �� = �� . This condiction means that the corresponding element of� (U1 \ f" = 0g) belongs to A 2n+2 ( ~K1 ) .The elements of � (U1 \ f" = 0g) are given by (14). Now we substitutethose of them, for which there exists � = (�; �; ; �) and the real structurefrom paragraph (18) with �� = ��, in system (10) and check whether (10) issatis�ed. By lemma2 we can check the inequality from (10) in time polynomialin dn; d1; d2;M;M1 . Thus, we can �nd all the elements of � (U1 \ f" = 0g)which are solutions of (10). Therefore, by paragraph (10) we can �nd one ofsolutions of (10) over ( ~K1) if (10) has any solutions over ( ~K1).The working time of the aglorithmdescribed is polynomial in dn; d1; d2;M;M1 .4 Conclusion of the description of the algorithm17



(21) LEMMA 9. The polynomial h is equal identically to zero on each irreduciblecomponent W1 of the variety W = fh1 = : : : = hs = 0g � Pn (K), such thatxj 2 W1 if and only if there exists no solutions of system (9) over the realclosure K1 of K1.PROOF. Let h be equal identically to zero on each such W1. Denote V =fh1 = : : : = hs = 0g � A n+1 (K1 ) . So, V is the set of all the zeros ofh1 ; : : : ; hs in A n+1 (K1 ) . Then there exists a homogeneous polynomial Pwith coe�cients from K such that (h =Ld0)(V \ fPL0 6= 0g) = f0g andP (xj) 6= 0. Let xj = (xj;0 ; : : : ; xj;n) 2 A n+1 , where xj = (xj;0 : : : : :xj;n) 2 Pn+1, see paragraph (10) of section 3. Denote by fjx�xjj2 < "1g �A n+1 (K1 ) the set corresponding to the set fh(3) < "1g � A 2n+2 ( ~K1 ) , seeparagraph (10) of section 3. Show that fjx�xjj2 < "1g\V � fL0P 6= 0g\V .Indeed, otherwise there exists x0 2 A n+1 (K1 ) such that (L0P )(x0) = 0and jx0 � xj j2 < "1 , i.e. (L0P )(xj + (x0 + xj)) = 0 where x0 + xj =u1 + p�1u2 ; (u1 ; u2) 2 A 2n+2 ( ~K1 ) and (u1 ; u2) has in�nitely small co-ordinates relatively to the �eld ~K. This leads to the contradiction, sincexj 2 A n+1 (K) and (L0P )(xj) 6= 0.Thus, we have (h =Ld0)(fjx�xjj2 < "1g \ V ) = f0g , i.e. there are no solutionsof (9) over ~K1 .Conversely, suppose that h is not equal identically to zero on some componentW1 of W , such that xj 2 W1 . Let V1 � A n+1 (K) be component of Vcorresponding to W1 , i.e. V1 is given by the same equations as W1 .There exists a closed algebraic curve V2 de�ned and irreducible over K suchthat V2 � V1 ; xj 2 V2 and h (V2) 6= f0g. Let t be a uniformizing elementof some branch of V2 containing the point xj . The coordinate functionsxr ; 0 � r � n , on V2 in the neighbourhood of the points xj = (xj;0 ; : : : ; xj;n)can be represented as seriesxr = xr;j +Xi�1 ti �r;i ; �r;i 2 K( hLd0 ) = h0t� +Xi�1 ti+�hi ; hi 2 K ; 0 < � 2 ZIt follows form here that one can solve the equation h =Ld0 = "2 relatively tot and represent t = t0" 1�2 +Xi�1 ti" i�2 ; ti 2 K ; t0 6= 0xr = xj;r +Xi�1 �r;i " i�2 2 
 ; �r;i 2 Kyr = yj;r +Xi�1 r;i " i�2 2 
 ; r;i 2 ~Kzr = zj;r +Xi�1 �r;i " i�2 2 
 ; �r;i 2 ~K18



where xr = yr + p�1 zr , see paragraph (10) of section 3, and �eld 
 isde�ned in paragraph (14) of section 3. Besides that, these expressions forXr in 
