Lower Space Bounds for Randomized
Computation

Rusins Freivalds Marek Karpinski*

Dept. of Computer Science Dept. of Computer Science
University of Latvia University of Bonn

LV-1459 Riga 53117 Bonn

Abstract

It is a fundamental open problem in the randomized computation how to
separate different randomized time or randomized small space classes (cf., e.g.,
[KV 87], [KV 88]). In this paper we study lower space bounds for randomized
computation, and prove lower space bounds up to log n for the specific sets
computed by the Monte Carlo Turing machines. This enables us for the first
time, to separate randomized space classes below log n (cf. [KV 87], [KV 88]),
allowing us to separate, say, the randomized space O (1) from the randomized
space O (log™ n). We prove also lower space bounds up to log log n and log n,
respectively, for specific languages computed by probabilistic Turing machines,

and one-way probabilistic Turing machines.

*Research partially supported by the International Computer Science Institute, Berkeley,
California, by the DFG Grant KA 673/4-1, ESPRIT BR Grant 7097, and by the Volkswagen

Stiftung.

1 Introduction

The advantages of using randomization in the design of algorithms have become
increasingly evident in the last couple of years. It appears now that these
algorithms are more efficient than the purely deterministic ones in terms of
running time, hardware size, circuits depth, etc. The advantages of randomized
Turing machines over deterministic machines have been studied early starting
with [Fr 75] where the sets of palindromes were proved to be computed by
Monte Carlo off-line Turing machines much faster than by the deterministic
machines of the same type. Later similar results were obtained for space and
reversal complexity for various types of machines [Fr 83, Fr 85, KF 90]. On
the other hand, it is universally conjectured that randomness do not always
help. However, these conjectures were not supported by proofs since proving
lower bounds for randomized machines had turned out to be much harder than
proving lower bounds for deterministic and nondeterministic machines.

In this paper we prove nontrivial small lower space bounds for various types
of randomized Turing machines.

We distinguish between two types of randomized machines: Monte Carlo
machines and probabilistic machines.

We say that a Monte Carlo machine M recognizes language L in space S(n)
if there is a positive constant ¢ such that:

1. for arbitrary « € L, the probability of the event “ M accepts z in space
not exceeding S(|z|) ” exceeds 1/2 44,

2. for arbitrary # ¢ L, the probability of the event “ M rejects z in space
not exceeding S(|z|) ” exceeds 1/2 4 4.

We say that a probabilistic machine M recognizes language L in space S(n)
if:

1. for arbitrary « € L, the probability of the event “ M accepts z in space
not exceeding S(|z|) ” exceeds 1/2,

2. for arbitrary # ¢ L, the probability of the event “ M rejects z in space
not exceeding S(|z|) ” exceeds 1/2.

Probabilistic machines are interesting theoretical devices but they are rather
remote from practical needs. Hence much more effort has been spent to con-
struct efficient Monte Carlo algorithms. On the other hand, nondeterministic
Turing machines with space bound S(n) > logn can be simulated by proba-
bilistic Turing machines in space const - S(n) [Gi 74, Tr 74] but it is conjectured
that this may be not true for Monte Carlo Turing machines. Thus no wonder
that it had been difficult to prove nontrivial lower space bounds for specific
non-diagonal languages recognized by Monte Carlo Turing machines. However
we have failed to find in the literature any lower space bounds for specific lan-
guages recognized by probabilistic Turing machines as well. The only exception

is rather many proofs of languages being nonstochastic, 1. e. for rather many
languages L it is proved that arbitrary 1-way probabilistic Turing machine rec-
ognizing L cannot use constant space only (see monographs [Pa 71, Bu 77]).

It deserves to be mentioned that there have already been lower time bounds
(const - n? for Monte Carlo off-line Turing machines to recognize palindromes
[Fr 75, Fr 77]). The essential ideas for lower space bounds for 1-way Monte
Carlo Turing machines have been published in [Fr 83, Fr 85] but they have not
materialized in any completed lower space bound for specific languages.

2 Randomized Turing Machines

The results in this section are based on a simple idea firstly used by M. Rabin
[Ra 63], and then adapted in different contexts by A. Greenberg and A. Weiss
[GW 86], R. Freivalds [Fr 79], C. Dwork and L. Stockmeyer [DS 88, DS 92]. Let
M be a randomized Turing machine. Configuration (instanteous description)
of the machine at a definite moment of the work of the machine shows:

(i) the internal state,

(i1) the positions of the heads on the work tapes (but not the position of the
head on the input tape),

(iii) the content of the work-tapes at this moment.

