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Abstract

We show that the size of a minimal zero test set fort-sparsen-variate polynomials overF3 is of order(2n)blog tc(1+ �(1=n)), thereby significantly improving the best previously knownlower bound ([5]).

1 Introduction

The classical problem of interpolation reaches far back into the history of mathematics. Among the first to
consider this problem were Newton and Lagrange who gave interpolation formulas for polynomials in one
variable.

For multivariate polynomials the number of terms of a degreebounded polynomial increases exponentially
with the number of variables. Recently, the design of so calledsparse interpolationalgorithms[1, 2, 3, 5, 6, 7]
has attracted a lot of attention, which in contrast to classical interpolation methods, take as an additional
parameter an upper bound on the number of terms of the polynomial. This number of terms, sayt, is often
denoted as thesparsityof f andf is said to bet-sparse. If the sparsity is small compared to(d + 1)n, the
complexity of the interpolation problem may decrease significantly.

In the followingwe adopt the black box model, i.e., the polynomialf to be reconstructed is hidden in a “black
box” that given an inputx computes in one step the outputf(x). The zero test problem, i.e., the problem of
deciding whether a polynomial given by a black box is the zeropolynomial, is related to the interpolation
problem. A set of query points that establishes such a test iscalled atest set. For a more detailed introduction
we refer to [1, 2, 3, 5, 6, 7].

In this paper we study the minimal size of test sets fort-sparsen-variate polynomials over the fieldF3 .

The main results of this paper is an almost optimal improvement of the previously known lower bounds [1, 5]
(Section 3), implying, that the test set constructed in [1] is asymptotically optimal.

2 Preliminaries

Let us first introduce some notation. For an integers let [s] denote the set of integersf1; : : : ; sg. We use the
notation0 and1 for the all-zero and all-one vector, respectivly.

Definition 2.1 Let K be a field and0 6� f 2 K[x1; : : : ; xn]. A point a 2 Kn is called awitnessfor f iff(a) 6= 0. A setA � Kn is called atest-setfor a familyF � K[x1; : : : ; xn] if there is a witnessa 2 A
for each0 6� f 2 F . A setA� 2 (K�)n is called a�-test-setfor a familyF � K[x1; : : : ; xn] if there is a
witnessa 2 A� for all polynomialsf 2 F not vanishing on(K�)n.�Institut für Informatik V, Römerstr. 164, Universität Bonn, 53117 Bonn, Germany
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Given a familyF of polynomials letF� � F denote the set of polynomialsf from F not vanishing on(K�)n.

LetC(F) denote a test-set of minimum size (or minimal test-set) andc(F) denote the size ofC(F). Similarly,
letC�(F) denote a�-test-set of minimum size andc�(F) denote the size ofC�(F).
In the following we consider the family oft-sparsen-variate polynomials overFq , denoted byFq(n; t) and
let cq(n; t) = c(Fq(n; t)) andc�q(n; t) = c�(Fq(n; t)). LetAq(n; t) denote the set of all test-sets forFq(n; t)
andA�q(n; t) denote the set of all�-test-sets.

The following lemma reveals the structure of test-sets.

Lemma 2.2 LetA 2 Aq(n; t) be a test-set. Then for allT � [n] of size at mostblog tc there are�-test-setsAT 2 A�q (n- jT j; t=2jT j) such thatA = [T;jT j�blog tcf(a1; : : : ; an) 2 Fnq j ai = 0, i 2 T; (ai)i 62T 2 AT g
Proof. It is not hard to see that a polynomialf evaluates to zero for alla 2 (F�q )n if and only if for some; 6= I � [n], f is divisible by(Qi2I xq-1i - 1). Thus0 6� f 2 Fq(n; t) is either contained inF�q (n; t) or
for some; 6= I � [n], f = (Yi2I xq-1i - 1)g(x1; : : : ; xn):
Sincef 6� 0, we haveg0 := gjxi=0 6� 0 for somexi, i 2 I. Thereforeg0 2 Fq(n - 1; t=2). Thus a test-setA 2 Aq(n; t) can be written asA = A� [ n[i=1f(a1; : : : ; an) j ai = 0; (a1; : : : ; ai-1; ai+1; : : : ; an) 2 Aig
whereA� 2 A�q(n; t) andAi 2 Aq(n- 1; t=2). Now the assertion is clear by an induction ont. �
In particular, a minimal test-set is constructed by minimal�-test-sets.

