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1 IntroductionThe advantages of using randomization in the design of algorithms have becomeincreasingly evident in the last couple of years. It appears now that thesealgorithms are more e�cient than the purely deterministic ones in terms ofrunning time, hardware size, circuits depth, etc. The advantages of randomizedTuring machines over deterministic machines have been studied early startingwith [Fr 75] where the sets of palindromes were proved to be computed byMonte Carlo o�-line Turing machines much faster than by the deterministicmachines of the same type. Later similar results were obtained for space andreversal complexity for various types of machines [Fr 83, Fr 85, KF 90]. Onthe other hand, it is universally conjectured that randomness do not alwayshelp. However, these conjectures were not supported by proofs since provinglower bounds for randomized machines had turned out to be much harder thanproving lower bounds for deterministic and nondeterministic machines.In this paper we prove nontrivial small lower space bounds for various typesof randomized Turing machines.We distinguish between two types of randomized machines: Monte Carlomachines and probabilistic machines.We say that a Monte Carlo machineM recognizes language L in space S(n)if there is a positive constant � such that:1. for arbitrary x 2 L, the probability of the event \ M accepts x in spacenot exceeding S(jxj) " exceeds 1=2 + �,2. for arbitrary x 2= L, the probability of the event \ M rejects x in spacenot exceeding S(jxj) " exceeds 1=2 + �.We say that a probabilistic machineM recognizes language L in space S(n)if: 1. for arbitrary x 2 L, the probability of the event \ M accepts x in spacenot exceeding S(jxj) " exceeds 1=2,2. for arbitrary x 2= L, the probability of the event \ M rejects x in spacenot exceeding S(jxj) " exceeds 1=2.Probabilistic machines are interesting theoretical devices but they are ratherremote from practical needs. Hence much more e�ort has been spent to con-struct e�cient Monte Carlo algorithms. On the other hand, nondeterministicTuring machines with space bound S(n) � logn can be simulated by proba-bilistic Turing machines in space const �S(n) [Gi 74, Tr 74] but it is conjecturedthat this may be not true for Monte Carlo Turing machines. Thus no wonderthat it had been di�cult to prove nontrivial lower space bounds for speci�cnon-diagonal languages recognized by Monte Carlo Turing machines. Howeverwe have failed to �nd in the literature any lower space bounds for speci�c lan-guages recognized by probabilistic Turing machines as well. The only exception1



is rather many proofs of languages being nonstochastic, i. e. for rather manylanguages L it is proved that arbitrary 1-way probabilistic Turing machine rec-ognizing L cannot use constant space only (see monographs [Pa 71, Bu 77]).It deserves to be mentioned that there have already been lower time bounds(const � n2 for Monte Carlo o�-line Turing machines to recognize palindromes[Fr 75, Fr 77]). The essential ideas for lower space bounds for 1-way MonteCarlo Turing machines have been published in [Fr 83, Fr 85] but they have notmaterialized in any completed lower space bound for speci�c languages.2 Randomized Turing MachinesThe results in this section are based on a simple idea �rstly used by M. Rabin[Ra 63], and then adapted in di�erent contexts by A. Greenberg and A. Weiss[GW 86], R. Freivalds [Fr 79], C. Dwork and L. Stockmeyer [DS 88, DS 92]. LetM be a randomized Turing machine. Con�guration (instanteous description)of the machine at a de�nite moment of the work of the machine shows:(i) the internal state,(ii) the positions of the heads on the work tapes (but not the position of thehead on the input tape),(iii) the content of the work-tapes at this moment.We de�ne the word probabilities ofM on w as follows. A starting conditionis a pair (conf; �) where conf is a