We define the word probabilities of M on w as follows. A starting condition
is a pair (conf,&) where conf is a configuration of M and £ € {Left, Right};
its intuitive meaning is “start M on the & end of w in configuration conf’. A
stopping condition is either:

1. a pair (conf, &) as above, meaning “the input head of M falls off the £ end
of w with M in configuration conf’,

2. “Loop” meaning “the computation of M loops forever within w”,

3. “Accept” meaning “M halts in state g, before the input head falls off
either end of w”, or

4. “Reject” meaning “M halts in state g, before the input head falls off either
end of w”.

For each starting condition ¢ and each stopping condition 7, let p(w, o, 7)
be the probability that stopping condition occurs given that M is started in
starting condition ¢ on w.

Since we model computations of Turing machines by Markov chains, we
first give some definitions and results about Markov chains. Basic facts about
Markov chains with finite state space can be found, for example, in [KS 60].
We consider Markov chains with finite state space, say 1,2,...,s for same s. A

particular Markov chain is completely specified by its matrix R = {rij};jzl of
transition probabilities. If the Markov chain is in state ¢, then 1t next moves to
state j with probability r;;. The chains we consider have a designated starting
state, say, state 1, and some set T of trapping states, so rgx = 1 for all k € T
For k € T, let a(k, R) denote the probability that the Markov chain R is trapped
in state k& when started in state 1.

We start with a lemma which bounds the effect of small changes in the
transition probabilities of a Markov chain. This lemma has been taken from
[DS 92] with a reference to Lemma 1 from [GW 86] which was however slightly
different.

Let 5 > 1. Say that two numbers r and v are §-close if either (i) r =+ =0
or (ii) r > 0, 7 > 0, and =1 < r/r' < 8. Two Markov chains R = {rij};jzl
and R = {ry; };jzl are f-close if 7;; and ';; are B-close for all pairs 7, j.
Lemma 2.1 ([DS 92]) Let R and R' be two s-state Markov chains which are
B-close, and let k be a trapping state of both R and R'. Then a(k, R) and
a(k, R) are 3*-close where z = 2s.

Theorem 2.2 Let A, B C X* with AN B = 0. Suppose there is an infinite
set I of positive integers and functions G(m), H(m) such that G(m) is a fived
polynomial tn m, and for each m € I there is a set Wy, of words in X* such
that:

1. |w] < G(m) for all w € Wy,
2. there is a constant ¢ > 1 such that |W,| > ¢™ for allm € I,

3. for every m € I and every w,w € W, with w # w’, there are words
u, v € X* such that:

(a) Juwel < H(m), luw'v| < H(m), and
uwv € A

(b) ezther{ ww'v € B

, uwv € B
uw'v € A

Then, if a Monte Carlo 2-way Turing machine with space bound S(n) sepa-
rates A and B, then S(H(m)) cannot be o(logm).

Proof. Suppose that the Monte Carlo 2-way Turing machine separates A and
B with error probability ¢ < % Let S(n) be the space function for M. By
Vol(n) we denote the number of the possible configurations of the machine M
on words of length not exceeding n. Tt is obvious that Vol(n) < O(exp(S(n))).

Suppose to the contrary that S(H(m)) = o(logm) and Vol(H(m)) =
= 200og™) Consider the word probabilities p(v, 0, 7) defined above. We re-

strict ourselves to words v of length not exceeding G(m) only. Formally, the

length of v and the length of the input word (which is essential to compute the
value of the functions S(n) and Vol(n)) are not related. However for our con-
siderations it suffices to consider the total length of words no more that H(m).
Hence for arbitrary word v we consider d = 4(V01(H(m)))2 +6Vol(H(m)) word
probabilities.

Fix some ordering of the pairs (o, 7) of starting and stopping conditions
involving the conditions with space not exceeding S(H (m)). Let p(v) be the
vector of these d probabilities according to this ordering.