Corollary 2.3 cq(n; t) = blog tcXi=0 c�q(n- i; t=2i)�ni�: (1)

Corollary 2.3 allows us to concentrate on determining the value c�q(n; t).
The multiplicative group(F�q ; �) of a finite field is a cyclic group of orderq - 1 and therefore isomorphic to
the additive group(Zq-1;+): fixing a primitive element (or generator)! of F�q the index ofa 2 F�q with

respect to! is defined to be the smallest integerâ � 0 such thata = !â. This isomorphism transforms
multiplication into addition and powering into multiplication, i.e., the index ofan equalsn times the index
of a. Thus monomialscx�11 � � �x�nn overFq transform to linear forms�0 + �1y1 + : : :+ �nyn overZq-1
where�0 is the index ofc. Applying this transformation to all monomials of at-sparse polynomialf = tXi=1 cix�i;11 � � �x�i;nn ; (2)

with pairwise distinctmonomials, coefficients0 6= ci = !�i;0 and�i;j satisfying0 � �i;j � q-2, transformsf into a set oft linear forms. These can be arranged in at� (n + 1) matrix overZq-1:f̂ = 0B@ �1;0 : : :�1;n
...
...

...�t;0 : : :�t;n 1CA : (3)
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In the sequel we letq = 3. In particular,Zq-1 = F2 is a field and the generator! = 2 is unique. For notational
reasons we identify a subsetS of [n] with its characteristic vector�(S) 2 Fn2 and the expressionM � S,
whereM is a matrix withn columns overF2 andS is a subset of[n] becomes a well defined expression.

The test-set A(n; t) := f(a1; : : : ; an) 2 (F�3)n j #fi j ai = 2g � blog tcg (4)

constructed in [1] yields the upper boundc�3(n; t) � blog tcXi=0 �ni� (5)

In the next section we derive the following (almost optimal)lower bound. The best previously known lower
bounds ([5]) are only linear inn: c�3(n; t) � � nblog tc�- blog tc-1Xi=1 �ni� (6)

3 The lower bound

The following lemma correlates the values off(a) and off̂ (â) = f̂ � (1; â1; : : : ; ân), whereâi is the index ofai. In the followingâ denotes the index ofa, and for a set of query pointsA = f(a1; : : : ; an); : : : ; g � (F�3)n,

the setf(â1; : : : ; ân); : : :g � Fn2 is denoted byÂ.

Lemma 3.1 Letf 2 F3[x1; : : : ; xn] as given in (2) consist of exactlyt terms,f̂ as definied by (3),a 2 (F�3)n,
andâ 2 Fn2 . Then f(a) = (t- 2#(f̂(â)) mod 3:
Proof. #(f̂(â)) is the numbert2 of terms inf that evaluate to2 at the pointa andt1 = t - t2 is the
number of terms that evaluate to1. Since the sum of3 terms with the same value is zero and the sum of two
terms with differnent value is also zero, the value off depends only on(t1 - t2) mod 3. Now the assertion
follows from a quick inspection for the possible values oft1 mod 3 andt2 mod 3. �
Let Vt;c := f 2 Ft2 j t - 2#() � c (mod 3)g. Thenf̂ (â) 2 Vt;c is equivalent withf(a) = c. We are
mostly interested inVt := Vt;0.

The first nontrivial case ist = 2. Although the following result is known (c.f. [5, Lemma 6]) we will reprove
it.

Lemma 3.2 c�3(n; 2) � n+ 1:
Proof. Let f be a2-sparse polynomial,A = fa(1); : : : ; a(n)g � (F�3)n be any set of sizen, and Â =fâ(1); : : : ; â(n)g � Fn2 . By Lemma 3.1,f(a) = 0 if and only if f̂(â) 2 f(0; 1)T ; (1; 0)T g. Let0 6= C = f̂1+f̂2
the sum of the rows of the matrix̂f andc = f̂1 + f̂2. Now f(a) = 0 iff Câ + c = 1. ThusA fails to be a�-test-set since if the matrix M := 0BB@ â(1)1 : : : â(1)n� � � ...