con�guration of M and � 2 fLeft; Rightg;its intuitive meaning is \start M on the � end of w in con�guration conf". Astopping condition is either:1. a pair (conf; �) as above, meaning \the input head ofM falls o� the � endof w with M in con�guration conf",2. \Loop" meaning \the computation of M loops forever within w",3. \Accept" meaning \M halts in state qa before the input head falls o�either end of w", or4. \Reject" meaning \M halts in state qr before the input head falls o� eitherend of w".For each starting condition � and each stopping condition � , let p(w; �; � )be the probability that stopping condition occurs given that M is started instarting condition � on w.Since we model computations of Turing machines by Markov chains, we�rst give some de�nitions and results about Markov chains. Basic facts aboutMarkov chains with �nite state space can be found, for example, in [KS 60].We consider Markov chains with �nite state space, say 1; 2; : : : ; s for same s. A2



particular Markov chain is completely speci�ed by its matrix R = frijgsi;j=1 oftransition probabilities. If the Markov chain is in state i, then it next moves tostate j with probability rij. The chains we consider have a designated startingstate, say, state 1, and some set T of trapping states, so rkk = 1 for all k 2 T .For k 2 T , let a(k;R) denote the probability that the Markov chain R is trappedin state k when started in state 1.We start with a lemma which bounds the e�ect of small changes in thetransition probabilities of a Markov chain. This lemma has been taken from[DS 92] with a reference to Lemma 1 from [GW 86] which was however slightlydi�erent.Let � � 1. Say that two numbers r and r0 are �-close if either (i) r = r0 = 0or (ii) r > 0, r0 > 0, and ��1 � r=r0 � �. Two Markov chains R = frijgsi;j=1and R0 = fr0ijgsi;j=1 are �-close if rij and r0ij are �-close for all pairs i; j.Lemma 2.1 ([DS 92]) Let R and R0 be two s-state Markov chains which are�-close, and let k be a trapping state of both R and R0. Then a(k;R) anda(k;R0) are �z-close where z = 2s.Theorem 2.2 Let A;B � �� with A \ B = ;. Suppose there is an in�niteset I of positive integers and functions G(m);H(m) such that G(m) is a �xedpolynomial in m, and for each m 2 I there is a set Wm of words in �� suchthat:1. jwj � G(m) for all w 2Wm,2. there is a constant c > 1 such that jWmj � cm for all m 2 I,3. for every m 2 I and every w;w0 2 Wm with w 6= w0, there are wordsu; v 2 �� such that:(a) juwvj � H(m); juw0vj � H(m), and(b) either � uwv 2 Auw0v 2 Bor � uwv 2 Buw0v 2 AThen, if a Monte Carlo 2-way Turing machine with space bound S(n) sepa-rates A and B, then S(H(m)) cannot be o(logm).Proof. Suppose that the Monte Carlo 2-way Turing machine separates A andB with error probability � < 12 . Let S(n) be the space function for M. ByV ol(n) we denote the number of the possible con�gurations of the machine Mon words of length not exceeding n. It is obvious that V ol(n) � O(exp(S(n))).Suppose to the contrary that S(H(m)) = o(logm) and V ol(H(m)) == 2o(logm). Consider the word probabilities p(v; �; � ) de�ned above. We re-strict ourselves to words v of length not exceeding G(m) only. Formally, the3



length of v and the length of the input word (which is essential to compute thevalue of the functions S(n) and V ol(n)) are not related. However for our con-siderations it su�ces to consider the total length of words no more that H(m).Hence for arbitrary word v we consider d = 4(V ol(H(m)))2+6V ol(H(m)) wordprobabilities.Fix some ordering of the pairs (�; � ) of starting and stopping conditionsinvolving the conditions with space not exceeding S(H(m)). Let p(v) be thevector of these d probabilities according to this ordering.We �rst show that if jvj � m and if p is a nonzero element of p(v), thenp � 2�V ol(H(m))G(m) . Form a Markov chain K(v) with states of the form(conf; l) where conf is a con�guration ofM using no more space than S(H(m)),and 0 � l � jvj+1. The chain state (conf; l) with 1 � l � jvj corresponds to Mbeing in con�guration conf with the input tape head scanning the lth symbolof v. Transition probabilities from such states are obtained from the transitionprobabilities of M in the obvious way. For example, if the lth symbol of v is0, and ifM in con�guration conf reading a 0 can move the input head left andenter con�guration conf0 with probability 1=2, then the transition probabilityfrom state (conf; l) to state (conf0; l�1) is 1=2. Chain states of the form (conf; 0)and (conf; jvj + 1) are trap sates of K(v) and correspond to the input head ofM falling o� the left or right end, respectively, of v. Now consider, for example,p = p(v; �; � ) where � = (confi;Left) and � = (confj ;Left). If p > 0, thenthere must be some path on nonzero probability in K(v) from state (confi; 1)to (confj; 0) and since K(v) has at most V ol(H(m)) � jvj � V ol(H(m)) �G(m)nontrapping states, there is such a path of length at most V ol(H(m)) � G(m).Since 1=2 is the smallest nonzero transition probability of M, it follows thatp � 2�V ol(H(m))�G(m) . The other three cases p(v; �; � ) where � has the form(conf; �) are similar. If � = (conf;Left) and � = Loop, there must be a pathof nonzero probability in K(v) from state (conf; 1) to some state (conf0; l) suchthat there is no path of nonzero probability from (conf0; l) to any trap state ofthe form (conf00; 0) or (conf00; jvj+1). Again, if there is such a path, there is oneof lenght at most V ol(H(m)) �G(m). The remaining cases are similar.Fix an arbitrary m 2 I. Divide Wm into equivalence classes by making wand w0 equivalent if p(w) and p(w0) are zero in exactly the same coordinates.Let Em be a largest equivalence class, so jEmj � jWmj=2d.Let d0 be the number of nonzero coordinates of p(w) for w 2 Em. Let p̂(w)be the d0-dimensional vector of nonzero coordinates of p(w). Note that p̂(w) 2[2�V ol(H(m))�G(m); 1]d0 for all w 2 Em. Let log p̂(w) be the componentwise logof p̂(w), so log p̂(w) 2 [�V ol(H(m)) �G(m); 0]d0 .By dividing each coordinate interval [V ol(H(m)) �G(m); 0] into subintervalsof length �, we divide space [V ol(H(m)) �G(m); 0]d0 into at most(V ol(H(m)) �G(m)=�)d cells, each of size � � � � � � � � �. We want to choose4



� large enough that the number of cells is smaller than the size of Em, that is�V ol(H(m)) �G(m)� �d < jWmj2d ;or, equivalently, 24(V ol(H(m)))2+6V ol(H(m))���V ol(H(m)) �G(m)� �4(V ol(H(m)))2+6V ol(H(m)) < jWmj (1)Since jWmj is assumed to grow faster than any polynomial in m, G(m) is apolynomial in m, and since, by assumption from the contrary, V ol(H(m)) =2o(logm), for arbitrary � > 0 there is an m� such that (1) holds for all m 2 Iwith m � m�.Assuming (1), there must be two di�erent words w;w0 2 Em such thatlog p̂(w) and log p̂(w0) belong to the same cell. Therefore, if p and p0 are twononzero probabilities in the same coordinate of p(w) and p(w0), respectively,then j logp� log p0j � �It follows that p and p0 are 2�-close. Therefore, p(w) and p(w0) are componen-twise 2�-close.For this pair (w;w0), let u and v be the words in Assumption 3 in thestatement of the theorem. We describe two Markov chains, R and R0, whichmodel the computation of M on uwv and uw0v, respectively. Both chainshave 4 � V ol(H(m)) � G(m) + 4 states. 4 � V ol(H(m)) � G(m) of these stateshave the form (conf; l) where conf is a con�guration of M and l 2 f1; 2; 3; 4g.The other states are Initial, Accept, Reject and Loop. The state (conf; l) ofR corresponds to M being in co�guration conf reading the right end of cjuif l = 1, the left end of w if l = 2, the right end of w if l = 3, or the leftend of vcj if l = 4. The state Initial corresponds to M being in its initialstate q0 reading the leftmost endmarker cj , the states Accept and Reject corre-spond to the computation halting in the accepting state or the rejecting state,respectively, and Loop means that M has entered an