We first show that if |[v] < m and if p is a nonzero element of p(v), then
p > 27 VelHM)Gm) - Form a Markov chain K(v) with states of the form
(conf,l) where confis a configuration of M using no more space than S(H (m)),
and 0 <! < |v|+ 1. The chain state (conf,{) with 1 <! < |v| corresponds to M
being in configuration conf with the input tape head scanning the /th symbol
of v. Transition probabilities from such states are obtained from the transition
probabilities of M in the obvious way. For example, if the {th symbol of v is
0, and if M in configuration conf reading a 0 can move the input head left and
enter configuration conf with probability 1/2, then the transition probability
from state (conf,l) to state (conf,l—1) is 1/2. Chain states of the form (conf,0)
and (conf, |v| + 1) are trap sates of K(v) and correspond to the input head of
M falling off the left or right end, respectively, of v. Now consider, for example,
p = p(v,0,7) where o = (conf;, Left) and 7 = (conf;, Left). If p > 0, then
there must be some path on nonzero probability in K (v) from state (conf;, 1)
to (conf;,0) and since K(v) has at most Vol(H (m)) - [v| < Vol(H (m)) - G(m)
nontrapping states, there is such a path of length at most Vol(H (m)) - G(m).
Since 1/2 is the smallest nonzero transition probability of M, it follows that
p > 27 VollH(m))G(m) — The other three cases p(v, 0, 7) where 7 has the form
(conf, &) are similar. If ¢ = (conf, Left) and 7 = Loop, there must be a path
of nonzero probability in K (v) from state (conf, 1) to some state (conf) such
that there is no path of nonzero probability from (conf) to any trap state of
the form (conf’,0) or (conf’,|v|+1). Again, if there is such a path, there is one
of lenght at most Vol(H (m)) - G(m). The remaining cases are similar.

Fix an arbitrary m € I. Divide W, into equivalence classes by making w
and w’ equivalent if p(w) and p(w’) are zero in exactly the same coordinates.
Let E,, be a largest equivalence class, so |E,,| > |Wn|/2%

Let d' be the number of nonzero coordinates of p(w) for w € E,,. Let p(w)
be the d’-dimensional vector of nonzero coordinates of p(w). Note that p(w) €

[2=Vol(H (m))-G(m) l]d for all w € Ep,. Let logp(w) be the componentwise log

of p(w), so log p(w) € [~V ol(H (m)) - G(m),0]* .

By dividing each coordinate interval [Vol(H (m)) - G(m), 0] into subintervals

d'

),
of length p, we divide space [Vol(H(m)) - (m) 0] into at most
(Vol(H(m)) ~G(m)/u)d cells, each of size p1 x p X -+ x . We want to choose

p large enough that the number of cells is smaller than the size of F,,, that is

(vOuH(n;)) ~G<m>)d - |v2v;n|,

or, equivalently,

24(Vol(H(m)))2+6Vol(H(m)) «

) 4(V ol(H(m)))?+6V ol (H(m))
" (Vol(H(m)) G(m)) < Wi (1)

7

Since |Wy,| is assumed to grow faster than any polynomial in m, G(m) is a
polynomial in m, and since, by assumption from the contrary, Vol(H(m)) =
20(008m) for arbitrary g > 0 there is an m, such that (1) holds for all m € I
with m > m,,.

Assuming (1), there must be two different words w,w’ € FE,, such that
logp(w) and logp(w') belong to the same cell. Therefore, if p and p’ are two
nonzero probabilities in the same coordinate of p(w) and p(w'), respectively,
then

|logp —log p'| < p

It follows that p and p’ are 2¢-close. Therefore, p(w) and p(w’) are componen-
twise 2#-close.

For this pair (w,w’), let u and v be the words in Assumption 3 in the
statement of the theorem. We describe two Markov chains, R and R’, which
model the computation of M on uwv and uw’v, respectively. Both chains
have 4 - Vol(H(m)) - G(m) + 4 states. 4 - Vol(H(m)) - G(m) of these states
have the form (conf,{) where confis a configuration of M and ! € {1,2,3,4}.
The other states are Initial, Accept, Reject and Loop. The state (conf,l) of
R corresponds to M being in cofiguration conf reading the right end of ¢u
if I = 1, the left end of w if [= 2, the right end of w if I = 3, or the left
end of v¢ if [= 4. The state Initial corresponds to M being in its initial
state ¢g reading the leftmost endmarker ¢, the states Accept and Reject corre-
spond to the computation halting in the accepting state or the rejecting state,
respectively, and Loop means that M has entered an infinite loop. The transi-
tion probabilities of R are obtained from the word probabilities of M on ¢u,w
and v¢. For example, the transition probability from (conf;,3) to (conf;, 1) is
just p(w, (conf;, Right), (conf;, Left)), the transition probability from Initial to
(conf;, 2) is p(¢u, (confripian Left), (conf;, Right)) and the transition probabil-
ity from (conf;,4) to Accept is p(v¢, (conf;, Left), Accept). The states Accept,
Reject and Loop are trap states of R. The chain R’ is defined similarly, but
using w’ in place of w.