 are algebraic over K1 since K(W3) � K(h =Ld0) is a �nite extensionof �elds. Therefore, the expression for yr and zr are also algebraic over K1,since they are linear combinations of roots of minimal polynomial for xr overK ("2) , cf. section 1. Therefore, by paragraph (14) and the fact, that "2 isthe in�nitely small value of greater order of smalness than "1, we concludethat these expressions for yr ; zr ; 0 � r � n, give the solution of system (10)over the �eld ~K. Lemma is proved.(22) Suppose that we found 1 � j � N 0 , for which system (10) had no solutions.Then we go to the consideration of the next element h 2 H.(23) If � = �1 +p�1�2 2 K1 ; �1; �2 2 ~K1 de�ne j�j2 = �21 + �22 2 ~K1 .Let for the considered index j system (10) have a solution which is found inparagraph (20) of section 3. By paragraph (8) we get a solution x�j = (x�j;0 :: : : : x�j;n 2 Pn (K1 ) of system (8) with xj;i 2 K1 [��;�;p�1] = K2 for some�; �, see paragraph (13) and (8). The condiction h(3) � "1 from (10) for x�j canbe written in the formP0�i�n jxj;i�x�j;ij2 � "1 where xj = (xj;0 ; : : : ; xj;n),see paragraph (21).Find �i 2 K2 such that (Li � �iL0)(x�j ) = 0; s + 1 � i � n. Consider thesystem h1 = : : : = hs = L0s+1 = : : : = L0n = 0 (15)with coe�cient form the �eld K2 .(24) We de�ne the element � 2 K1 to be in�nitely small relatively to the �eld ~Kif j�j2 2 ~K1 is in�nitely small relatively to the �eld ~K.LEMMA 10. Let W1 be a component of the variety W = fh1 = : : : = hs =0g � PnovrlinK1 such that xj = (xj;0 : : : : : xj;n 2 W1 for some1 � j � N and let �i 2 K1 ; s + 1 � i � n, be in�nitely small valuesrelatively to the �eld ~K.Then there exists x0 = (x00 : : : : : x0n) 2 W1 such that (Li � �iL0)(x0) = 0and x00 � xj;0 ; : : : ; x0n � x0j;n are in�nitely small relatively to the �eld ~K .PROOF. We have dimW1 = n� s and W1 \ fL0 = Ls+1 = : : : = Ln = 0g =?. It follows from here, see [7], that the projection p : W1 �! Pn�s ; (X0 :: : : : Xn) 7�! (L0 : Ls+1 : Ls+2 : : : : : Ln) is de�ned everywhere and,therefore �nite. Let x(�) 2 Pn (K1 ); � 2 A , ba all the di�erent elements ofthe inverse image p�1 ((1 : �s+1 : : : : : �n)).We can assume without loss of generality that L0 = X0 and, therefore, x(�)0 =1 where x(�) = x(�)0 : : : : : x(�)n ) for all � 2 A, and xj;0 = 1 (otherwise onecan �nd an appropriate linear changing of coordinates in Pn, over the �eld Ksuch that one of new coordinates will be L0).19



Suppose that for every � 2 A not all x(�)i �xji ; 1 � i � n, are in�nitely smallrelatively to the �eld ~K. Then there exists a linear form L =P1�i�n li (Xi�X0xji); li 2 K, such that the element l(�) = Pl�i�n li(x(�)i � xji) is notin�nite small realtively to ~K for every � 2 A.Now we consider the projection p1 : W1 �! Pn�s+1 ; (X0 : : : : : Xn) 7�!(L0 : Ls+1 : Ls+2 : : : : : Ln : L). The set p1 (W1) is a closed irreduciblevariety in Pn�s+1 (K1 ) of the codimension equal to 1, see [7]. So, p1 (W1) =fQ = 0g � Pn�s+1, where Q 2 K [L0 ; Ls+1 ; dots ; Ln ; L] is irreduciblehomogeneous polynomial with lcLQ = 1, since p is �nite. The polynomialq(Z) = Q(1 ; �s+1 ; : : : ; �n ; Z) 2 K1 [Z] has the set of roots coinciding withfl(�) : � 2 Ag, since p1 (W1) = fQ = 0g. The polynomial Q (1 ; 0 ; : : : 0 ; Z)has the root Pl���n li(xj;i � 1xj;i = 0. So q (0) = Q (1 ; �s+1 ; : : : ; �n ; 0) isin�nitely small realtively to ~K. This leads to the contradiction, since eachroot l(�); � 2 A, of q (Z) is not in�nitely small relatively ~K and lcZ q = 1.Lemma is proved.(25) LEMMA 11. Suppose that the polynomial h is equal identically to zero onsome component W1 of the variety W = fh1 = : : : = hs = 0g � Pn (K), suchthat xj 2 W1 and there exists x�j , see paragraph (22). Then there exist twodi�erent solutions x0 = (x00 : : : : : x0n) and x00 = (x000 : : : : : x00n) of system(15) such that xji � x0i and xji� x00i are in�nitely small relatively to the �eld~K for all 0 � i � n.PROOF. By lemma 10 there exists the required x0 2 W1. We set x00 = x�j .By paragraph (23) the coordinates xj;i � x00j;i = xj;i � x�j;i are in�nitely smallrelatively to the �eld ~K. So L0 (x00) 6= 0 and (h =Ld0)(x00) = "2 6= 0. Therefore,x00 62 W1 and x00 6= x0. Lemma is proved.