in�nite loop. The transi-tion probabilities of R are obtained from the word probabilities of M on cju,wand vcj . For example, the transition probability from (confi; 3) to (confj; 1) isjust p(w; (confi; Right); (confj;Left)), the transition probability from Initial to(confj; 2) is p(cju; (confInitial;Left); (confj; Right)) and the transition probabil-ity from (confi; 4) to Accept is p(vcj ; (confi;Left);Accept). The states Accept,Reject and Loop are trap states of R. The chain R0 is de�ned similarly, butusing w0 in place of w.Suppose that uwv 2 A and uw0v 2 B, the other case being symmetric. Letz = 2(4 � (V ol(H(m)) � G(m) + 4). Let a (resp., a0) be the probability that Maccepts input uwv (resp., uw0v). Then a (resp., a0) is exactly the probabilitythat the Markov process R (resp., R0) is trapped in state Accept when started5



in state Initial. Now uwv 2 A implies a � 1 � �. Since R and R0 are 2�-close,Lemma 2.1 implies that a0a � 2��zwhich implies a0 � (1� �) � 2��zNow we are ready to put our arguments together. Take � so small that(1� �) � 2��(8�V ol(H(m))�G(m)+8) > 1=2 (2)Then take su�ciently large � to ensure that (1) holds. Choose two di�erent but2�-close words in Em. Then R and R0 are 2�-close and (2) holds. But sinceuw0v 2 B, this contradicts the assumption that � separates A and B. 2Example 2.3. Consider the language PAL � f0; 1g� consisting of all thepalindromes.Corollary of Theorem 2.2. If a Monte Carlo 2-way Turing machine withspace bound S(n) recognizes PAL, then S(n) cannot be o(logn).Notice that there exists a deterministic 2-way Turing machine recognizingPAL in space logn.Example 2.4. Consider the language D2 containing strings of balanced paren-theses of 2 types. This language is generated by the context-free grammar withproductions: S ! (), S ! [], S ! SS, S ! (S), S ! [S]:Corollary of Theorem 2.2. If a Monte Carlo 2-way Turing machine withspace bound S(n) recognizes D2, then S(n) cannot be o(logn).3 Separation TheoremTheorem 3.1 Let g(n) be arbitrary self-constructible space function for MonteCarlo 2-way Turing machines, g(n) � logn. Then there is a language Lg suchthat:1. Lg can be recognized by a g(n)-space bounded Monte Carlo 2-way Turingmachine,2. Lg cannot be recognized by a h(n)-space bounded Monte Carlo 2-way Tur-ing machine, where h(n) = o(g(n)).Proof. Lg consists of words w 2 f0; 1; 2; 3;4g� in the form w = v22 : : :233 : : :344 : : :4, where:(i) v is a palindrome in f0; 1g�,(ii) the number of 2's equals the length of v,6



(iii) if k denotes the number of 3's then the number of 2's equals 2k,(iv) the number of 3's equals g(jwj).The Monte Carlo Turing machine asserted in 1) �rst constructs the functiong(n), compares it with the number of 3's. Then the machine deterministicallyrecognizes whether or not the assertion (iii) holds. This can be done in space k.Finally, the machine deterministically recognizes whether the assertions (i){(ii)hold. No more than logarithmic (in jvj) space is needed for this.The Assertion 2) is a corollary from Theorem 2.2. 2M. Karpinski and R. Verbeek [KV 87] have shown that there are many smallfunctions which are self{constructible for space complexity of 2-way Monte Car-lo Turing machines. Among these functions one should mention log log : : : logn(repeated arbitrarily many times), log�n, the inverse Ackermann function. Itfollows from our Theorem that the corresponding complexity classes are pairwisedi�erent. For instance, there is a language recognizable by 2-way Monte CarloTuring machines in space log�n but not in space equal to the inverse Ackermanfunction (For the related problems of randomized time bounded computationcf. [KV 93]).4 1-way Monte Carlo machinesConsider a language L � ��. We say that the words u and v are equivalent withrespect to L if and only if (8w)(uw 2 L , vw 2 L). Rank of the language Lis the function rankL(n) expressing the number of non-equivalent words amongall the words in ��n.Theorem 4.1 If a Monte Carlo 1-way Turing machine with space bound S(n)recognizes L, then S(n) cannot be o(log log rankL(n).Proof. Fix some ordering of the con�gurations of the machine M such thatthe lengths of used work-tapes do not decrease. Let V ol(n) be the number ofpossible con�gurations of M with the length of work-tape not exceeding S(n).It is ovbious that V ol(n) � O(exp(S(n))).Let px be the V ol(n)-dimensional vector of the probabilities of the corre-sponding con�gurations reached by M after processing the input word x, Thetotal of these probabilities may be less than 1 since with small probability longercon�gurations nay be obtained. The vector pv may be interpreted as a point ina V ol(n)-dimensional unit cube. We introduce metrics�(px; py) = jpx(conf1)� py(conf1)j+ � � �+ jpx(confV ol(n)) � py(confV ol(n))j:Lemma 2. 3 in [Fr 85] asserts that there is a positive constant c such that ifx and y are not Myhill{Nerode equivalent with respect to L, then �(px; py) � c.Let x1; x2; : : : ; xr be all possible words in ��n pairwise non-equivalent with7



respect to L (r = rankL(n)). Consider the bodies de�ned by the equations�(px � pxi) < c2 . These bodies do not intersect. Their volumes equal2V ol(n) � ( c2 )V ol(n)(V ol(n))! = cV ol(n)(V ol(n))!These bodies are situated in a cube with the length of edge 1 + 2c. Hence thenumber of the bodies cannot exceed(1 + 2c)V ol(n) � (V ol(n))!cV ol(n) = 2O(V ol(n)�log V ol(n))and rankL(n) � 2O(V ol(n)�log V ol(n))log rankL(n) � O(V ol(n) � logV ol(n))O� log rankL(n)log log rankL(n)� � V ol(n)O(log log rankL(n)) � S(n) 25 1-way probabilistic machinesTheorem 5.1 Let A;B � �� with A \B = ;. Suppose there is an in�nite setI of positive integers and a function H(m) such that for each m 2 I there is anordered set of pairs of words Wm = f(u1; v1); (u2; v2); : : : ; (um; vm)g such thatfor every string �(1)�(2) : : :�(m) 2 f0; 1gm, there is a word w such that� uiwvi 2 A; if �(i) = 1;uiwvi 2 B; if �(i) = 0:and juiwvij � H(m) for all i 2 f1; 2; : : : ;mg.Then, if a 1-way probabilistic Turing machine with space bound S(n) sepa-rates A and B, then S(H(m)) cannot be o(logm).Proof. Assume the contrary. Let M be a probabilistic 1-way Turing machinewith the acceptance probability p(x) > � if x 2 A and p(x) < � if x 2 B, withS(H(m)) = o(logm) which implies V ol(H(m)) = 2o(logm).Enumerate all the con�gurations ofM using no more space than y. Denotethe number of possible con�gurations of M using no more than y space by Y .It is obvious that (9c > 0)(Y � cy).Denote by aij the transition probability from con�guration i to con�gurationj when M processes the input word u. Similarly, denote by bij and cij thetransition probabilities when M processes w and v, respectively. If we neglect8



the con�gurations using space exceeding y, then there is only a �nite numberof con�gurations and the probability p(x) for x = uwv equals(�1; : : : ; �1Y )0BB@ a11 a12 : : : a1Ya21 a22 : : : a2Y� � � �aY 1 aY 2 : : : aY Y 1CCA0BB@ b11 b12 : : : b1Yb21 b22 : : : b2Y� � � �bY 1 bY 2 : : : bYY 1CCA��0BB@ c11 c12 : : : c1Yc21 c22 : : : c2Y� � � �cY 1 cY 2 : : : cY Y 1CCA0BBB@ �1�2...�Y 1CCCAOur proof is based heavily on the simple observation that p(x) may be ex-pressed as a linear form of the products �iaijbjkckl�l. Hence for �xed words u; vthe value p(x) is expressed as a linear form of the values b11; : : : ; bYY . Theselinear forms may be considered as a linear Y 2-dimensional space. The lineardependence of any (Y 2 + 1) vectors in an Y 2-dimensional linear space impliesthat there are numbers c1; : : : ; cY 2+1 which are not all equal to 0, and there areY 2 + 1 pairs (u1; v1); (u2; v2); : : : ; (uY 2+1; vY 2+1) such that, for arbitrary w,c1 � p(u1wv1) + c2p(u2wv2) + � � �+ cY 2+1p(uY 2+1wvY 2+1) = 0 (3)and c1 + c2 + � � �+ cY 2+1 = 0 (4)Let ci1 ; ci2 ; : : : cil be all positive numbers in this set. By Assumption (2)of the Theorem, for every string �(1)�(2) : : :�(Y 2 + 1) 2 f0; 1gY 2+1 there is aword w such that � uiwvi 2 A; if �(i) = 1; anduiwvi 2 B; if �(i) = 0:Take �(i) = 1 if and only if ci > 0. Then p(uiwvi) > � if and only if�(i) = 1. Hence from (4) it followsc1 � p(u1wv1) + � � �+ cY 2+1p(uY 2+1wvY 2+1) == c1(p(u1wv1)� �) + � � �+ cY 2+1 � (p(uY 2+1wvY 2+1)� �) > 0 (5)Now observe that the lengths of all words uiwvi do not exceed H(Y 2 + 1).Hence the space used by M on these words does not exceed S(H(Y 2 + 1)) � y(because, by the contrary, S(H(m)) = o(logm)). Contradiction between (5)and (3). 