...â(n)1 : : : ân)n 1CCA
is singular then there exists0 6= C with M � C = 0 and if M is regular then there exists0 6= C withM � C = 1. Choosingc = 1 in the first case andc = 0 in the second case makesCâ(i) + c = 1 for all i.
Hence any�-test-set must have size at leastn+ 1. �
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Observe, that as a consequence of the proof, for any�-test-setA � (F�3)n for 2-sparse polynomials, the setÂ = fâ(1); : : : ; â(jAj)g � Fn2 must contain a basis forFn2 . Clearly, ift > 2, the same holds for�-test-sets fort-sparse polynmials.

The idea behind the improved lower bound fort > 2 is as follows. Letf be at-sparse polynomial and̂f
be the affine map specified by (3). The imageW of f̂ is an affine subspace ofFt2. If we choosef̂ in such
away thatW is almost entirely contained inVt, thenf̂ maps many vectors intoVt, i.e.,f(a) is zero for manya 2 (F�3)n.

More precisely, lett = 2k be a power of two,C := fc(0); c(1); : : : ; c(k)g � F2k2 , andB = fâ(1); : : : ; â(n)g be
a basis ofFn2 . For each� : [n]! f0; 1 : : : ; kg there is an affine linear map̂g mappinĝa(i) to c(�(i)) and0 toc(0). The image of̂g is the affine linear spaceW = hc(1) - c(0); : : : ; c(k) - c(0)i + c(0) defined byC. For
each setI � [n] let J(I) := fj j jI \ �-1(j)j is oddg. Now for anyI � [n],ĝ(Xi2I â(i)) = Xi2I c(�(i)))+ (jIj- 1)c(0)= Xj2J(I) c(j) + (jJ(I)j- 1)c(0); (7)

sincejIj � jJ(I)j (mod 2) and computation is performed inF2 . We will constructC such that (7) lies inVt for all J except forJ = f1; : : : ; kg. This in turn means that the vectorsc(1); : : : ; c(k) are pairwise distinct,
hence the constructed̂g corresponds to a nonzero2k-sparse polynomnialg.

Lemma 3.3 Let k � 1. The vectorsc(0;k); : : : ; c(k-1;k) 2 F2k2 defined byc(i;k)j = 1 () (j - 1) mod 2i+1 2 f0; : : : ; 2i - 1g; 0 � i � k - 1; 1 � j � 2k
have the following property:8 ; 6= I � f0; : : : ; k - 1g : #(Xi2I c(i;k)) = 2k-1
Proof. We prove the assertion by induction onk. Fork = 1 the assertion is clear, so assumek > 1. As
can be seen from the definition,c(i;k), i < k - 1, consists of a concatenation of two copies ofc(i;k-1). By
the induction hypothesis the weight of

Pi2I c(i;k-1) is 2k-2 for all ; 6= I � f0; : : : ; k - 2g. Therefore the
assertion follows for allI 63 k - 1. Now c(k-1;k) = (1; : : : ; 1| {z }2k-1 0; : : : ; 0| {z }2k-1 ) and therefore addingc(k-1;k) toPi2I c(i;k) does not change the weight, since2k-1 - 2k-2 = 2k-2. The assertion follows. �
Lemma 3.4 Let k � 1 and let c(0;k); : : : ; c(k-1;k) be specified as in Lemma 3.3 and letc(k;k) = 1 +Pk-1i=r c(i;k) wherer = k mod 2. Then#(Xj2J c(j;k)+ (jJ j- 1)c(0;k)) = � 2k if J = [k]2k-1 otherwise

:
Proof. Fork 62 J the assertion of the lemma follows directly from Lemma 3.3. For k 2 J ,Xj2J c(j;k) + (jJ j- 1)c(0;k) = 1+Xj 62J c(j;k) + (jJ j- r)c(0;k):
Since the complement of a vector of weight2k-1 is also of weight2k-1 the assertion follows in the caseJ 6= [k]. The assertion forJ = [k] is also obvious. �
The vectors of weight2k-1 lie in V2k , but the vector of weight2k does not. ThereforeC = fc(0;k); : : : ; c(k;k)g
has the desired property.