(26) Suppose that system (12) has N1 > N solutions. Find new linear formsMs+1 ; : : : ; Mn with coe�cients fromZand l (Mi) = O (n log d); s+1 � i � n,such that the systemh1 = : : : = hs = Ms+1 = : : : = Mn)0has a �nite number of solutions and at least N1 solutions (all solutions inPn (K) ).Show that we can change an arbitrary coe�cient in formsL0s+1 ; : : : ; L0n for aninteger coe�cient with the required length such that the new obtained systemanalogous to (15) will have no less than N1 solutions but a �nite number ofsolutions.Let L0s+1 =P0�i�n ls+1;iXi ; ls+l;i 2 K1 and we wish to change, say, ls+1;0for a coe�cient fromZ. At �rst change ls+1;0 for a transcendental element tand denote by L00s+1 = tX0 +P0�i�n ls+1;iXi the form obtained. Considerthe system h1 = : : : = hs = L00s+1 = L0s+2 = : : : = L0n = 0: (16)20



Let � (U0 ; : : : ; Un; ; t) 2 K1 [U0 ; : : : ; Un; ; t] be the U -resultant of sys-tem (16), see [8]. Note that � (U0 ; : : : ; Un; ; ls+1;0) 6= 0 is the U -resultantos system (15). So � 6= 0 and the system (16) has a �nite number of solu-tions. Further, we have degU0 ; ::: ; Un(�) � dn ; degt (�) � P (dn) for somepolynomial P.Let � = Qi �eii be the decomposition of � into irreducible factors, where �iare irreducible overK1 and �i 2 K1 [U0 ; : : : ; Un; ; t]. ThenPi degU0 ; ::: ; Un(�i) = N2 is the number of solutions of system (16) over the �eld K1 (t).We can �nd a linear changing of coordinates (U0 ; : : : ; Un) 7�! (U 00 ; : : : ; U 0n)with coe�cients from Zif it is necessary and suppose without loss of gener-ality that degU0 ; ::: ; Un (�i) = degU0 (�i) , i.e. lcU0 (�i) 2 K1[t]. Let Ri =ResU0 (�i (�i)U0) be the discriminant of the polynomial Ri and R =Qi Ri .Then degt (R) � P (dn) for some polynomial P.If R jt=t0 6= 0 ; t0 2 K1 then each polynomial�i jt=t0 is separable. Therefore,the number of solutions N3 of the systemh1 = : : : = hs = L00s+1 jt=t0 = L0s+2 = : : : = L0n = 0: (17)over the �eld K1 coincides with the number of solutions N2 of system (16)over K (t), i.e. N2 = N3 . In the general case N3 � N2, if N3 < 1, i.e. if�i jt=t0 is not equal identically to zero for every i. Therefore, N1 � N2.Thus, enumerating � P (dn) integer values of t and solving each time system(17), we �nd t = t0 such that system (17) has N2 � N1 solutions and N2 <+1. We change ls+1;0 for t0 and get new forms L0s+1 ; : : : ; L0n .Applying the procedure described further to the second, third, : : : coe�cientsof the forms L0s+1 ; : : : ; L0n , we get the required Ms+1 ; : : : ; Mn.(27) Return to paragraph (23). Solve system (15). It has a �nite number ofsolutions. Indeed, the U -resultant �1 of system (15) has coe�cients whichcoindice with the coe�cients of the U -resultant �2 of the system h1 = : : : =hs = L(s)s+1 = : : : = L(s)n = 0 up to in�nitely small values relatively to ~K, i.e.�1��2 has in�nitely small relatively to ~K coe�cients. We have �2 6= 0, since] Vs < 1, see paragraph (1). Therefore, �1 6= 0. This implies that system(15) has a �nite number of solutions. If system (15) has N1 > N solutions weconstruct Ms+1 ; : : : ; Mn by paragraph (26) and change Ls+1 ; : : : ; Ln forMs+1 ; : : : ; Mn. Then we return to the beginning of the algorithm for theconsidered s. The number of points of Vs, see paragraph (1) of section 3, nowis greater than it was.(28) Show that if for the considered h for every xj , 1 � j � N 0 , there existsx�j and the number of solutions of system (15) N1 = N1(j) = N for every1 � h � N 0 , thendim fh1 = : : : = hs = h = 0g = dim fh1 = : : : = hs = 0g � 1:21