Suppose that uwv € A and uw'v € B, the other case being symmetric. Let
z=2(4-(Vol(H(m)) - G(m) +4). Let a (resp., ') be the probability that M
accepts input uwv (resp., uw'v). Then a (resp., a’) is exactly the probability
that the Markov process R (resp., R’) is trapped in state Accept when started

in state Initial. Now uwv € A implies @ > 1 — €. Since R and R’ are 2¥-close,
Lemma 2.1 implies that

> 27K

SHES

which 1implies
a>(1—¢€-27#

Now we are ready to put our arguments together. Take u so small that
(1—e¢)- 9= (8- Vol(H(m))G(m)+8) 1/2 (2)
Then take sufficiently large p to ensure that (1) holds. Choose two different but

2#-close words in E,,. Then R and R’ are 2*-close and (2) holds. But since
uw'v € B, this contradicts the assumption that p separates A and B. O

Example 2.3. Consider the language PAL C {0,1}" consisting of all the
palindromes.

Corollary of Theorem 2.2. If a Monte Carlo 2-way Turing machine with
space bound S(n) recognizes PAL, then S(n) cannot be o(logn).

Notice that there exists a deterministic 2-way Turing machine recognizing
PAL in space logn.

Example 2.4. Consider the language Dy containing strings of balanced paren-
theses of 2 types. This language is generated by the context-free grammar with

productions: S = (), S =[], S —= S5, S = (5), S = [9].

Corollary of Theorem 2.2. If a Monte Carlo 2-way Turing machine with
space bound S(n) recognizes Dq, then S(n) cannot be o(logn).

3 Separation Theorem

Theorem 3.1 Let g(n) be arbitrary self-constructible space function for Monte
Carlo 2-way Turing machines, g(n) < logn. Then there is a language L, such
that:

1. Ly can be recognized by a g(n)-space bounded Monte Carlo 2-way Turing
machine,

2. L, cannot be recognized by a h(n)-space bounded Monte Carlo 2-way Tur-
ing machine, where h(n) = o(g(n)).

Proof. L, consists of words w € {0,1,2,3,4}" in the form w = v22...233...
344 .. .4, where:

(i) v is a palindrome in {0,1}",

(i1) the number of 2’s equals the length of v,

(iii) if & denotes the number of 3’s then the number of 2’s equals 2%,
(iv) the number of 3’s equals g(|w]).

The Monte Carlo Turing machine asserted in 1) first constructs the function
g(n), compares it with the number of 3’s. Then the machine deterministically
recognizes whether or not the assertion (iii) holds. This can be done in space k.
Finally, the machine deterministically recognizes whether the assertions (i)—(ii)
hold. No more than logarithmic (in |v|) space is needed for this.

The Assertion 2) is a corollary from Theorem 2.2. O

M. Karpinski and R. Verbeek [KV 87] have shown that there are many small
functions which are self-constructible for space complexity of 2-way Monte Car-
lo Turing machines. Among these functions one should mention loglog .. .logn
(repeated arbitrarily many times), log™n, the inverse Ackermann function. Tt
follows from our Theorem that the corresponding complexity classes are pairwise
different. For instance, there is a language recognizable by 2-way Monte Carlo
Turing machines in space log"n but not in space equal to the inverse Ackerman
function (For the related problems of randomized time bounded computation

of. [KV 93]).

4 1-way Monte Carlo machines

Consider a language L C X*. We say that the words u and v are equivalent with
respect to L if and only if (Vw)(uw € L < vw € L). Rank of the language L
is the function rankg (n) expressing the number of non-equivalent words among
all the words in X<7.

Theorem 4.1 If a Monte Carlo 1-way Turing machine with space bound S(n)
recognizes L, then S(n) cannot be o(loglogrankyg(n).

