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Abstract

We show that the size of a minimal zero test setfeparse:-variate polynomials oveF, is of order
(2n)l°8tl (1 4 ©(1/n)), thereby significantly improving the best previously kndawer bound ([5]).

1 Introduction

The classical problem of interpolation reaches far baak fhé history of mathematics. Among the first to
consider this problem were Newton and Lagrange who gavepiolition formulas for polynomials in one
variable.

For multivariate polynomials the number of terms of a dedreended polynomial increases exponentially
with the number of variables. Recently, the design of s@dalbarse interpolationalgorithnig, 2, 3,5, 6, 7]
has attracted a lot of attention, which in contrast to ctadsnterpolation methods, take as an additional
parameter an upper bound on the number of terms of the polahorhis number of terms, say is often
denoted as thsparsityof f andf is said to be-sparse. If the sparsity is small compareddot 1)”, the
complexity of the interpolation problem may decrease Sicgmitly.

In the following we adopt the black box model, i.e., the pagmal f to be reconstructed is hidden in a “black
box” that given an input computes in one step the outpiit:). The zero test problem, i.e., the problem of
deciding whether a polynomial given by a black box is the zatynomial, is related to the interpolation

problem. A set of query points that establishes such a teatld atest setFor a more detailed introduction

we referto[1, 2, 3,5, 6, 7].

In this paper we study the minimal size of test setsfsparsen-variate polynomials over the fielt, .

The main results of this paper is an almost optimal improverogthe previously known lower bounds [1, 5]
(Section 3), implying, that the test set constructed in$1dsymptotically optimal.

2 Preliminaries

Let us first introduce some notation. For an integéat [s] denote the set of integefs, . . ., s}. We use the
notation0 and1 for the all-zero and all-one vector, respectivly.

Definition 2.1 Let K be afield and # f € Klx,,...,z,]. Apointa € K" is called awitnessfor f if
fla) # 0. AsetA C K" is called atest-seffor a family 7 C K|[z,,...,z,] if there is a witness € A
for eacho # f € F. AsetA* € (K*)" is called ax-test-sefor a family 7 C K[z,,...,z,] if thereis a
witnessa € A* for all polynomialsf € F not vanishing orf K*)".
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Given a familyF of polynomials letF* C F denote the set of polynomiajsfrom F not vanishing on
(K*)",

Let C'(.F) denote a test-set of minimum size (or minimal test-sety&#d denote the size af'(F). Similarly,
let C*(F) denote a-test-set of minimum size and (F) denote the size af*(F).

In the following we consider the family afsparsen-variate polynomials ovefF,, denoted byF, (n, ¢) and
lete(n,t) = e(Fy(n,t)) ande)(n,t) = c*(Fy(n,1)). Let. A, (n,t) denote the set of all test-sets 8y (n, )
andAj (n, t) denote the set of al-test-sets.

The following lemma reveals the structure of test-sets.

LemmaZ22 LetA € A,(n,t) be atest-set. Then for dll C [r] of size at mosflogt | there are«-test-sets
Ap € As(n—|T),t/2\"1) such that

A= |J Hla,...,a0) €T} |a; =0 i €T, (ai)igr € Ar)
T,|T|<|logt]

Proof. Itis not hard to see that a polynomigkevaluates to zero for all € (IF; )" if and only if for some
0 # 1 Clnl fisdivisible by(JT;., =] * —1). Thuso # f € Fy(n,t) is either contained icF (n,t) or
for somef) #£ I C [n],
f= (I_IJL‘;»F1 —1)glz,...,2p).
i€l
Sincef # o, we havey’ := ¢|,,—, Z o for somez;, ¢ € I. Thereforey’ € F,(n —1,t/2). Thus a test-set
A € A,(n,t) can be written as

n
A=A Jllar, o an) @i =0, (ay, oo @iy i, an) € A7

whereA* € A7 (n,t) andA; € A;(n — 1,7/2). Now the assertion is clear by an inductionton O

In particular, a minimal test-set is constructed by minimé#tst-sets.

Corollary 2.3
[logt] /n
ACHESY c;(ni,t/22)<i). (1)

i=0

Corollary 2.3 allows us to concentrate on determining theevej (n, ).