Indeed, it is su�cient to prove that h is not equal identically to zero oneach component W1 of the variety W = fh1 = : : : = hs = 0g . Note thatW1 \ fLs+1 = : : : = Ln = 0g 6= � since W1 is projective and dimW1 = n�s.So there exists 1 � j � N such that xj 2 W1.If N 0 < j � N we have h(xj) 6= 0, see paragraph (1), and the assertion isproved for W1 . If 1 � j � N 0 then by lemma 9 the polynomial h is not equalidentically to zero on some componentW2 ofW such that xj 2 W2 . Supposethat h is equal identically to zero on W1 . Then by lemma 11 there exist twodi�erent points x0 and x00 which are solutions of (15) and xji � x0i ,xji � x00iare in�nitely small relatively to the �eld ~K for all 0 � i � n . On the otherside by lemma 10 for every 1 � j � N there exists a solution x000 of system(15) such that x000 2 W1 and x000 � xj;i are in�nitely small relative to ~K forall 0 � i � n . Therefore, system (15) has � N + 1 solutions, since pointsxj 2 Pn(~K). This leads to the contradiction. Thus, h is not equal identicallyto zero on W1 . The assertion is proved. We set in this case hs+1 = h .(29) Show that if for every h 2 H there exists xj , 1 � j � N 0 = N 0 (h) for whichdoes not exist x�j , thendim ff0 = : : : = fm = 0g = dim fh1 = : : : = hs = 0g = n� s:Indeed, suppose that dim ff0 = : : : = fm = 0g � n� s. Let W1 be the sameas above. For each W1 there exist at almost m di�erent h 2 H such thath is equal identically to zero on W1. By B�ezout's inequality the number ofcomponents W1 is no more than ds . So, there exists h 62 H such that h isnot equal identically to zero on each component W1. Then by lemma 9 forevery xj , 1 � j � N 0 , there exists x�j . This is a contradiction. The assertionis proved.(30) Let s = n . We shall enumerate h 2 H . If there exists h such that 0 2 h (Vn)then ff0 = : : : = fm = 0g = � and dim ff0 = : : : = fm = 0g = �1 and weset hn+1 = h. Otherwise dim ff0 = : : : = fmg = 0.(31) Return to paragraph (27). Find new linear forms L(s+1)s+2 ; : : : ; L(s+2)n such thatthe system h1 = : : : = hs+1 = L(s+1)s+2 = : : : = L(s+2)n = 0has a �nite number of solutions in Pn (~K) . De�ne the setL = f X1�i�n�s ci Ls+i : c 2 Z1� � s+1(n �s) +1g:We shall enumerate the elements L 2 L. Apply the algorithms fromparagraph (1), . . . , (30), changing s for s + 1 polinomials h; : : : ; hs forh1; : : : ; hs; Ld , forms Ls+1; : : : ; Ln for Ls+2; : : : ; Ln with h = hs+1. If weget dim fh1 = : : : = hs = L = hs+1 = 0g = n� s� 1;22



then we go to the next element L 2 L . Otherwise we set L(s+1)s+2 = L and wehave dim fh1 = : : : = hs = L(s+1)s+2 = hs+1 = 0g = n� s � 1:Note that such L 2 L exists, since by B�ezout's inequality there exists � ds+1components W 0 of the variety fh1 = : : : = hs+1 = 0g and for each W 0 thereexists � n� s linear forms L 2 L vanishing on L.Similarly sequentially for every 2 < i � n � s � 1 we �nd L(s+1)s+i 2 L suchthat dim fh1 = : : : = hs = L(s+1)s+2 = L(s+1)s+i = hs+1 = 0g = n� s� i� 1:Thus, we �nd all L(s+1)s+2 ; : : : ; L(s+1)n and go to step s + 1 , see paragraphs (3)and (30).(32) We have concluded the description of the algorithm for the computation ofthe dimension. Note that in paragraph (27) by B�ezouts inequality we haveno more than ds returns to the beginning of the step s. Therefore, by theconstruction described the general working time of the algorithm is polynomialin dn; d1; d2;M1;M2.The theorem from the introduction is completely proved.
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