Now we can give a necessary property of�-test-sets.
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Lemma 3.5 LetA � (F�3)n bea�-test-set for2k-sparsepolynomials.Then for all basesB = fâ(1); : : : ; â(n)g
of Â and all mappings� : [n] ! f0; : : : ; kg, Â contains a linear combination

Pi2I â(i), such that for all1 � l � k, jI \ �-1(l)j is either zero or odd.

Proof. For purpose of contradiction suppose that for some mapping� and all
Pi2I â(i) 2 Â there existsl such thatjI \ �-1(l)j is nonzero and even. Letk0 be the number of indices1 � l � k such that�-1(l)

is nonempty and assume w.l.o.g. that these indices are1; : : : ; k0 and letĝ = ĝ� be the affine linear map
mappinĝa(i) to c(�(i);k0) and0 to c(0;k0). If jI \�-1(l)j is even for some1 � l � k0, the setJ(I) is a proper
subset of[k0]. By (7) and Lemma 3.4, for allI � [n] the image of

Pi2I â(i) underĝ has weight2k0-1 and is
therefore included inV2k0 . We reached a contradiction sinceĝ does not correspond to the zero polynomial.
The assertion follows. �
The advantage of this new formulation becomes clear if we usethe language of multilinear algebra. Let us
begin with some facts.

Let W be ann-dimensional vector space over some fieldK. A mappingh :W k ! K that is linear in every
coordinate is called ak-linear map. If additionallyh(x) = (-1)�h(�(x)) for any permutation� 2 Sn,h is calledalternating. Given a basisB = fe1; : : : ; eng of W , an alternatingk-linear maph is uniquely
determined by the image of the (ordered)k-sets ofB. Therefore the dimension of the vector spaceALn;k of
alternatingk-linear maps is

�nk�. This readily defines an equivalence relation onW k, namely, by the orbits
of ALn;k:(x1; : : : ; xk) �= (y1; : : : ; yk) () 8h 2 ALn;k : h(x1; : : : ; xk) = h(y1; : : : ; yk): (8)

Another important property is that the value of an alternatingk-linear map does not change when an argument
is altered by adding somemultipleof another argument to it,e.g., for any� 2 K,h(x1; x2) = h(x1+�x2; x2).
This directly gives us a method to check whether two elementsof W k are equivalent in the sense of (8).

The most famous example of an alternating multilinear form ist the determinant where the above property
is extensively used in the Gaussian elimation method for computing the value of the determinant of a given
matrix. Here our equivalence relation is the notion of similarity of two matrices.

Let ~det : W k ! K denote the alternatingk-linear form, that maps ak-tuple of linear independent vectors
to 1 and ak-tuple of linear dependent vectors to0.

For eacĥa 2 Fn2 and allk � n we will define the alternatingk-linear formhâ over(Fn2 )k as follows:hâ(x1; : : : ; xk) := hâ; x1iBhâ; x2iB � � � hâ; xkiB � ~det(x1; : : : ; xk);
where the inner producth:; :iB is with respect to the basisB.

Now Lemma 3.5 has the nice formulation we sought for:A is a�-test-set for2k-sparse polynomials ()8� : [n]! f0; 1; : : : ; kg; 9â 2 Â : hâ(Pj2�-1(i1) â(j); : : : ;Pj2�-1(il) â(j)) = 1; (9)

where1 � i1; : : : ; il � n are the indices with nonempty preimage. Observe that the sets�-1(ij) are pairwise
disjoint. Note that (9) also holds if we restrict� to be surjective on[k].
The following lemma gives a characterization of(Fn2 )k with respect to alternatingk-linear forms.