The multiplicative grougF;, -) of a finite field is a cyclic group of order— 1 and therefore isomorphic to
the additive grougZ,,, +): fixing a primitive element (or generatar) of ¥, the index ofa € IF; with
respect tav is defined to be the smallest integer> o such thate = w®. This isomorphism transforms
multiplication into addition and powering into multipligan, i.e., the index of™ equalsn times the index
of a. Thus monomialgz?: - - - 25~ overT, transform to linear formg, + B, y, + ...+ Bny, OVErZ, ,
wherep, is the index of:. Applying this transformation to all monomials of sparse polynomial

f=D el @

with pairwise distinctmonomials, coefficientst ¢; = wfie andg,; ; satisfyingo < 3; ; < ¢—2, transforms
f into a set of linear forms. These can be arranged ina(n + 1) matrix overzZ,_,:

61,0 .- ~61,n

f= 3)

Bt,o o ~ﬁt,n



Inthe sequel we let = 3. In particularZ,_, =T, is afield and the generator= 2 is unique. For notational
reasons we identify a subsgtof [n] with its characteristic vectoy(S) € F? and the expressiof - S,
wherel is a matrix withn columns oveit, andS is a subset ofn] becomes a well defined expression.

The test-set
Aln,t) :={(a,...,an) € ()" | #{i | a; = 2} < [logt]} 4)
constructed in [1] yields the upper bound

[logt] n
sy (1) ®

In the next section we derive the following (almost optimalyer bound. The best previously known lower
bounds ([5]) are only linear in:

502 (o)) - b () ©

=1

3 Thelower bound

The following lemma correlates the valuesfdf) and off(¢) = f - (1, @1, .. ., &, ), whereg; is the index of
a;. Inthe followinga denotes the index af, and for a set of query points = {(a,, ..., a,), ..., } C (F3)",

the sef{(a, , ..., ay),...} C " is denoted byd.

Lemma3.l Letf € F,[z,,...,z,] asgivenin (2) consist of exactlyerms, f as definied by (3); € (F3)",
anda € 7. Then

fla) = (t —2#(f(a)) mod 3.
Proof.  #£(f(a)) is the numbet, of terms inf that evaluate te at the pointz andt, =t — ¢, is the
number of terms that evaluate toSince the sum of terms with the same value is zero and the sum of two
terms with differnent value is also zero, the valuefalepends only of¢, — ¢,) mod 3. Now the assertion
follows from a quick inspection for the possible values pofnod 3 and¢., mod 3. O

LetVi, :={y € F' |t —2#(y) = ¢ (mod 3)}. Thenf(a) € V; . is equivalent withf(a) = ¢. We are
mostly interested i¥; :=V; .

The first nontrivial case is= 2. Although the following result is known (c.f. [5, Lemma 6]pwvill reprove
it.

Lemma 3.2

cz(n,2) >n+1.
Proof. Let f be a2-sparse polynomiald = {a!*),...,a'™)} C (F;)" be any set of size:, and A =
{a®) ... a" c Fr.ByLemma3.1f(a) = oifandonlyif f(a) € {(0,1)7, (1,0)7}. Let0 £ C = f, +f,

the sum of the rows of the matrikande = f, + f,. Now f(a) = o iff C'a + ¢ = 1. ThusA fails to be a
x-test-set since if the matrix

ar ol
M .= .. :
al™ gy

is singular then there exists # C' with M - C' = 0 and if M is regular then there exists # C' with
M - C = 1. Choosing: = 1 in the first case and = o in the second case maké&") + ¢ = 1 for all 1.
Hence any-test-set must have size at least 1. O



Observe, that as a consequence of the proof, fora@gt-setd C (IF;)" for 2-sparse polynomials, the set

A=1{a™ ... al4D} c F? must contain a basis f@t. Clearly, ift > 2, the same holds for-test-sets for

t-sparse polynmials.

The idea behind the improved lower bound fop 2 is as follows. Letf be at-sparse polynomial and

be the affine map specified by (3). The imdgfeof f is an affine subspace &t . If we choosef in such

away thati’ is almost entirely contained iri, thenf maps many vectors infd, i.e., f(a) is zero for many
€ (F3)".

More precisely, let = 2* be a power of two(' := {¢(®), ¢(*) .. ¢(#)} ¢ F2" andB = {d ,d(")} be
a basis off?. For eachr : [n] — {0,1..., k}thereis an affine Imear megpmapplnga to ¢(7(1)) ando to
¢(°). The image of; is the affine linear spacW () ) ek o)y ¢ deflned byC'. For

each sef C [n]letJ(I):={j | [INn="*(j)| is odd. Now for any] C [n],
g _a"y = 3 ) 4 (1] = 1))
i€l i€l

> ()] =), (7)

JeJI)

since|I| = |J(I)| (mod 2) and computation is performed iy . We will constructC' such that (7) lies in
V; for all J except forJ = {1, ..., k}. Thisin turn means that the vecta#s’ .. . ¢*) are pairwise distinct,
hence the constructgdcorresponds to a nonzes-sparse polynomnia.