Proof. Fix some ordering of the configurations of the machine M such that
the lengths of used work-tapes do not decrease. Let Vol(n) be the number of
possible configurations of M with the length of work-tape not exceeding S(n).
It is ovbious that Vol(n) < O(exp(S(n))).

Let py be the Vol(n)-dimensional vector of the probabilities of the corre-
sponding configurations reached by M after processing the input word x, The
total of these probabilities may be less than 1 since with small probability longer
configurations nay be obtained. The vector p, may be interpreted as a point in
a Vol(n)-dimensional unit cube. We introduce metrics

p(Pzspy) = |pe(confy) — py(confi)| + - + [pe(confy ny) — Py(confy ony)|-

Lemma 2. 3 in [Fr 85] asserts that there is a positive constant ¢ such that if
x and y are not Myhill-Nerode equivalent with respect to L, then p(ps, py) > c.
Let 21, %s,...,2, be all possible words in ©=" pairwise non-equivalent with

respect to L (r = rankg(n)). Consider the bodies defined by the equations
p(Pe — Pe;) < 5. These bodies do not intersect. Their volumes equal

2Vol(n) . (%)V‘)l(”) CVol(n)

(Vol(n))! (Vol(n))!

These bodies are situated in a cube with the length of edge 1 + 2¢. Hence the
number of the bodies cannot exceed

(1 + QC)VO‘l/(nl)()(VOl(n))' — 20(V01(n)~logVol(n))
cVolln

and
ranky (n) < 20(Vol(n)log Vol(n))

log rankr(n) < O(Vol(n) -log Vol(n))

logranky (n)
- - === - 7 <
(log logrankr(n)) — Vol(n)

O(loglogrankr(n)) < S(n) O

5 1-way probabilistic machines

Theorem 5.1 Let A, B C X* with AN B = 0. Suppose there is an infinite set
I of positive integers and a function H(m) such that for each m € I there is an
ordered set of pairs of words Wiy, = {(uy,v1), (u2,v2),..., (tm,vm)} such that
Jor every string a(1)a(2) ...a(m) € {0,1}", there is a word w such that

wwy; € A, ifa(l) =1
wwy; € B, ifa(i) =0

and |u;wv;| < H(m) for all i € {1,2,...,m}.
Then, if a I-way probabilistic Turing machine with space bound S(n) sepa-
rates A and B, then S(H(m)) cannot be o(logm).

Proof. Assume the contrary. Let M be a probabilistic 1-way Turing machine
with the acceptance probability p(z) > A if x € A and p(2) < A if # € B, with
S(H(m)) = o(logm) which implies Vol(H (m)) = 2°{o8™).

Enumerate all the configurations of M using no more space than y. Denote
the number of possible configurations of M using no more than y space by Y.
It is obvious that (Je¢ > 0)(Y < ¢¥).

Denote by a;; the transition probability from configuration 7 to configuration
J when M processes the input word w. Similarly, denote by b;; and c¢;; the
transition probabilities when M processes w and v, respectively. If we neglect

the configurations using space exceeding y, then there is only a finite number
of configurations and the probability p(z) for # = uwv equals

aiy a2 N ary bll b12 N bly
asy a9 N asy b21 bzz N bzy
(51, ~,51Y) _ _ _ _ _ _ _ _ X
ay1 ays ... ayy by1 byz N byy
€11 12 ey n
€21 Ca2 cay 2
X
Cy1 Cy 2 ... CYy ny

Our proof is based heavily on the simple observation that p(z) may be ex-
pressed as a linear form of the products d;a;;b;xcrim. Hence for fixed words u, v
the value p(z) is expressed as a linear form of the values b11,...,byy. These
linear forms may be considered as a linear Y2-dimensional space. The linear
dependence of any (Y2 4+ 1) vectors in an Y 2-dimensional linear space implies
that there are numbers ¢y, ..., ¢y24; which are not all equal to 0, and there are
Y2 + 1 pairs (u1,v1), (u2,v2), ..., (uy241,vy241) such that, for arbitrary w,

c1 - p(urwvr) + cap(uawvg) + -+ - + cyep1p(uyzwoyzy1) = 0 (3)

and
Cl+62—|—~~~—|—6y2+120 (4)
Let ¢, ¢y, .. .¢; be all positive numbers in this set. By Assumption (2)

of the Theorem, for every string a(1)a(2)...a(Y? + 1) € {0, 1}Y2+1 there is a
word w such that

wwy; € A, if a(i) = 1,and
wwy; € B, if (i) = 0.