Lemma 3.6 Let �1; : : : ; �k 2 Fn2 be linear independent and letX = (�1; : : : ; �k)T 2 Fn�k2 . Then the
following holds
a) (�1; : : : ; �k) �= (�1; : : : ; �k) where the� seen as subsets of[n] are pairwise disjoint, or
b) there is a regular submatrixY 2 Fk�k2 ofX such thatY 1k 6= 1k. In particular, for someb 62 f0k;1kg we
haveY � b = 1k
Proof. Since�1; : : : ; �k are linear independent there is regular submatrixY 2 Fk�k2 of X. SupposeY 1k = 1k. If the columns ofX not contained inY are all zero or each of these columns is identical to one
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of Y , then using the Gaussian elimination we can transformX to some matrixZ, such that the submatrixY transforms to the unity matrix. Thus the columns ofZ are the unity vectors. It follows that the rows ofZ
seen as sets are pairwise disjoint. In the other case there isa column, neither zero nor identical to one column
of Y . This column together with anyk - 1 columns ofY gives a regular matrixY 0 with Y 0 � 1k 6= 1k. AsY 0 is regular for someb 62 f0k;1kg we haveY 0 � b = 1k. The assertion follows. �
Now we can prove the main theorem.

Theorem 3.7 c�3(n; 2k) � �nk�- k-1Xi=1 �ni�
Proof. Let Â � Fn2 andB = fâ(1); : : : ; â(n)g � Â be a basis forFn2 . We represent all elements ofFn2 as
coordinate vectors over this basis. Consider the setfhâ 2 ALn;k j â 2 Âg. If this set does not spanALn;k
then there are linear independent vectors�1; : : : ; �k 2 Fn2 such that for all̂a 2 Â, hâ(�1; : : : ; �k) = 0. In
order to separate anyk-tupel of vectors from zero,̂A has to contain at leastdim(ALn;k) = �nk� elements.
We must exclude somek-tupels of vectors, namely those, which are inequivalent inthe sense of (8) with
anyk-tupel�1; : : : ; �k of vectors with pairwise disjoint�i (seen as subsets of[n]), since such vectors can not
be induced by the mapping� in (9). By Lemma 3.6, these vectors can be separated by

Pk-1i=1 �ni� elementsâ 2 Fn2 , namely, those with less thank ones in their representation with respect toB. The assertion follows.�
The lower bound onc�3(n; t), Corollary 2.3 together with the upper bound (5) imply:

Corollary 3.8 For all t, c3(n; t) = 2blog tc(blog tc)!nblog tc �1+ �( 1n)�
For small values ofk we can give a better lower bound.

Lemma 3.9 c�3(n; 2k) � kn+ 1:
Proof. Let A � (F�3)n be a set of sizekn. By Lemma 3.2, for each setC � (F�3)n of sizen there is
a polynomialfC 2 F�(n; 2) vanishing onC. ThusfC1 vanishes onC1 = fa1; : : : ; ang, fC2 vanishes onC2 = fan+1; : : : ; a2ng and so on. Therefore,f = Qki=1 fCi is a2k-sparse polynomial that vanishes onA.
The assertion follows. �
To conclude this section, let us remark that the lower bound obtained forF3 is valid for all fields of odd
characteristic. This can be seen in the same way as in [4, 5]: the q-12 -th power can be interpreted as a mapping� : Fq ! F3 = f0; 1;-1g by observing that for alla 2 Fq , a(q-1)=2 2 f0; 1;-1g � Fq . More preciselya(q-1)=2 is 0 if a = 0, 1 if a is a square, and-1 if a is a nonsquare. Thus we obtain the same lower bound
for the subset of polynomials inFq(n; t) that can be written asf(x1; : : : ; xn) = ~f (x(q-1)=21 ; : : : ; x(q-1)=2n )
for some polynomial~f .

Table 1 gives some numeric examples of the improvements achieved in this paper.
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n 3 4 5 6 8 11 11blog tc 2 2 2 2 2 2 3
lower bound [1] 7 11 16 22 37 67 232
lower bound [5] 16 27 41 58 101 188 848
new lower bound 19 31 46 64 112 220 1199
upper bound [1] 19 33 51 73 129 243 1563

Figure 1: Lower and upper bounds for small values
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