Lemma3.3 Letk > 1. The vectorg(®*) . c(k—1k) ¢ F2* defined by

c;i’k)zl &= (j—1)mod2T e€{o,...,2" 1], o0<i<k-1,1<j<2F

have the following property:
VO#TClo,... k—1}: #() cPH)=2F"
iel

Proof. We prove the assertion by induction énFor k = 1 the assertion is clear, so assume- 1. As
can be seen from the definitior{*), i < k — 1, consists of a concatenation of two copies'6f~*). By
the induction hypothesis the weight »f cliF—lisoF =2 forall ) # 1 C {o,..., k — 2}. Therefore the

assertion follows for all # & — 1. Now ¢*=**) = (1,... 10,...,0) and therefore adding*~**) to
N — N —
2]671 2]671
Y ies ¢'™*) does not change the weight, sinde* — = 2#~2. The assertion follows. O
Lemma34 Let £ > 1 and letc(®F) . ¢*=1F) be specified as in Lemma 3.3 and 8% = 1 +
S L elik) wherer = k mod 2. Then
v
(0,k) 2 if J = [k’]
#(; +(J1= )= { 2= otherwise
JE

Proof. Fork ¢ J the assertion of the lemma follows directly from Lemma 3@&. F¢ J,

Z |J| ok _1+Z (7,k) |J| ok)

JjeJ J€J
Since the complement of a vector of weighit* is also of weight*—* the assertion follows in the case
J # [k]. The assertion fof = [k] is also obvious. O

The vectors of weight* —* liein V,x, but the vector of weight* does not. Therefor€ = {¢!*) ... ¢k}
has the desired property.

Now we can give a necessary propertyeest-sets.



Lemma3.5 LetA C (F;)" be ax-test-set for*-sparse polynomials. Thenforallbases= {a'*/, .. ., a'")}

of A and all mappingsr : [n] — {o, ..., k}, A contains a linear combinatiod_;; a'", such that for all
1 <! <k, |ITnn () is either zero or odd.

Proof.  For purpose of contradiction suppose that for some mappiaigd all}_; ., al") € A there exists

{ such thaf7 n == ({)] is nonzero and even. L&t be the number of indices < | < k such thatr—* (/)

is nonempty and assume w.l.0.g. that these indices are, k£’ and letg = g, be the affine linear map
mappinga'’) to ¢(™(1)%") ando to clo*") If [T N7 (1)| is even for some < | < k’, the set/([) is a proper
subset of%’]. By (7) and Lemma 3.4, for all C [n] the image of_,; a'") underg has weight*'—* and is
therefore included iV, ... We reached a contradiction singe&loes not correspond to the zero polynomial.
The assertion follows. O

The advantage of this new formulation becomes clear if wethiséanguage of multilinear algebra. Let us
begin with some facts.

Let IV be ann-dimensional vector space over some figldA mappingh : W* — K thatis linear in every
coordinate is called &-linear map If additionally h(z) = (—1)?h(c(z)) for any permutationr € S,

h is calledalternating Given a basisB = {e,,...,e,} of W, an alternating:-linear maph is uniquely
determined by the image of the (orderédjets ofB. Therefore the dimension of the vector spaidg, . of
alternatingk-linear maps ig). This readily defines an equivalence relationi&ti, namely, by the orbits
of ALn,k:

(1, 2k) Z (.. k) &= VheAL,p: hle, .. zp) =hly, o uk). (8)

Another important property is that the value of an altemgati-linear map does not change when an argument
is altered by adding some multiple of another argumentéogt, forany? € K,h(z,,z,) = h(z,+Pz,, z,).
This directly gives us a method to check whether two elemeitg* are equivalent in the sense of (8).

The most famous example of an alternating multilinear fastithe determinant where the above property
is extensively used in the Gaussian elimation method forprding the value of the determinant of a given
matrix. Here our equivalence relation is the notion of samiil of two matrices.