2Consider the language NH de�ned by M. Nasu and N.Honda [NH 71]. It isthe set of words over an alphabet fa; bg of the form aibaj1b : : : bajrb (r = 1; 2; : : :)such that for some 1 � l � r; i = j1 + � � �+ jl holds, where i; j1; j2; : : : ; jr arenonnegative integers. 9



Corollary 5.2 If a probabilistic 1-way Turing machine with space bound S(n)recognizes the language NH, then S(n) cannot be o(logn).Proof. For arbitrary m, the pairs of words (ui; vi) are as follows. ui = ai, viis empty. For the string �(1)�(2) : : :�(m), let 0 < k1 < k2 < � � � < kl be allthe values of i such that �(i) = 1. Let j1; j2; : : : ; jl be positive integers suchthat, for every 1 � s � l; j1 + � � � + js = ks. Then the word w correspondingto the string �1�(2) : : :�(m) equals baj1baj2b : : : bajlb. It is easy to see thatuiwvi 2 NH if and only if �(i) = 1. For all m, H(m) � 3m. 2It deserves to be noticed that NH can be recognized by a deterministic 1-way Turing machine in log-space as well. Hence, randomness does not help torecognize NH even if we allow non-isolated cut-points.6 Probabilistic machinesTheorem 6.1 Let A;B � �� with A \B = ;. Suppose there is an in�nite setI of positive integers and a function H(m) such that for each m 2 I there isan ordered set of pairs of words Wm = f(u1; v1); (u2; v2); : : : (um; vm)g such thatfor every string �(1)�(2) : : :�(m) 2 f0; 1gm, there is a word w such that� uiwvi 2 A; if �(i) = 1;uiwvi 2 B; if �(i) = 0;and juiwvij � H(m) for all i 2 f1; 2; : : : ;mg. Then, if a 2-way probabilisticTuring machine with space bound S(n) separates A and B, then S(H(m)) cannotbe o(log logm).Proof. It follows from Theorem 5.1 that arbitrary 1-way probabilistic Turingmachine separating A from B cannot have space bound o(logm). J. Kaneps[Ka 89] proved that every language recognizable by a 2-way probabilistic �niteautomaton with k states can be recognized by a 1-way probabilistic �nite au-tomaton with 2O(k2) states as well. This proof can be modi�ed to obtain ourresult. 27 DiscussionIt may seem that all the lower bounds proved in the paper are based on the sameassumption about the given language. The assumptions are indeed related. Forinstance, if, for a language L, the assumptions of Theorem 5.1 hold, then theassumptions of Theorem 2.2 hold as well. However, our lower bounds show thatspace complexity features may be di�erent for di�erent sets.10



� For the set PAL there are the following space optimal Turing machines:1-way deterministic TM: linear2-way deterministic TM: logn1-way Monte Carlo TM: logn2-way Monte Carlo TM: logn1-way probabilistic TM: const2-way probabilistic TM: constFor the set NH the space bounds are:1-way deterministic TM: logn2-way deterministic TM: logn1-way Monte Carlo TM: logn2-way Monte Carlo TM: logn1-way probabilistic TM: logn2-way probabilistic TM: ?For the setf01022 : : :201021041081 : : :102k201021041081 : : :1022kgthe space bounds are:1-way deterministic TM: logn2-way deterministic TM: logn1-way Monte Carlo TM: � � log logn� (log logn)22-way Monte Carlo TM: const1-way probabilistic TM: const2-way probabilistic TM: const � 2AcknowledgementsWe thank Eric Allender, Richard Beigel, Johan H�astad, Sasha Razborov, andRutger Verbeek for the number of interesting discussions on the various issuesof the randomized separation and the lower bounds.11
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