Take (i) = 1 if and only if ¢; > 0. Then p(w;wv;) > A if and only if
a(i) = 1. Hence from (4) it follows

e1 - plugwvr) + -+ ey puyepwoyay) =

=c1(p(urwvr) — A) + -+ cyzqq - (pluyzgiwoyzyy) — A) > 0 (5)
Now observe that the lengths of all words w;wv; do not exceed H(Y2 +1).
Hence the space used by M on these words does not exceed S(H(Y?+1)) <y

(because, by the contrary, S(H(m)) = o(logm)). Contradiction between (5)
and (3). O

Consider the language NH defined by M. Nasu and N.Honda [NH 71]. Tt is
the set of words over an alphabet {a, b} of the form a’ba/tb ... bairb (r =1,2,..)
such that for some 1 <1 < r,i = j; + --- + 5 holds, where i, ji,ja,...,j, are
nonnegative integers.

Corollary 5.2 If a probabilistic 1-way Turing machine with space bound S(n)
recognizes the language NH, then S(n) cannot be o(logn).

Proof. For arbitrary m, the pairs of words (u;,v;) are as follows. w; = ', v;
is empty. For the string a(1)a(2)...a(m), let 0 < k1 < ko < -+ < k; be all
the values of ¢ such that «(i) = 1. Let ji,ja,..., 5 be positive integers such
that, for every 1 < s <1, j1 + -+ js = k5. Then the word w corresponding
to the string a1 (2)...a(m) equals baitbai?b...balth. It is easy to see that
wywy; € NHif and only if a(d) = 1. For all m, H(m) < 3m. O

It deserves to be noticed that NH can be recognized by a deterministic 1-
way Turing machine in log-space as well. Hence, randomness does not help to
recognize NH even if we allow non-isolated cut-points.

6 Probabilistic machines

Theorem 6.1 Let A, B C X* with AN B = 0. Suppose there is an infinite set
I of positive integers and a function H(m) such that for each m € I there is
an ordered set of pairs of words Wy, = {(u1, v1), (u2,v2), ... (4m,vm)} such that
Jor every string a(1)a(2) ...a(m) € {0,1}", there is a word w such that

wwy; € A, ifa(l) =1
wwy; € B, ifa(i) =0

and |u;wv;| < H(m) for all i € {1,2,...,m}. Then, if a 2-way probabilistic
Turing machine with space bound S(n) separates A and B, then S(H(m)) cannot
be o(loglogm).

Proof. It follows from Theorem 5.1 that arbitrary 1-way probabilistic Turing
machine separating A from B cannot have space bound o(logm). J. Kaneps
[Ka 89] proved that every language recognizable by a 2-way probabilistic finite
automaton with % states can be recognized by a 1-way probabilistic finite au-
tomaton with 20(+”) states as well. This proof can be modified to obtain our
result. O

7 Discussion

It may seem that all the lower bounds proved in the paper are based on the same
assumption about the given language. The assumptions are indeed related. For
instance, if, for a language L, the assumptions of Theorem 5.1 hold, then the
assumptions of Theorem 2.2 hold as well. However, our lower bounds show that
space complexity features may be different for different sets.

10

(For the set PAL there are the following space optimal Turing machines:

1-way deterministic TM: linear
2-way deterministic TM: logn
1-way Monte Carlo TM: logn
2-way Monte Carlo TM: logn
1-way probabilistic TM: const
2-way probabilistic TM: const

For the set N H the space bounds are:

1-way deterministic TM: logn
2-way deterministic TM: logn
1-way Monte Carlo TM: logn
2-way Monte Carlo TM: logn
1-way probabilistic TM: logn
2-way probabilistic TM: 7

For the set
{01022...2010210%10%1 ... 102"2010210%10%1 ... 102"}

the space bounds are:

1-way deterministic TM: logn
2-way deterministic TM: logn

> loglogn
< (loglog n)”

2-way Monte Carlo TM: const

1-way Monte Carlo TM:

1-way probabilistic TM: const
2-way probabilistic TM: const
) o

Acknowledgements

We thank Eric Allender, Richard Beigel, Johan Hastad, Sasha Razborov, and
Rutger Verbeek for the number of interesting discussions on the various issues
of the randomized separation and the lower bounds.