Letdet : W* — K denote the alternating-linear form, that maps &-tuple of linear independent vectors
to 1 and ak-tuple of linear dependent vectorsdo

For eachu € IF? and allk < n we will define the alternating-linear formh , over (F7*)* as follows:

hd(xla .. 'axk) = <da x1>B<da x2>B tC <da xk>B . dét($1a ey xk)a
where the inner produgt, .}z is with respect to the basis.
Now Lemma 3.5 has the nice formulation we sought for:

A is ax-test-set fop*-sparse polynomials <
Vailnl ={o,1,.. k), 3a€ A hy(Xien @9 Yien i @) =1, (9)

wherer < i, ..., 4 < nare theindices with nonempty preimage. Observe that tsesét:; ) are pairwise
disjoint. Note that (9) also holds if we restrietto be surjective orfik].

The following lemma gives a characterization(f )* with respect to alternatinglinear forms.

Lemma3.6 Let¢,,...,& € F? be linear independent and let = (¢,,...,&)T € F?**. Then the
following holds

a)(&,..., &)= (8., ..., B ) where the? seen as subsets [pf| are pairwise disjoint, or

b) there is a regular submatrix € [F¥** of X such thafv'1; # 1,. In particular, for some & {0;,1,} we
haveY - b =14

Proof.  Since¢,, ..., &, are linear independent there is regular submaifixc FX** of X. Suppose
Y1, = 1;. If the columns ofX not contained irt” are all zero or each of these columns is identical to one



of Y, then using the Gaussian elimination we can transfarto some matrixZ, such that the submatrix
Y transforms to the unity matrix. Thus the columns/ére the unity vectors. It follows that the rows 6f
seen as sets are pairwise disjoint. In the other case thamisimn, neither zero nor identical to one column
of Y. This column together with any — 1 columns ofY gives a regular matriX” with Y’ - 1, # 1,. As

Y’ is regular for somé ¢ {0y, 1;} we haveY’ - b = 1,. The assertion follows. O

Now we can prove the main theorem.

k—1
= () £0)

i=1

Theorem 3.7

Proof. LetA C IF? andB ={al*),...,a!™} C A be a basis foF. We represent all elements Bf as
coordinate vectors over this basis. Consider thé/setc AL, ;. | a € A} If this set does not spad L, x
then there are linear independent vectrs . ., &, € F2 such that for alki € A, hgl&, . &) =o0.1n

order to separate arkytupel of vectors from zerad has to contain at leastim(AL, ;) = (Z) elements.
We must exclude somé-tupels of vectors, hamely those, which are inequivalethénsense of (8) with
anyk-tupelé, , ..., &, of vectors with pairwise disjoirg; (seen as subsets [ef]), since such vectors can not
be induced by the mappingin (9). By Lemma 3.6, these vectors can be separateﬁf)j/f (?) elements
a € I, namely, those with less th@nones in their representation with respecBtoThe assertion follows.

O

The lower bound o} (n, ), Corollary 2.3 together with the upper bound (5) imply:

Coroallary 3.8 For all ¢,
2|_logtJ 1
)= =~ pllest] Z
() = g™ (1+@(n))

For small values of we can give a better lower bound.
Lemma 3.9

c;(n,zk) > kn+1.

Proof. Let A C (IF;)" be a set of sizén. By Lemma 3.2, for each sét C (I;)" of sizen there is

a polynomialfo € F*(n,2) vanishing onC. Thus f-, vanishes orC, = {a,,...,a,}, fc, vanishes on
C, ={an4:1, ..., a,} and so on. Thereforg;, = ]‘[f:1 fc, is a2*-sparse polynomial that vanishes dn
The assertion follows. O

To conclude this section, let us remark that the lower boustdined forTF; is valid for all fields of odd
characteristic. This can be seen in the same way as in [Qé&]-E-th power can be interpreted as a mapping
7., — Fy = {o, 1,1} by observing that for alt € F,, a'“™*)/2 ¢ {0,1,—1} C . More precisely
alt=)/2 isgif ¢ = 0, 1 if a is a square, and-1 if « is a nonsquare. Thus we obtain the same lower bound
for the subset of polynomials i, (n, ¢) that can be written as

Fonreeovia) = Fal, sty

for some polynomiaf.
Table 1 gives some numeric examples of the improvements\ahin this paper.



n 3 4 5 6 8 11 11
[logt| 2 2 2 2 2 2 3
lower bound [1] 7 11 16 22 37 67 232
lower bound[5] || 16 27 41 58 101 188 843
new lower bound| 19 31 46 64 112 220 1199
upperbound[1] || 19 33 51 73 129 243 1568

Figure 1: Lower and upper bounds for small values
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