11

References

[ABHH 92]

[BCP 83]

[Bu 77]

[DS 88]

[DS 92]

[Fr 75]

[Fr 77)

[Fr 79]

[Fr 83]

[Fr 85]

[Gi 74]

[GW 86]

Allender, E., Beigel, R., Hertrampf, U., and Homer, S., Almost-
FEverywhere Complexity Hierarchies for Nondeterministic Time,
Manuscript, 1992, A preliminary version has appeared in Proc.

STACS’90, LNCS 415, Springer—Verlag, 1990, pp. 1-11

Borodin, A., Cook, S., and Pippenger, N., Parallel computation
for wellendowed rings and space-bounded probabilistic machines,
Information and Control 58, pp. 113-136.

Bukharaev, R. E., Probabiistic Automata, Kazan University
Press, 1977 (Russian).

Dwork, C., and Stockmeyer, L., Interactive proof systems with
finite state verifiers, Res. Rep. RJ6262. IBM Research Division,
San Jose, Calif., May 1988.

Dwork, C., and Stockmeyer, L., Finite state verifiers I. The power
of interaction, Journal of ACM, 39, 4 (Oct. 1992), pp. 800-828.

Freivalds, R., Fast computation by probabilistic Turing machines,
Proceedings of Latvian State University, 233 (1975), pp. 201-205
(Russian).

Freivalds, R., Probabilistic machines can use less running time,
In: Information Processing’77 (Proc. IFIP Congress’77), North
Holland, 1977, pp. 839-842.

Freivalds, R., Speeding up recognition of some sets by usage of ran-
dom number generators, Problemi kibernetiki, 36 (1979), pp. 209-
224 (Russian).

Freivalds. R., Space and reversal complexity of probabilistic one-
way Turing machines, Lecture Notes in Computer Science, 158

(1983), pp. 159-170.

Freivalds, R., Space and reversal complexity of probabilistic one-
way Turing machines, Annals of Discrete Mathematics, 24 (1985),
pp- 39-50.

Gill, J. T., Computational complexity of probabilistic Turing ma-
chines, STAM J. Comput. 6 (1977), pp. 675-694.

Greenberg, A. G. and Weiss A., A lower bound for probabilistic
algorithms for finite state machines, Journal of Computer and

System Science, 33 (1986), pp. 88-105.

12

[Ka 89]

[KF 90]

[Kr 90]

[KV 87]

[KV 88]

[KV 93]

[KS 60]

[NH 71]

[Pa 71]

[Ra 63]

[Tr 74]

Kaneps, J., Stochasticity of languages recognized by two-way finite
probabilistic automata, Diskretnaya matematika, 1 (1989), pp. 63—
77 (Russian).

Kaneps, J. and Freivalds, R., Minimal nontrivial space complezity
of probabilistic one-way Turing machines, Lecture Notes in Com-
puter Science, Springer, 452 (1990), pp. 355-361.

Karp, R. M., An Introduction to Randomized Algorithms, Techni-
cal Report TR-90-029, International Computer Science Institute,
Berkeley, 1990.

Karpinski, M., and Verbeek, R., On the Monte Carlo space con-
structible functions and separation results for probabilistic com-
plezity classes, Information and Computation, 75 (1987), pp. 178-
189.

Karpinski, M., and Verbeek, R., Randomness, Probability, and the
Separartion of Monte Carlo Time and Space, LNCS 270, Springer—
Verlag, 1988, pp. 189-207.

Karpinski, M. | and Verbeek, R., On Randomized versus De-
terministic Computation, Proc. ICALP ’93, LNCS 700 (1993),
Springer—Verlag, pp. 227-240.

Kemeny, J. G., and Snell, J. L., Finite Markov Chains, Van Nos-
trand, 1960.

Nasu, M. and Honda, N., A context-free language which is not
acceptable by a probabilistic automaton, Information and Control,

18 (1971), pp. 233-236.

Paz, A., Introduction to Probabilistic Automata, Academic Press,

1971.

Rabin, M. O., Probabilistic automata, Information and Control, 6

(1963), pp. 230-245.

Trakhtenbrot, B. A., Notes on the complexity of computation by
probabilistic machines, In: Theory of Algorithms and Mathemat-
ical Logics, VC AN SSSR, 1974, pp. 159-176 (Russian).

13

